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Abstract—Confronting the changing demand of users, the
current Internet is revealing its limitations. Information Cen-
tric Network (ICN) are Future Internet proposals which are
based on named data objects. In order to actually replace its
predecessor, ICN must be able to resist existent threats in the
current Internet, especially the Denial of Service (DoS) attack.
In this paper, we focus on Interest flooding - a new type of DoS
attack in Content Centric Network (CCN). Several solutions
for this threat have been introduced, but they do not solve
the problem in a satisfying way because of some drawbacks
in either their detection performance, scalability support or
restricted scenario of usage. Our goal is to design a reliable,
low resources-consuming detection method against Interest
flooding attack in CCN. A detection scheme must be attended
since a lot of resources consumed by unnecessarily continuous
countermeasure can be saved by a dependable detector. Like
no other detectors in proposed solutions, our detector is based
on statistical hypotheses testing theory. The achieved result
is a low resources-consuming detector that can be deployed
globally on each CCN router. The false alarm probability of
our detector can be controlled at will. Its statistical power can
be theoretically established and evaluated precisely. To validate
our contribution, numerical results show the relevance of the
proposed approach and the sharpness of theoretical results.

I. INTRODUCTION

The Internet users’ demand to access content and the
growth of mobile traffic is increasing unexpectedly. Accord-
ing to Cisco’s forecast1, in 2013, the consumer Internet
video traffic was 18 Exabytes (EB)2 per month, equivalent
to 62% of all consumer Internet traffic (including fixed and
mobile network). In 2018, this amount will reach 64.7 EB,
contributing 78% to all consumer Internet monthly traffic.
The mobile traffic generated 1.48 EB in 2013, contributing
3% to global fixed and mobile data traffic. In 2018, the
mobile traffic will grow to 15.838 EB, accounting for 12%
global data traffic. However, our current Internet was origi-
nally designed for acting as a large-scale content distribution
system composed of mobile users. That is the reason why
Information Centric Network (ICN) [1] [2] are crucial at this
moment. By multi-casting and deploying in-network caches,
ICN reduces the significant load on servers and routers in

1http://www.cisco.com
21EB = 106 TB

the face of increasing demand for data access. To solve the
problem of mobility, ICN establishes communications based
on named data objects, not on location-related IP addresses.
Such communications are more flexible since they are not
necessarily maintained end-to-end overtime.

In spite of being considered as the promising future of
Internet, ICN proposals are still under development and not
fully completed yet. Consequently, they cannot avoid flaws
in operations, especially in security. Each ICN proposition
has different security problems. We focus on the Interest
flooding [3] in Content Centric Network (CCN) [4]. Interest
flooding mainly impacts on routers, data providers and can
be launched easily without much knowledge of of the target
network. Although several solutions have been proposed for
this problem, they are not suitable for a deployment in reality
because of their unreliable and rigid detection method as well
as resources-consumption.

The contribution of this paper is to address the Interest
flooding attack with a detection scheme based on Statistical
Hypothesis Testing Theory which was never used before
by other proposed solutions. The strengths of the proposed
detector are: (1) scalability; (2) controllability of false alarm
probability and (3) analytically established evaluation. First,
the proposed detection method is simple enough so that
is can be deployed in reality without using up too much
resources on routers. Secondly, the statistical properties of
the proposed detection method is analytically established,
allowing the control of false alarm probability. In other
words, our detector can be modified without causing more
false alarms unintentionally. Thirdly, statistical hypothesis
testing theory makes our evaluation well-grounded and more
reliable since the empirical result can be compared with the
theoretical one. ndnSIM [5] - an open source NS-3 based
simulator which faithfully implements the basic components
of a CCN network - was selected to generate data for our
evaluation. The numerical results from simulations show that
our detector provides a great overall performance which is
similar to the theoretically established performance. Also, the
proposed detector nearly reaches the theoretically established
power in most of the cases.

The rest of this paper is organized as follows. Section II



Fig. 1. Packet lookup and forwarding process in CCN [10]

presents related work, including an overview of ICN propos-
als, CCN’s operations and an overview of security issues in
ICN. Section III introduces our proposed detection method
for Interest flooding in CCN and establishes analytically its
statistical performance. Section IV evaluates the performance
and the power of the proposed detector in our set up with
simulated data from ndnSIM. Finally, Section V concludes
the paper and presents our work in future.

