
HAL Id: hal-02407709
https://hal.science/hal-02407709

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing and Comparing Phylogenetic Trait Data
from Their Normalized Laplacian Spectrum

Eric Lewitus, Leandro Aristide, Hélène Morlon

To cite this version:
Eric Lewitus, Leandro Aristide, Hélène Morlon. Characterizing and Comparing Phylogenetic Trait
Data from Their Normalized Laplacian Spectrum. Systematic Biology, inPress, �10.1093/sys-
bio/syz061�. �hal-02407709�

https://hal.science/hal-02407709
https://hal.archives-ouvertes.fr


Version dated: May 29, 2019

Characterizing and comparing phylogenetic trait data

from their normalized Laplacian spectrum

Eric Lewitus1,2, Leandro Aristide1, Helene Morlon1
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Abstract.— The dissection of the mode and tempo of phenotypic evolution is integral to
our understanding of global biodiversity. Our ability to infer patterns of phenotypes across
phylogenetic clades is essential to how we infer the macroevolutionary processes governing
those patterns. Many methods are already available for fitting models of phenotypic
evolution to data. However, there is currently no non-parametric comprehensive framework
for characterising and comparing patterns of phenotypic evolution. Here we build on a
recently introduced approach for using the phylogenetic spectral density profile to compare
and characterize patterns of phylogenetic diversification, in order to provide a framework
for non-parametric analysis of phylogenetic trait data. We show how to construct the
spectral density profile of trait data on a phylogenetic tree from the normalized graph
Laplacian. We demonstrate on simulated data the utility of the spectral density profile to
successfully cluster phylogenetic trait data into meaningful groups and to characterise the
phenotypic patterning within those groups. We furthermore demonstrate how the spectral
density profile is a powerful tool for visualising phenotypic space across traits and for
assessing whether distinct trait evolution models are distinguishable on a given empirical
phylogeny. We illustrate the approach in two empirical datasets: a comprehensive dataset
of traits involved in song, plumage and resource-use in tanagers, and a high-dimensional
dataset of endocranial landmarks in New World monkeys. Considering the proliferation of
morphometric and molecular data collected across the tree of life, we expect this approach
will benefit big data analyses requiring a comprehensive and intuitive framework.
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Phylogenetic trait data are essential to understanding the evolution of biodiversity.1

They have been used to identify adaptive radiations (Harmon et al. 2010), infer stabilizing2

selection (Hansen 1997; Butler and King 2004), measure the phenotypic effects of species3

interactions (Drury et al. 2018) and environmental fluctuations (Clavel and Morlon 2017),4

and generally to estimate the role of the phylogeny in how traits evolve over time5

(Felsenstein, 1973). They are critical to connecting microevolutionary processes of natural6

selection to macroevolutionary patterns of phenotypic evolution (Hansen and Martins7

1996).8

A wide range of approaches, reflecting the general interest of trait evolution among9

evolutionary biologists, have been developed to infer the mode and tempo of phenotypic10

evolution across clades. These include summary statistics that test for the degree of11

phylogenetic signal in trait data, such as Blomberg’s K (Blomberg et al. 2003), and12

maximum likelihood-based techniques that fit models to phylogenetic trait data and13

estimate the rate at which traits evolve (see Pennell and Harmon (2013); Manceau et al.14

(2016); Lewitus (2018) for a review of currently available models). These models rely on15

the a priori formulation of a phenotypic model, which currently can be reduced to whether16

traits evolve according to a Brownian process along the phylogeny (Felsenstein 1985),17

towards a trait optimum (Hansen 1997), as an effect of increasing species diversity (Weir18

and Mursleen 2013) or environmental fluctuations (Clavel and Morlon 2017), or as a result19

of interspecific interactions (Drury et al. 2016; Manceau et al. 2016). Insofar as they20

represent a fixed set of biological scenarios, the reliance on parameterized models ultimately21

limits our ability to characterize the patterns of trait evolution along a phylogeny and22

compare those patterns between traits independently of pre-defined evolutionary processes.23

In this paper, we introduce an approach for analysing phylogenetic trait data that24

requires no assumptions about the underlying generative model. This approach allows for25

comparisons of the evolutionary histories of traits evolving within a phylogenetic clade and26
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the characterization of trait evolution according to an intuitive graph-theoretical system.27

Our approach is based on the spectrum of the normalized graph Laplacian, which provides28

a framework for systematically characterizing and comparing the distribution of trait data29

across a phylogenetic tree. The normalized graph Laplacian has been successfully utilised30

in the physical sciences to understand how signal processes are embedded within a graph31

(Shuman et al. 2013) and has been applied to understanding high-dimensional data32

produced from, for example, social networks (Rohe et al. 2011), text classification (Apté33

et al. 1994), and image recognition (Zhang and Hancock 2008). It has also begun to be34

applied to the biological sciences to aid in big data analysis of metabolic networks (Deyasi35

et al. 2015) and cancer genomics (Rai et al. 2017). More recently, we introduced an36

approach for comparing and characterising phylogenies (Lewitus and Morlon 2016a) using37

the spectral density profile of the graph Laplacian of the distance matrix of a phylogeny,38

the so-called modified graph Laplacian (MGL), which is able to infer diversification39

patterns within a phylogeny, as well as directly compare patterns between phylogenies,40

absent any a priori model specification (Lewitus and Morlon 2016b). Together, these41

applications show the strength of applying the graph Laplacian. However, despite its42

widespread utility, no such framework has been developed for characterizing and comparing43

phylogenetic trait data.44

We first describe how to construct the spectral density profile of the normalized45

graph Laplacian for phylogenetic trait data and demonstrate how to interpret it in terms of46

specific properties of phenotypic evolution. We use simulations to show how the profiles47

relate to conventional metrics of phylogenetic signal and models of trait evolution. We48

show how to compute the distance between profiles and cluster phylogenetic trait data49

based on those distances. Finally, we illustrate the utility of this approach for assessing50

whether distinct trait evolution models are distinguishable using the Cetacean phylogeny.51

We also illustrate the application of the approach on functional trait data for tanagers52
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(Thraupidae) and geometric morphometric data for the endocrania of New World monkeys53

(Platyrrhini). We think that such a non-parametric and comprehensive framework for54

studying phylogenetic trait diversification will be a valuable complement to existing55

model-based approaches.56
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Materials and Methods57

Implementation58

Below, we describe how to use the normalized modified graph Laplacian (nMGL) to59

construct a spectral density profile for traits (i.e., unidimensional continuous extant tip60

data) on a phylogeny, how to characterize the profile in terms of evolutionary patterning,61

and how to compute the distance between profiles. We implemented these functionalities in62

the R package RPANDA freely available on CRAN (Morlon et al. 2016). In the analyses63

detailed below, phylogenies were simulated using the R package TESS (Höhna 2013); trait64

data for BM, OU and ACDC models were simulated using mvMORPH (mvSIM function65

Clavel et al. (2015)) and for DD and MC models with RPANDA (sim t comp function).66

Blombergs K was computed using phytools (Revell 2012); and MDI was computed using67

geiger (Harmon et al. 2008).68

Construction of the Spectral Density Profile for Phylogenetic Trait Data69

We aim to provide a non-parameteric framework for characterizing and comparing patterns70

of phylogenetic traits (i.e., tip data) for a given phylogeny. We consider a fully bifurcated71

tree composed of m terminal branches (Fig. 1A). We note −→g a vector of unidimensional72

continuous extant trait data associated to this tree. We consider this data as a particular73

kind of graph, G = (N,E,w), composed of nodes representing extant species, edges74

delineating the relationships between nodes, and a weight associated to each edge,75

computed as w(i, j) = di,j|gi − gj| where di,j is the phylogenetic distance between tips i and76

j and gi is the trait value at tip i. Hence, the weight is a combination of phylogenetic and77

trait distances between two extant species. In Lewitus and Morlon (2016a), the nodes in78
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the graph represent both extant species and internal splitting events in the phylogeny; here79

we limit the nodes to extant species, as internal splitting events do not have associated80

trait data. We consider Θ the matrix of weights (Fig. 1B) and D the degree matrix (the81

diagonal matrix where diagonal element i is computed as δi =
∑

k 6=iw(i, k)). We construct82

the normalized modified graph Laplacian (nMGL, see Table 1), defined as83

D−1/2(D −Θ)D−1/2, which is distinguished from the non-normalized graph Laplacian84

(D −Θ) because it is normalized by D. While the normalized version of the graph85

Laplacian loses some information on the size of the graph compared to the non-normalized86

version, it is more sensitive to fine-scale features of the graph (Banerjee and Jost 2008).87

Our approach aims to characterize and compare traits on the same phylogenetic tree88

(rather than traits between different phylogenetic trees) and so the size of the graph (i.e.,89

of the tree) is not important. The nMGL is a m x m positive semi-definite matrix. It90

therefore has n non-negative eigenvalues, nλ1 ≥ nλ2 ≥ ≥ nλm ≥ 0 (throughout, the n91

subscript preceding symbols highlights that we are considering the normalized graph92

Laplacian). We convolve them with a Gaussian kernel to ensure a continuous distribution93

(Banerjee and Jost 2008). The spectral density profile (SDP) of nλ from the nMGL,94

defined as f(x) =
∑

i=1(2πσ
2)−1/2e(

−|x−nλi|
2

2σ2
), is plotted as a function of nλ as95

f ∗(x) = f(x)∫
f(y)dy

(Fig. 1C). Considering the success of previous work showing the capacity96

of spectral density profiling for differentiating graphs generated by different processes97

(Banerjee and Jost 2009; Arenas et al. 2006; McGraw and Menzinger 2008; Lewitus and98

Morlon 2016b), and particularly the framework we recently introduced for characterizing99

and comparing phylogenies based on their spectral density profiles (Lewitus and Morlon100

2016a), we hypothesized that the spectral density profile of the nMGL would be a powerful101

tool for characterizing and comparing trait evolution within phylogenetic clades.102

Interpreting Spectral Density Profiles for the nMGL103
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The spectrum of nλ computed from the nMGL represents primarily global properties of the104

structure of trait evolution within a phylogenetic clade. Each nλ reflects the connectivity105

(in terms of edge-length) and difference in trait value between one tip and all other tips in106

a phylogeny. We know from the substantial body of existing work on the normalized graph107

Laplacian that large nλ are characteristic of sparse neighbourhoods typical of highly108

divergent terminal branches (both in terms of trait value and phylogenetic distance) and109

small nλ are characteristic of denser neighbourhoods typical of barely divergent terminal110

branches (Chung 1996; Chen et al. 2004). Additionally, for the normalized graph111

Laplacian, 0 ≤ nλ ≤ 2 (Bauer and Jost 2009), which in the case of dense matrices (i.e., no112

zero entries, like Θ) becomes ∼ 1 ≤nλ≤ 2 (Banerjee and Jost 2009). Therefore, as trait113

differences between closely related tips become smaller, nλ ' 1 accumulate and, as trait114

differences between closely related tips become larger, nλ > 1 accumulate. Importantly,115

trait differences here are relative, so small (or large) trait differences are only small (or116

large) in regard to the distribution of trait differences across the tree. Also, because the117

weights used to compute the nMGL are products of phylogenetic and trait distances, it is118

impossible to separate the relative contribution of each of these distances on the SDP. This119

is one of the reasons why the nMGL is useful for comparing various trait distributions on a120

given fixed tree (with fixed phylogenetic distance) and not across different trees.121

We define three summary statistics computed from the spectrum of nλ – the tracer,122

the fragmenter, and the splitter – that together define the phylogenetic trait space. Traits123

evolved under different evolutionary scenarios on the same tree occupy different regions of124

this space (Fig. 2).125

The tracer is the peak height of the SDP, denoted nη, and computed as the126

ln-transformed maximum value of f ∗(x); it represents the iteration of nλ around a single127

value. Higher tracer values mean smaller differences between closely related tips (low128

within-clade variance) and larger differences between distantly related tips (high129
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among-clade variance). Therefore, we expect the tracer to be a good measure of130

phylogenetic signal. In order to test this, we compared the tracer to conventional estimates131

of phylogenetic signal on trait data simulated on a phylogenetic tree. We simulated a single132

birth-death tree with 100 tips at 20 million years under constant speciation (0.2) and133

extinction (0.05) rates (throughout, rates of speciation and extinction are expressed in134

event per lineage per million year) and simulated 500 trait datasets on that tree under a135