II. RELATED WORKS

In this section, we briefly introduce ICN’s key concepts,
CCN’s operation and its security issues, with a focus on the
Interest flooding attack and its recently proposed solutions.

A. Information Centric Network

ICN is a networking paradigm which is based on data
objects. The key concept in ICN is that it names each data
object in the network, instead of using IP addresses for
naming hosts and nodes. Secondly, a node in ICN does not
have to connect to one specific server to get data. Alternately,
this node will send a request with the name of the required
data object. Then, the network will return the corresponding
object to this node. The third key concept is that ICN deploys
in-network caching. Every time a packet passes a network
elements, it will be cached. Based on these concepts, many
ICN architectures have been introduced, including: DONA
[6], CCN, PSIRP [7], NetInf [8].

Among ICN proposals, CCN is the most popular one
in research community. Besides, it allows researchers to
evaluate their results with both implementations (e.g. CCNx3)
and simulators (e.g ndnSIM [5]). In CCN, communications
are based on requests for hierarchical content names and are
performed by two type of packets: Interest and Data. A user
sends an Interest packet when he wants to retrieve content
and will receive a Data packet in return.

A Content Router (CR) in CCN includes three main data
structures: (1) Forwarding Information Base (FIB); (2) Con-
tent Store (CS) and (3) Pending Interest Table (PIT). The FIB
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works like a routing table in a CR, while the CS acts like a
local cache inside, storing every Data packet passing through.
The PIT maintains a routing state for each forwarded Interest
packet and uses these states to forward the corresponding
Data back to the requester. A PIT entry contains a CCN name
and multiple incoming interfaces. Figure 1.a presents the
Interest lookup and forwarding process in CCN. Whenever
a CR receives an Interest for a content name, the CR will
check the CS first. If a cached copy exists, the CR will send
this copy back to the incoming interface. If a cached copy
doesn’t exist but a PIT entry for this content name is already
created, the incoming interface of the Interest will be added
to this entry and Interest will be dropped. If a matching PIT
entry doesn’t exist, a new entry will be created and then the
Interest will be forwarded using routing information in FIB.
If no matching route is found, the Interest can be discarded
or broadcast, depending on the routing policy of the CR.

Figure 1.b presents the Data lookup and forwarding pro-
cess in CCN. When a CR receives a Data packet, it checks the
PIT. If a matching PIT entry is found, it will cache the Data
packet before forwarding it to all the corresponding interfaces
in the PIT entry and then this entry will be removed. If the
CR did not request for this Data, there is no matching PIT
entry and the Data packet is dropped. The whole process
ensures that one Interest only results in one Data packet.

B. Security issues in ICN

The research community has indicated many security
issues in CCN: (1) routing poisoning; (2) privacy issues
related to caches [11]; (3) content pollution and (4) Interest
flooding attack [3]. Like other routing tables, FIB is possibly
poisoned to perform false packet forwarding. However, an
official routing policy for CCN is not yet determined and
hence this issue hasn’t been focused on. In [11], Lauinger has
pointed out how Content Store can be exploited to retrieve
private information Data as well as some other cache-related
issues. In [3], Afanasyev et al. explain how the poisoned
content can be injected in the network and proposed some
tentative countermeasures. Also in this work, the authors have
indicated that the PIT can also be depleted, leading to a
Denial of Service (DoS) in CCN. The principle of DoS attack
in CCN is simple: sending a lot of Interests with non-existent
content names to make PIT overloaded. Hence, the DoS
attack in CCN has a different name: Interest flooding attack.
Also in this work, the authors explained why the two types
of packets - (1) Data packets and (2) Interests with existent
content names - are not appropriate for launching DoS attack
in CCN. First, Data packets fail to launch a DoS attack in
CCN because a CR refuses to forward Data that it did not
request for. Secondly, Interests with existent content name
also fail to launch this attack since the next requests for the
same existent content name will be satisfied by caches instead
of being forwarded toward content providers. By forging non-
existent content names, attacker can target a specific content
provider or can aim to sabotage the network infrastructure. In
addition, Interest flooding attack has a high risk because non-



existent names can be easily created without much knowledge
about the network and data.