Brownian motion (BM) model of trait evolution with variance σ2 = 0.01 (Cavalli-Sforza136

and Edwards 1967), an exponentially accelerating (AC) model with rate value β = 1.5 and137

σ2 = 0.01, an exponentially decelerating (DC) model with rate value β = −0.1 and138

σ2 = 0.01 (Blomberg et al. 2003; Harmon et al. 2010), and a white-noise model by139

randomly drawing trait values from a normal distribution (with a mean of zero and140

standard deviation of one). For each of the three first models, we set the root value at 0.141

For each dataset, we estimated Blomberg’s K, which measures the partitioning of variance142

using a BM model as reference, where K > 1 means close relatives resemble one another143

more than expected under BM, and K < 1 means they resemble one another less144

(Blomberg et al. 2003), and the morphology disparity index (MDI), which is a measure of145

the difference between the observed diversity through time curve and that expected under146

a BM model, where a higher MDI indicates that higher subclade disparity than expected147

under a BM model (Foote 1997; Harmon et al. 2003; Slater et al. 2010). We fit OLS148

regression models between nη and both Blomberg’s K and MDI for the 500 trait datasets.149

The fragmenter is the skewness of the SDP, denoted nψ, and computed as the150

ln-transformed µ3

µ
3/2
2

, where µi is the ordinary ith moment of the distribution; it represents151

the relative abundance of small and large nλ. Therefore, as trait space becomes more152

clustered, irrespective of phylogenetic signal, the proportion of small nλ increases and so153

does the fragmenter. Therefore, we expect the fragmenter to be a good measure of the154

discreteness of trait space. In order to test whether the fragmenter captures discrete155
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clusters of extant trait data, we simulated a single birth-death tree with 200 tips at 20156

million years under constant speciation (0.2) and extinction (0.05) rates and simulated 200157

datasets of discrete trait space under low and high phylogenetic signal. For low158

phylogenetic signal, we simulated trait data on four macroevolutionary landscapes159

(Boucher et al. 2017), each defined by a different polynomial function: V (x) = x2,160

V (x) = x4 − 0.5x2, V (x) = x6 − 0.5x2, and V (x) = x8 − 0.5x2, where the landscape is161

estimated as e−V (x). Here, an increase in the exponent of the first term generates a more162

discretized trait distribution (i.e., a deeper well in the macroevolutionary landscape). We163

set σ2 = 0.5, the root value equal to 5, and the trait boundaries at [0, 10]. We plotted the164

landscapes as defined by the polynomial functions, histograms of the trait data for each165

landscape as realized in the simulations, and the spectral density profiles of each dataset.166

For high phylogenetic signal, we simulated trait data on the same birth-death tree under a167

DC model with rate value β = −0.6,−0.3, 0 and σ2 = 0.1, where more negative values of β168

indicate more decelerated rates (Blomberg et al. 2003; Harmon et al. 2010). This generated169

trait data distributed in discrete monophyletic clusters across the tree. For the low and170

high phylogenetic signal datasets, we computed the fragmenter and compared values as a171

function of macroevolutionary landscape and of β.172

The splitter is the principal nλ, denoted (nλ
∗); it is diagnostic of the disjointedness173

of a graph, where larger splitter values imply a more bipartite structure (Banerjee and Jost174

2008; Bauer and Jost 2009). In macroevolutionary terms, as traits become increasingly175

bimodally distributed with a strong phylogenetic signal, the splitter increases. As nλ ≤ 2176

for the nMGL, the splitter' 2 when a clade is composed of two phylogenetically distinct177

subclades with different mean trait values. To assess the relationship between the spectral178

density profile and differences in mean trait values on a phylogeny, we simulated a single179

birth-death tree with constant speciation (0.2) and extinction (0.05) rates with 200 tips at180

20 million years. We then simulated BM models (σ = 0.01) with q differences in mean trait181
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values for q = 0− 4 by defining different mean trait values for q + 1 monophyletic sets of182

tips, where the mean trait value for q0 was randomly drawn from a normal distribution183

with a mean value between 0− 1 (and standard deviation of one) and subsequent mean184

trait values were defined as two-times the previous mean. We then compared nλ
∗ for each185

set. The value of the splitter is expected to correlate with the disjointedness of the graph,186

where higher values indicate the nMGL is more bipartite and so can be segregated into two187

monophyletic groups with distinct mean trait values (Bauer and Jost 2009). To test188

whether there were, in fact, two monophyletic clusters, we used k-means clustering (for189

k=2) on the nMGL of the phylogenetic trait data. We then calculated the average190

branch-length distance between tips in cluster 1 and tips in cluster 2. For phylogenetic191

trait data that can be separated into two monophyletic clusters, the average between-group192

distance will equal two times the crown age of the tree. We present this as a heuristic test193

of the monophyly of trait values when the splitter ' 2. To test the effect of phylogenetic194

signal on the splitter value, we simulated 10 trait datasets with one difference in mean trait195

values on a 100-tip constant-rate birth-death tree as above. We then randomized the196

distribution of tip data within each cluster 100 times and compared the resulting splitter197

value for the randomized trees against the original splitter value. We compared the splitter198

values for the two-cluster BM datasets and the randomized two-cluster datasets to 100199

datasets simulated under a simple BM process (with no clusters and σ = 0.01).200

To test the effect of erroneous data on the nMGL, we simulated trait data under a201

BM process on a 100-tip constant-rate birth-death tree (σ = 0.01). We tested both the202

effect of increasing the amount of error and increasing the number of tips with error. For203

the former, we introduced error on 10% of randomly drawn tips as a sampling variance204

equal to n times the standard error for n = 1, 2, 3. For the latter, we introduced error on205

20, 30, 40, 100% of tips as a sampling variance equal to the standard error. We simulated206

100 datasets for each scenario. We compared the resulting splitter, tracer, and fragmenter207
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values to BM datasets (σ = 0.01) and ACDC datasets (β = −1.1, σ = 0.01) simulated on208

the same tree and with no introduced error.209

Clustering nMGLs from Their Spectral Density Profiles210

To demonstrate whether we can distinguish phylogenetic trait data simulated under trait211

models we know are distinguishable, we clustered nMGLs constructed for trait data on the212

same phylogeny under different trait models. To cluster nMGLs, we computed the213

Jensen-Shannon distance between spectral density profiles. The Jensen-Shannon distance is214

defined as215

∆(Λ1,Λ2) =

√
1

2
KL(f ∗1 , f

∗) +
1

2
KL(f ∗2 , f

∗) (1)

where f ∗1 and f ∗2 are spectral densities for profiles 1 and 2, f ∗ = 1
2
(f ∗1 + f ∗2 ), and KL is the216

Kullback-Leibler divergence measure for the probability distribution (Endres and Schindelin217

2003). We then cluster the matrix of Jensen-Shannon distances for each profile pair using218

hierarchical clustering with boostrap resampling and k-medoids clustering using optimal219

silhouette width, s(i), which is a measure of the between/within-variance of each datapoint220

i assigned to a cluster; data are typically considered structured at s̄ > 0.51 (Szekely and221

Rizzo 2005; Reynolds et al. 2006). In each case, the number of clusters is not set a priori.222

We tested the efficacy of clustering on profiles using trait datasets simulated on223

birth-death trees. We simulated a total of 1500 trait datasets under a BM model of trait224

evolution with variance σ2 = 0.01 (Cavalli-Sforza and Edwards 1967), an exponentially AC225

model with rate value β = 1.5 and σ2 = 0.01, and an exponentially DC model with rate226

value β = −0.1 and σ2 = 0.01 (Blomberg et al. 2003; Harmon et al. 2010). For each model,227

we set the root value at 0. We visualised this clustering by plotting the profiles in a228

multidimensional space defined by nλ
∗, nψ, and nη.229

We tested the ability of the spectral density profile to find meaningful clusters of230

trait models on different tree shapes and sizes. To test for the effect of tree shape, we231
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simulated trait datasets on 200-tip birth-death trees (with a max age of 20Ma) with232

constant speciation (0.2) and extinction (0.02) rates, with decreasing speciation233

(0.1 ∗ e−0.2t) and constant extinction (0.02) rates, and with increasing speciation (0.1 ∗ e0.1t)234

and constant extinction (0.05) rates. We conducted analyses on identical trees without235

pruning extinct lineages, resulting therefore in non-ultrametric trees, to test whether the236

profiles of different models were more distinguishable on a non-ultrametric tree compared237

to an ultrametric tree, as is expected from likelihood-based approaches (Cooper et al.238

2015). To test for the effect of tree size, we simulated 6000 trait datasets under the same239

BM, AC, and DC trait model parameters on birth-death trees with constant speciation240

(0.2) and extinction (0.05) rates with 20, 50, 100, 200, and 500 tips (with a max age of241

20Ma). As above, phylogenies were simulated using the R package TESS (Höhna 2013)242

and trait data were simulated using mvMORPH (Clavel et al. 2015).243

Applications244

To illustrate our approach, we demonstrate three applications. First, we used the Cetacean245

phylogeny (87 spp.) (Steeman et al. 2009) to illustrate how our approach can be used to246

assess the distinguishability of different trait evolution models in a particular clade. We247

simulated six trait models under a range of parameter values on the Cetacean phylogeny:248

BM with σ2 = 0.1− 5; Ornstein-Uhlenbeck (OU) with strength of pull towards an optimum249

α = 1− 20 and σ2 = 0.1; exponential diversity-dependence (DD) with slope parameter250

r = −1.1−−0.1 and σ2 = 0.1; AC with rate value β = 1.1− 1.5 and σ2 = 0.1; DC with251

rate value β = −0.5−−0.1 and σ2 = 0.1; and matching competition (MC) with the252

strength of competition S = −1.1−−0.1 and σ2 = 0.1. For each model, we simulated 500253

datasets with the root value set to zero. For all datasets, we computed the spectral density254

profile and clustered them using hierarchical and k-medoid clustering. Second, we used a255

tanager phylogeny (350 spp.) (Thraupidae) with 27 phylogenetically corrected principal256
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component traits (pPC traits) spanning traits related to song, plumage, and resource-use257

taken from Drury et al. (2018). Ideally, we would have used non-phylogenetically corrected258

PCs but these were not available. We computed the spectral density profiles for the pPC259

traits and clustered them using hierarchical and k-medoid clustering and computed their260

spectral density profile summary statistics. Finally, we used a geometric morphometrics261

dataset consisting of 399 three-dimensional Procrustes superimposed landmark coordinates262

describing the external brain shape of 48 species of New World monkeys (Platyrrhini)263

(Aristide et al. 2016). For each landmark, we computed the Euclidean distance between264

the landmark and the clade mean for that landmark, in order to reduce the dimensionality265

of the data. We refer to these distances simply as landmarks. We computed the spectral266

density profile for each of the 399 landmarks and clustered them using hierarchical and267

k-medoid clustering and plotted their spectral density profile summary statistics in268

multidimensional space. In order to test how much information was lost in this269

dimensionality reduction (Monteiro et al. 2000; Uyeda et al. 2015), we also clustered the270

profiles computed separately for the coordinates along each axis. Even though these axes271

may not necessarily be aligned with the most biologically meaningful directions of272

variation, it is a straightforward and convenient way of analyzing the data.273
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Results274

Interpreting the Spectral Density Profile for Phylogenetic Trait Data275

The shape of the spectral density profile of the nMGL reveals many aspects characteristic276

of the underlying evolution of a trait within a phylogenetic clade. Specifically, the tracer277

(peak height, nη), the fragmenter (skewness, nψ) and the splitter (principal nλ, nλ
∗), of the278

profile may be interpreted in terms of the evolutionary history of the trait (Fig. 2).279

The tracer summary statistic represents the peak height of the spectral density280

profile. In macroevolutionary terms, this is indicative of the phylogenetic signal of a trait,281

where larger nη indicate more phylogenetic signal (Fig. 3A-C). We show that the tracer is282

strongly correlated with conventional summary statistics of phylogenetic signal, with nη283

increasing with Blomberg’s K (y = 3.44− 4.13x+ 1.36x2, R2 = 0.96, P < 0.01) and284

decreasing with MDI (y = −2.65 + 2.23x− 0.34x2, R2 = 0.93, P < 0.01) (Fig. 3D).285