Several solutions for detecting and mitigating against In-
terest flooding attack have been proposed. In [10], Dai et al.
present their Interest trace back mitigation strategy. Whenever
the PIT’s size exceeds a threshold, a spoofed Data packets
is created by the CR to respond a long-unsatisfied Interest.
These Data are eventually forwarded back to the source of
attack by tracing PIT entries. At the same time, CRs also
limit the incoming packet rate of interfaces to which they
sends fake Data.

In [12], Tang et al. aim to identify the compromised
name prefixes which are used to launch Interest flooding,
and then announce these malicious prefixes to neighbors.
There are two phases: (1) rough detection and (2) accurate
detection. In the rough detection, malicious interfaces are
detected by the Satisfaction Ratio Test - a test based on a ratio
between number of outgoing Data and incoming Interests on
an interface. When this ratio exceeds a threshold, the interface
is considered under attack. The threshold of this phase is pre-
configured for all cases. In the accurate detection, expired
Interests on the reported interface are recorded. The prefix
that has the largest expired ratio is considered hostile.

Having the same idea of using statistics to identify harmful
interfaces, the Poseidon approach, proposed by Compagno
et al. in [13], maintains two measures: (1) the satisfaction
ratio and (2) the PIT space used up by Interests from the
concerned interface. Once an alarm occurs, a CR issues an
alert message to its neighbor on the malicious interface.
When a CR receives an alert, it also triggers the same
countermeasure, but with a lower threshold, in order to better
identify the compromised interface.

Among all these proposed detection and mitigations strate-
gies, the satisfaction-based push back [14] is the most notable
one. The idea of this proposal is the same as Poseidon
proposal: routers exchange announcements to neighbors and
adjust their reactions based on these messages. Although this
solution monitors the satisfaction ratio, it does not have a
separate detection phase. The ratio is actually used to periodi-
cally calculate the Interest limit exchanged in announcements
between routers.

In spite of using different methods, all the presented
solutions have some common drawbacks. Firstly, most of
them use threshold for detection, but none of them can
indicate reliably how the threshold value is set. A poorly-
defined threshold can result in a rigid and untrustworthy
detector that wastes router’s resources for reactions to false
alarms. Secondly, the majority of proposed solutions require
routers’ co-operation, making them depend on each other.
Hence, when a router is compromised, it can sabotage com-
munications in the network by sending false announcements
to its neighbors. Then these neighbors may also spread these
false messages to other routers in the network.

By using statistical hypothesis testing theory, we have
overcome these drawbacks and provide a detector with a
well-defined threshold that works independently on each

TABLE I
NOTATIONS AND SYMBOLS

Notation Meaning
N Sample size

In Number of incoming Interests at time nth

Dn Number of outgoing Data at time nth

p0 Hit rate of each Interest under normal case

p Hit rate of each Interest under attack

λ Mean rate of traffic from a legitimate user

a Mean rate of malicious Interests

H0 Null hypothesis

H1 Alternative hypothesis

PFA, α0 Probability of False Alarm

α Prescribed PFA

β Detection power

τ Threshold of the detector

δ Statistical test

δ̃ Uniformly Most Powerful test

sup
x∈X

A The most superior values of A when x changes in X

X  Y X converge in distribution to Y

bxc The greatest integer less than or equal to x

router. Moreover, we can control the false alarm probability
of our detection scheme and estimate its statistical power
precisely.

III. SIMPLE STATISTICAL METHODOLOGY FOR
ANOMALOUS TRAFFIC DETECTION IN CCN

In this section, we present our proposed detection method
for Interest flooding attack in CCN. The goal of our work
is to design a reliable low resources-consuming detector so
that it can be globally deployed for each interface of each
router. A detection scheme is attended in our work since a lot
of resources consumed by unnecessarily seamless reactions
could be saved by a trustworthy detector.

A. Statistical hypothesis testing theory

The method we used to design our detection is based
on statistical hypothesis testing theory with Neyman-Pearson
two-criteria approach since it can provide a consistent most
powerful test that does not depend on router’s characteristics
or measured values. Besides, this statistical approach al-
lows establishing false-alarm, missed detection probabilities
and, hence, setting up a threshold such that the prescribed
performance can be ensured. Moreover, this method allows
us to compare the empirical performance of our test with
the theoretically established one, rendering the proposed test
well-grounded and more reliable.