White-noise models fall at the lowest end of tracer values, converging with AC models286

simulated with β = 1.5 in terms of tracer values (Fig. 3 ).287

The fragmenter summary statistic represents the relative abundance of small versus288

large nλ. In macroevolutionary terms, larger nψ indicate a more discrete distribution of289

trait means in trait space. We show that for trait data simulated on increasingly290

discretized macroevolutionary landscapes, spectral density profiles have correspondingly291

higher fragmenter values (Fig. 4A-C). We also show for trait data simulated with DC292

models with an increasingly negative rate parameter, β, which produce increasingly293

discretized trait space, that spectral density profiles have correspondingly higher294

fragmenter values (Fig. 4D-F). Notably, the discrete clusters of mean trait values generated295

by macroevolutionary landscapes are generally not monophyletic, whereas those generated296

by DC models are monophyletic.297

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/654087doi: bioRxiv preprint first posted online May. 31, 2019; 

http://dx.doi.org/10.1101/654087
http://creativecommons.org/licenses/by-nc-nd/4.0/


The splitter summary statistic, which is the principal nλ computed from the nMGL,298

is diagnostic of the bipartiteness of the nMGL. Specifically, it is indicative of how easily the299

graph can be disjointed into two components. We show that splitter values increase300

(approaches 2) as the number of monophyletic groups with different trait means301

approaches two (Fig. 5A-C). When groups are defined using k-means clustering (with302

k = 2) on the nMGL, the average phylogenetic distance between groups approaches two303

times the crown age of the phylogeny when there are two monophyletic groups,304

demonstrating that clustering on the nMGL allows recovering these two groups (Fig. 5D).305

Splitter values obtained from the randomized datasets are similar to those obtained from306

the original datasets, suggesting that phylogenetic signal has little effect on splitter values307

(Supplemental Fig. 1).308

Importantly, the fragmenter and tracer values are sensitive to the introduction of309

erroneous data, although not dramatically (Supplemental Fig. 2). When a considerable310

amount of sampling variance (equal to three times the standard error) is introduced on311

10% of tips, fragmenter and tracer values decrease only slightly. The impact of erroneous312

data only becomes appreciable when it is introduced on a large proportion of tips (≥ 30%).313

However, it is only when 100% of tips are affected by erroneous data that the inference of314

fragmenter and tracer values begins to approach that of AC models (β = 1.5), which shows315

that the nMGL is in large robust to error-prone data.316

Clustering Models of Phylogenetic Trait Data317

For the traits simulated on the constant-rate birth-death trees under the three different318

trait evolution models, we found that the spectral density profiles were optimally clustered319

into three groups (bootstrap probability > 0.95) (Fig. 6A). Separate clusters could be320

overwhelmingly (> 95%) assigned to AC, BM, and DC models with an average silhouette321

width= 0.6. The DC cluster is considerably farther from the AC and BM clusters than the322
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AC and BM clusters are from each other, based on Euclidean distance. Trait models323

simulated on increasing-rate and decreasing-rate trees show slightly different abilities to324

cluster trait models using spectral density profiles. They also show different configurations325

of profiles in multidimensional space, although this is expected because the nMGL is326

computed using the phylogenetic distance matrix, which is sensitive to tree shape. For the327

increasing-rate tree, the profiles were optimally clustered into three groups (bootstrap328

probability > 0.95), each of which could be exclusively assigned to either AC, BM, or DC329

models with an average silhouette width= 0.79 (Fig. 6B). Similarly to the constant-rate330

tree, the DC cluster is considerably farther from the AC and BM than the AC and BM are331

from each other. For the decreasing-rate tree, we found two significant clusters (bootstrap332

probability > 0.95), one of which can be exclusively assigned to DC models and another333

that is a hodgepodge of AC and BM trait models with an average silhouette width= 0.55334

(Fig. 6C). When plotted in multidimensional space, the AC and BM models simulated on335

the decreasing-rate tree occupy the same region and are therefore indistinguishable based336

on their spectral density profile summary statistics for this tree.337

For the constant-rate non-ultrametric tree, trait models are also distinguishable338

based on hierarchical and k-medoids clustering (Supplemental Fig. 3A). The average339

silhouette width for clusters of traits on the non-ultrametric tree is 0.82, compared to only340

0.6 on the ultrametric tree (Supplemental Fig. 3B), which demonstrates that the trait341

models are more distinguishable on the non-ultrametric tree. We similarly found trait342

models to be distinguishable on increasing-rate (Supplemental Fig. 3C) and decreasing-rate343

(Supplemental Fig. 3D) non-ultrametric trees.344

We estimated the effects of tree size on spectral density profile summary statistics.345

Fragmenter and tracer values increase with tree size, while splitter values decrease with346

tree size (Supplemental Fig. 4A). At 20 tips, the profiles of AC, BM, and DC models347

occupy the same phylogenetic trait space, but at 50 tips the models are distinguishable348
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(Supplemental Fig. 4B). While the nMGL loses some information on the size of the graph349

compared to the non-normalized version, clearly there is still some effect of size. This is350

likely because size and shape are integrated in phylogenies.351

Applications352

Traditionally, likelihood-based models are fit to phylogenetic trait data and the model353

showing the best support is inferred as the generative one. Oftentimes the difference in354

support between models is small and therefore finding traits with similar evolutionary355

histories or comparing those evolutionary histories can be difficult. The ability of our356

approach to directly compare the spectral density profiles of the nMGLs of different traits357

on the same tree allows us to find clusters of traits with similar evolutionary histories and358

then compare those histories in a multidimensional space defined by interpretable359

parameters without needing to qualify differences based on estimated likelihoods.360

By simulating datasets under different trait models on the Cetacean phylogeny, we361

are able to visualize how distinguishable these models are from one another under different362

parameter values (Fig. 7). When all parameter values are taken together, we are not able363

to clearly distinguish between all models using hierarchical clustering (Fig. 7). While364

under certain parameter values each model occupies its own space, there is nonetheless365

overlap for parameter values, suggesting that, for the Cetacean phylogeny, trait evolution366

under different phenotypic models are quite similar. Particularly similar models are DC367

and DD, although these diverge in phylogenetic trait space for large parameter values; and368

OU and AC, but unsurprisingly, because these two models are algebraically identical on369

ultrametric trees (Uyeda et al. 2015).370

We clustered the spectral density profiles for 27 pPC traits in the tanager371

phylogeny. We identified two clusters using hierarchical clustering (bootstrap372

probability= 0.96) (Fig. 8A); and found the same two clusters using k-medoid clustering,373
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where the inferred axes explained 69% of variance among the spectral density profiles (Fig.374

8B). Cluster 1 was comprised of 10 plumage traits, 6 resource-use traits, and 1 song trait,375

whereas Cluster 2 was comprised of 9 song traits and 1 resource-use trait, suggesting376

different evolutionary histories for different types of traits (Fig. 8B). Cluster 1 showed377

significantly higher (T > 2.8, P < 0.01) splitter, fragmenter, and tracer values compared to378

Cluster 2 (Fig. 8C). This suggests that that plumage and resource-use traits have a379

stronger phylogenetic signal and evolve into more discrete trait space, indicative of380

monophyletic clusters of traits. While the plumage and resource-use cluster have a381

significantly higher splitter value than the song cluster, both have low splitter values (i.e.,382

<< 2) and therefore little evidence of bipartiteness.383

The landmark data for New World monkeys clustered into three groups according to384

k-medoid clustering, with a minimum average silhouette width of 0.51, and according to385

hierarchical clustering (bootstrap probability> 0.9) (Fig. 8D). Cluster 1 showed386

significantly higher (T > 1.96, P ≤ 0.05) fragmenter and tracer values, suggesting a387

stronger phylogenetic signal and evolution into more discrete trait space compared to the388

other clusters of landmarks (Fig. 8E). Cluster 2 showed significantly lower fragmenter and389

tracer values than the other clusters, suggesting it evolves with little phylogenetic signal390

into a more uniform trait space. Cluster 3 showed intermediary fragmenter and tracer391

values, but significantly higher splitter values, indicative of more bipartiteness. The392

relationship between fragmenter and tracer, which is indicative of the amount of393

convergence in trait space, shows that tracer values increase as a function of fragmenter394

values faster based on a one-sided t-test (P < 0.05) in cluster 1 compared to clusters 2 and395

3, suggesting lower levels of convergence in cluster 1. Interestingly, the three clusters396

broadly correspond to well-defined brain regions (Fig. 8F). Specifically, cluster 1 comprises397

landmarks mostly located on the parietal, cerebellar, and the anterior portion of the frontal398

region, cluster 2 landmarks mainly correspond to the temporal, occipital, and stem regions,399
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and cluster 3 comprises landmarks on the posterior and ventral areas of the frontal region400

and parts of the temporal. These results suggest that different brain regions evolved with401

different evolutionary histories. When we clustered the landmark data along each axis402

separately, treating the coordinates as tip data, we identified the same three clusters along403

each axis according to k-medoid clustering, with a minimum average silhouette width for404

each cluster of 0.46, and according to hierarchical clustering (bootstrap probability> 0.9).405
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Discussion406

We recently introduced an approach for characterizing and comparing phylogenies using407

the spectrum of the graph Laplacian (Lewitus and Morlon 2016a). Here, we have extended408

this approach to analyse the evolution of traits within phylogenetic clades. We have shown409

how to compute the spectral density profile of the nMGL for phylogenies with associated410

trait data and demonstrated how to use these profiles to characterize and compare trait411

data within a phylogenetic clade. This provides a broad, scalable framework for412

characterizing the distribution of traits within a phylogenetic clade without classifying413

those distributions according to pre-defined models of phenotypic evolution. This414

non-parametric approach therefore provides a complement to existing model-based415

approaches to studying phenotypic evolution.416

Because the spectral density profile of the nMGL is computed directly from the417

phylogeny and trait data, it provides a comprehensive rendering of the structure of trait418

evolution across a phylogenetic clade. Consequently, the spectral density profiles of419

different traits on a phylogenetic tree, unlike likelihood values or summaries of phylogenetic420

signal, can be clustered absent any a priori model specification. We show that this is421

successful in distinguishing between phylogenetic trait data generated under different422

macroevolutionary processes and sensitive to the parameter values under which those423

processes are generated. Hence, in the same way that spectral density profiles have been424

used for identifying principal patterns of diversification in vertebrates (Lewitus and Morlon425

2016b), they can be used for identifying principal patterns of phenotypic evolution across426

multiple traits within clades, as we have illustrated here with two empirical datasets.427

Spectral density profiles can also be used to quickly evaluate how distinguishable different428

trait evolutionary processes are, as we have illustrated here on the Cetacean phylogeny.429

This can be very useful when developing new models, to make sure they will be430
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distinguishable before putting all the effort into develop likelihood-based inferences for431

these models. Similarly, although it is impossible to separate the relative contribution of432

phylogenetic and trait distances on the SDP, it is possible to compare SDPs for the same433

trait data across multiple versions of a phylogeny (e.g., a posterior distribution of trees434

generated by Bayesian inference) and thus estimate the effect of tree construction on435

inferences of trait evolution. We can also anticipate that spectral density profiles will be436

useful to compute the distance between simulated and real data in Approximate Bayesian437

Computation approaches (Beaumont 2010) for fitting models of phenotypic evolution that438

are not amenable to likelihood computation (e.g., Clarke et al. (2017)). Although currently439

limited to the analysis of continuous traits, an extension of the nMGL to incorporate440

discrete binary traits would be straightforward: the trait distance between species would441

be 0 or 1 if pairs have the same or a different trait, respectively. Existing work on signed442

graph Laplacians (Kunegis et al. 2010), which attach a positive, negative, or neutral sign to443

each edge, already show the potential for using graph Laplacians to explore graphs with444

associated discrete values. As there are a wide range of discrete traits that are the focus of445

many macroevolutionary questions (e.g., Beaulieu et al. (2013)). we think development of446

the nMGL for the analysis of discrete trait evolution is an important direction for future447

work to move in.448

When reduced to their constituent properties (i.e., splitter, fragmenter, and tracer449

values), spectral density profiles are useful in summarizing the structure of phylogenetic450

trait data and in visualizing differences between them. The tracer is a measure of451

phylogenetic signal and correlates well with conventional summary statistics. Blomberg’s452