The input of hypothesis testing is a sample ZN , ZN ∈ Z .
This sample is a set of N empirical realizations of a random
variable z. A statistical hypothesis Hj refers to a set of
parameters vectors Θj . Each vector θ in this set defines a
possible probability distribution Pθ of ZN [15]:

Hj = { ZN ∼ Pθ, θ ∈ Θj}.



A hypothesis Hj is called simple when there is only one
unique θ in Θj . On the contrary, it is called composite. In the
usual case of binary statistical tests, there are two hypotheses:
(1) null hypothesis H0 and (2) alternative hypothesis H1. H0

is usually the normal case and H1 is usually the abnormal
case that we want to detect. A statistical test δ between two
hypotheses H0,H1 is a subjective and measurable mapping
from the sample space Z to the set of hypotheses [15]:

δ : Z → {H0,H1}.

In order to design a good statistical test with the Neyman-
Pearson approach, there are some key concepts which should
be aware of: (1) probability of false alarm, (2) detection
power, (3) Likelihood ratio and (4) the uniformly most pow-
erful test. The set Θ0 defining H0 contains many parameters
θ0. For each of these parameters, there is a probability that
the test δ rejects the null hypothesis H0 while it is actually
true. The greatest value of these probabilities is called the
Probability of False Alarm (PFA) of the test δ, denoted by
α0(δ) [15]. Meanwhile, the Detection Power of a test δ, for
a parameter θ1 ∈ Θ1, is the probability that H1 is detected
correctly, denoted by β(θ1, δ) [15]:

α0(δ) = sup
θ0∈Θ0

Pθ0
[
δ(ZN ) = H1

]
,

β(θ1, δ) = Pθ1
[
δ(ZN ) = H1

]
.

For a prescribed false alarm probability α, we define the
class of test Kα containing all the tests whose false alarm
probability is lower than α:

Kα =
{
δ : α0(δ) ≤ α

}
.

A Uniformly Most Powerful (UMP) test δ̃ in the class Kα is
a test providing the highest power under all the parameters
θ1 ∈ Θ1 [15]:

∀δ ∈ Kα, ∀θ1 ∈ Θ1, β(θ1; δ) ≤ β(θ1; δ̃).

For simple hypotheses, since θ is unique for each hypothesis,
the test δ̃ is called the Most Powerful (MP) test.

The idea of Neyman-Pearson two-criteria approach is to
design a test in the class Kα that can warrant a pre-defined
false alarm probability α and maximizes the test power
β(θ1, δ). In the case of simple hypotheses, according to the
Neyman-Pearson lemma [15], the most powerful test δ̃ is the
Likelihood Ratio (LR) test:

δ̃(ZN ) =

{
H0 if Λ(ZN ) = f1(ZN )

f0(ZN ) < τ,

H1 if Λ(ZN ) ≥ τ
(1)

in which Λ(ZN ) is the LR and fj is the probability density
of Pj , j = 0,1. LR test can be transformed by applying a
monotone function to both side of the inequality in (1). The
parameter τ is the solution of the equation:

P0 [Λ(ZN ) ≥ τ ] = α.

Meanwhile, in the case of composite hypotheses, the UMP
test barely exists in reality. The testing theory for this type

Fig. 2. Illustration for notation explanation

of hypotheses is only well-developed for some particular
cases. Due to the space constraint, only cases that are used
to achieve the results will be presented.

B. Assumptions

Figure 2 is an illustration that we used to easily explain
our model. The samples we measure at interface 1 for our
problem are (1) In - the number of incoming Interest at time
nth and (2) Dn - the number of outgoing Data packets at
time nth. We accept these assumptions for our models:

• In follows a Poisson distribution, denoted Π(λ), since
traffic streams on main communications arteries are
accurately modeled by a Poisson process [16];

• The number of Data packets Dn follows a Binomial
distribution, denoted Dn ∼ B(In; p0) with 0 < p0 <
1. Not all the Interests can bring back a Data packet,
for many reasons (e.g link’s failure, request for wrong
content names). Therefore, each Interest is considered as
a Bernoulli trial with a probability p0 of success. Since
Dn is the sum of In Bernoulli trials with a probability
of success p0, it follows a Binomial distribution;

• Values of Dn are statistically independent;
• The capacity of both links and content providers is

assumed to be sufficient;
• If a host is compromised, it will send in additional Inter-

ests. These Interests request non-existent names and do
not return any Data. In order to become more subtle, the
compromised host will facsimile the legitimate user’s
behavior. Hence, in also follows a Poisson distribution,
denoted Π(a);

• All the parameters p0, a do not change over time for an
interface and are known in prior.