K, as a measure of the partitioning of within- versus among-clade variance, resembles what453

tracer is measuring, which is the iteration of nλ around a single value. When within-clade454

variance is low and among-clade variance is high, then the majority of nλ will have a455

similar value, the tracer will be high and so will Blomberg’s K. The fragmenter measures456
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the discreteness of phenotypic space. Higher fragmenter values indicate that trait values457

are distributed in more discrete groups in phenotypic space, as would occur under an early458

burst model of trait diversification or high levels of convergence to multiple optima. The459

relationship between the tracer and fragmenter gives some indication as to whether460

convergence has likely occurred: the ratio of tracer to fragmenter will be higher if the461

discretization of trait values in phenotypic space shows a strong phylogenetic signal (i.e., in462

the absence of convergence). We show, for example, that a two-peak macroevolutionary463

landscape results in high fragmenter values, but relatively lower tracer values than occur464

under a DC model, indicative of the high level of phenotypic convergence in the465

macroevolutionary landscape model and low level of phenotypic convergence in the DC466

model. Of course, we cannot assign a threshold value for convergence, above which the467

tracer to fragmenter ratio conclusively evinces phenotypic convergence. However, for a468

given analysis of different trait data on a tree, we recommend comparing tracer to469

fragmenter ratios between analyses, in order to deduce the comparative levels of470

convergence between datasets. Finally, the splitter of the nMGL is diagnostic of the471

bipartiteness of the graph and therefore, in terms of phylogenetic trait data, higher splitter472

values indicate a bimodal distribution of trait values with high phylogenetic signal.473

We analyse a previously published dataset on pPCs for tanagers (Drury et al. 2018)474

to show the usefulness of clustering phylogenetic trait data to identify and characterize475

traits with similar evolutionary histories among a set. Our result, that the evolution of476

song-related traits is distinct from that of plumage- and resource-use-related traits, is477

consistent with those found in Drury et al. (2018) for species that are year-round territorial478

and/or found in dense habitats. The high tracer and fragmenter values in plumage and479

resource-use traits suggests the discretized trait space of these traits possesses a high480

phylogenetic signal, while the low tracer and fragmenter values in song traits suggests low481

phylogenetic signal and non-discretized trait space.482

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/654087doi: bioRxiv preprint first posted online May. 31, 2019; 

http://dx.doi.org/10.1101/654087
http://creativecommons.org/licenses/by-nc-nd/4.0/


We analyse a dataset of 399 landmarks on the endocrania of 48 species of New483

World monkeys. We show that these landmarks cluster into three groups. Landmarks484

within each cluster delineate meaningful regions of the external brain morphology, which485

suggests that each of these regions evolved differently. Cluster 1, which mostly represents486

the anterior frontal, parietal, and cerebellar regions, shows these regions have evolved into487

a discretized trait space with high phylogenetic signal, whereas cluster 2, which defines the488

temporal, occipital, and stem regions, shows these regions have evolved in a more uniform489

space with low phylogenetic signal. Cluster 3, which defines the posterior and ventral areas490

of the frontal region and part of the temporal region, also shows evidence of these regions491

evolving into a discretized trait space, but with higher levels of convergence than the492

regions of cluster 1. Despite the differences in approach, these results align well with a493

previous analysis of the same dataset conducted using PCA (Aristide et al. 2016), which494

suggests that, during the adaptive radiation of New World monkeys, brain shape evolved495

first into discrete regions of morphospace, with subsequent bursts of evolution generating496

convergence among clades. Moreover, according to Aristide et al. (2016), the different497

stages of this diversification can be associated to the evolution of particular regions of the498

brain. For example, coincident with our results for cluster 1, the anterior frontal region499

would have diversified early into discrete trait optima, while convergent changes would be500

mostly associated with other areas of the frontal region, in agreement with our cluster 3.501

Overall, our results support the idea that there has been differential selection on different502

brain regions in New World monkeys, due both to an early adaptive radiation and503

convergence on ecologically relevant traits (Rosenberger 1992; Gavrilets and Losos 2009;504

Aristide et al. 2015, 2016).505

A major focus of work on phenotypic evolution relates to the study and506

identification of co-evolving traits using multivariate models (Clavel et al. 2015).507

Specifically, the correlated evolution of multiple traits resulting in evolutionary integration508

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/654087doi: bioRxiv preprint first posted online May. 31, 2019; 

http://dx.doi.org/10.1101/654087
http://creativecommons.org/licenses/by-nc-nd/4.0/


expects such sets of traits to have shared evolutionary histories (Goswami 2007). We would509

therefore also expect that these traits, whether they are biologically integrated or510

co-evolving with some shared variable, will have similar spectral density profiles; and so511

clustering profiles may be a way to identify different sets of integrated traits from512

multivariate data. This can become particularly useful when there are many traits, as is513

more often becoming the case with the proliferation of trait data (e.g., Jones et al. (2009);514

Hamish et al. (2014)).515

We have developed an approach, implemented in user-friendly software, which is a516

valuable addition to existing PCMs and provides a new way to analyse and conceive517

phenotypic evolution.518
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symbol descriptor significance

nλ
*

nψ

nη

splitter

fragmenter

tracer

nMGL
normalized modified 
graph Laplacian

nλ eigenvalues

the distance matrix of the phylogeny 
weighted by the differences in trait 
values between tips and normalized 
by the degree matrix 

eigenvalue calculated from the nMGL

the maximum eigenvalue; reflects
bipartiteness (i.e., monophyletic
clustering of trait data)

the skewness of the SDP; reflects
discreteness 

the maximum height of the SDP; 
reflects phylogenetic signal 

SDP spectral density
profile of the nMGL

the density profile of eigenvalues
calculated from the nMGL

value

positive semi-definite symmetric
matrix

~1< nλ ≤ 2

kernel density estimate of nλ

1< nλ
∗ ≤ 2

0 < nψ < ∞

0 < nη < ∞

Table1:Glossary of graphical and statistical terms.
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Figure 1: Pipeline for constructing the spectral density profile for the nMGL of
phylogenetic trait data. (A) Given a phylogenetic tree with m terminal branches and
unidimensional, continuous, extant trait data for m tips, (B) take the Hadamard product
of the difference matrix of the trait data (|gi − gj|) and the matrix of phylogenetic branch-
lengths between tips (di,j), such that Θ = di,j|gi − gj| at i 6= j and zero along the diagonal.
The weighted MGL, D−Θ, where D is the degree matrix of Θ, is computed as the weighted
value of (i, j), −Θ(i, j) = −w(i, j), at i 6= j and as

∑
wi,k for i = j. The normalized

MGL (nMGL) is normalized by D, so that nMGL= D−1/2(D −Θ)D−1/2, resulting in unity
along the diagonal and negative the weighted value of (i, j) divided by the square-root of
the product of δi and δj for i 6= j. (C) The spectral density is obtained by convolving the
eigenvalues, nλ, computed from the nMGL with a Gaussian kernel and then plotting the
density of nλ.
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*
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Figure 2: Defining phylogenetic trait space Any phylogenetic trait data can be placed
in a three-dimensional space defined by the splitter (nλ

∗), the fragmenter (nψ), and the
tracer (nη), which broadly represent the bipartiteness, discreteness, and phylogenetic signal,
respectively, of the phylogenetic trait data. Hypothetical traitgrams are placed in the corners
of the space, illustrating the type of patterns expected in those corners. Traitgrams are
generated on the same phylogenetic tree under different trait evolution parameters.
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Figure 3: Interpreting the tracer of spectral density profiles. (A) Disparity-through-
time plots for traits evolved under an AC, BM, DC, and white-noise model on the same 100-
tip constant-rate birth-death phylogeny. (B) Traitgrams and (C) spectral density profiles
for the phylogenetic traits in (A). Note the difference y-axis range in (C). Pairwise plots
of Blomberg’s K and MDI as a function of the tracer for phylogenetic trait data simulated
under AC, BM, DC, and white-noise models. The best-fit regression slopes are shown for
each plot.
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Figure 4: Interpreting the fragmenter of spectral density profiles. (A) Histograms of
simulated trait values (grey) under four macroevolutionary landscapes (blue). (B) Spectral
density profiles for phylogenetic trait data simulated under each landscape in (A). (C) boxplot
of fragmenter values for spectral density profiles generated under each macroevolutionary
landscape in (A). (D) Traitgrams of phylogenetic trait data simulated under ACDC models
with different rate parameter values, β. (E) Spectral density profiles for the phylogenetic
trait data in (D). (F) Boxplot of fragmenter values for phylogenetic trait data simulated
under each DC model in (C).
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Figure 5: Interpreting the splitter of spectral density profiles. (A) Phylogenies
simulated with 1 − 4 monophyletic shifts in mean trait values and no shifts in trait value.
Different mean trait values are represented in grey scale. (B) Spectral density plots for
the phylogenetic trait data in (A). (C) Boxplot of splitter values for phylogenetic trait data
simulated under different numbers of monophyletic shifts in mean trait value. (D) Boxplot of
the between-cluster branch-length distances (as a ratio over two times the crown age of the
tree) for phylogenetic trait data simulated under different shifts in mean trait value, where
clusters are defined by k-means clustering on nMGL (with k=2). Both splitter and between-
cluster branch-length distance increase as the nMGL approaches bipartiteness (splitter= 2).
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Figure 6: Clustering phylogenetic trait data using the spectral density profile
of the nMGL. Hierarchical clustering of spectral density profiles and three-dimensional
plotting of spectral density profile summary statistics for phylogenetic trait data simulated
under AC, BM, and DC models of trait evolution on (A) a constant-rate birth-death tree,
(B) an increasing-rate birth-death tree, and (C) a decreasing-rate birth-death tree. The trees
are shown as insets. Asterisks denote bootstrap probabilities > 0.95 at the split.
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Figure 7: Spectral density profiles for simulated trait models on the Cetacean
phylogeny. Hierarchical clustering and multidimensional plot of spectral density profile
summary statistics for trait data simulated under AC, BM, DC, DD, MC, and OU models
under varying parameter values on the Cetacean phylogeny.
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Figure 8: Spectral density profiling of traits in tanagers and New World monkeys.
(A) Hierarchical and (B) k-medoids clustering on the spectral density profiles of the nMGLs
constructed from 27 pPC traits on the tanager phylogeny. Silhouette widths are shown for
each pPC trait in the k-medoid clustering. (C) Spectral density profile summary statistics
for pPC traits within each cluster identified in (A,B). (D) Hierarchical clustering of spectral
density profiles and multidimensional plot of spectral density profile summary statistics for
399 landmarks on New World monkey endocrania: cluster 1 (blue), cluster 2 (green), cluster
3 (red). (E) Boxplot of summary statistics for each cluster identified in (D). (F) Three-
dimensional representation of the New World monkey endocranium with placement of the
clusters of landmarks corresponding to (D).
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Figure S1: Measuring the effect of phylogenetic signal on splitter values. (A)
Boxplot of the splitter values for 100 randomized datasets (white) obtained for each of the
ten datasets with two monophyletic clusters. Splitter values for the initial BM datasets with
two clusters are shown in purple. Boxplot of 100 datasets simulated under a simple BM
process with no clusters on a single tree (coral) is shown for comparison. (B) Boxplot of
Blombergs K for each randomized dataset (white); values for the initial BM datasets with
two clusters are shown in purple. Boxplot of 100 datasets simulated under a simple BM
process with no clusters on a single tree (coral) is shown for comparison.
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Figure S2: Measuring the effect of erroneous trait data on spectral density profile
summary statistics. Spectral density profile summary statistics for data simulated under
a BM process (coral) with introduced error for 10% of tips with a sampling variance equal to
one, two, and three times the standard error of the simulated BM data; and with a sampling
variance equal to one times the standard error for 10, 20, 30, 100% of tips. Spectral density
profile summary statistics for data simulated on the same tree under an ACDC process
(β = 1.5) is also shown (cornflowerblue).
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Figure S3: Clustering phylogenetic trait data using the spectral density profile of
the nMGL on a non-ultrametric tree. Hierarchical clustering of spectral density profiles
and three-dimensional plotting of spectral density profile summary statistics for phylogenetic
trait data simulated under AC (cornflower blue), BM (coral), and DC (sea green) models
of trait evolution on a single (A) constant-rate, (C) increasing-rate, and (D) decreasing-rate
birth-death tree without pruning extinct lineages. Tree is shown in inset. Asterisks denote
bootstrap probabilities > 0.95 at the split. (B) Silhouette widths for profiles comprising
each trait model cluster simulated on the ultrametric or non-ultrametric tree (see Fig. 5A).
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Figure S4: Effect of tree size on the nMGL. (A) Scatterplots and OLS regression
slopes for spectral density profile summary statistics for trait data simulated under DC (sea
green), BM (coral), and AC (cornflower blue) models on constant-rate birth-death trees with
different numbers of tips. (B) Phylogenetic trait space for trait models simulated under AC,
BM, and DC models on trees with different numbers of tips.
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