C. Our proposed test

In our problem, H0 implies that ”This interface is not
attacked” while H1 implies that ”This interface is under
an Interest flooding attack”. At first, the problem is solved
as an original composite-hypothesis scenario. However, the
resulting detector is not satisfactory because (1) it depends
on In which varies in each measurement and (2) it is
hardly scalable in reality. Specifically, this detector must
be redesigned for each separate interface on which it is
deployed. Besides, re-designing requires time and carefulness
in order to provide a good performance. To resolve these
drawback, the composite hypotheses are reformulated and
resolved. The achieved result is a reliable low resources-
consuming detector.



1) Composite-hypothesis approach: Under the normal cir-
cumstance - null hypothesis H0 - In and Dn should follow
the distributions that we assumed above. Meanwhile, under
H1, the mean of In increases since a compromised host will
send addition Interests which do not bring back any Data
packets. Meanwhile the hit ratio p0 of each Interest remains
unchanged, so the hit ratio under H1 becomes p < p0:

H0 {p = p0} : In ∼ Π(λ);

Dn ∼ B(In; p0).

H1 {p < p0} : In ∼ Π(λ + a);

Dn ∼ B(In; p).

Notice that under both hypotheses, Dn follows a binomial
distribution which belongs to a one-parameter exponential
distribution family [15, Section 2.7]. This distribution family
possesses a property [15, Corollary 3.4.1] that allows us to
find out the following UMP test:

δ̃(D1, . . . , Dn) =

{
H0 if

∑N
n=1Dn ≥ τ,

H1 if
∑N
n=1Dn < τ.

(2)

The threshold τ is determined by the equation:

Pp0(

N∑
n=1

Dn ≥ τ) = α. (3)

Since Dn ∼ B(In, p),
N∑
n=1

Dn is a sum of binomial

distributions. Hence:

N∑
n=1

Dn ∼ B(

N∑
n=1

In, p). (4)

Now, (3) can be written as follows, to emphasize the
relationship between decision threshold and prescribed false-
alarm probability:

bτc∑
i=0

[(∑N
n=1 In
i

)
pi0(1− p0)

∑N
n=1 In−i

]
= 1− α. (5)

According to this equation, the value of threshold τ
depends on α, In and N. While In represents for user’s
behavior, N represents a trade-off between the detection
delay and the threshold accuracy.

In short, the drawbacks of this test are (1) its dependence
on the user behavior; (2) its complexity to compute the
decision threshold τ and (3) its trade-off between delay and
accuracy. If this detector is used, it must be redesigned for
each interface of each router, based on the user’s behavior
and each interface’s requirement for delay and accuracy. Such
detection scheme has a limited scalability since it needs time
and carefulness to be well deployed in the network. Hence,
changing the approach is necessary in order to achieve a more
scalable detector.

2) Approximation approach: Having solved the exact
detection problem with a composite-hypotheses scenario,
a simplification is required to achieve a test that can be
implemented more easily while preserving the efficiency. Let
us start by noticing that, first, each Interest is an independent
Bernoulli trial and follows the same distribution with finite
variance var = p0(1 − p0). Secondly, our hypotheses are
related to Dn - the sum of these independent trials. Finally,
as in most hypothesis testing problems, the input for the
statistical test is a large amount of In and Dn’s empirical
observations. These statements lead us to study the applica-
tion of the Central Limit Theorem (CLT) [15] to transform
these hypotheses. By applying the CLT to H0, one yields:

P

(
Dn − In.p0√
In p0(1− p0)

< y

)
 Φ(y), (6)

Now H0 will be used to normalize the hypotheses. Let assign
Xn = Dn−In.p0√

In p0(1−p0)
. Equation (6) becomes:

Xn ∼ N(0, 1) (7)
⇒ Dn ∼ N(In.p0, In p0(1− p0)).

Applying the CLT to H1, and then normalize the result
following the assigned statistic Xn, we obtain:

Dn−In.p√
In p(1−p)

∼ N(0, 1)

⇒ Dn ∼ N(In.p, In p(1− p))
⇒ Xn ∼ N(µ1, σ

2
1), (8)

with µ1 =

√
In.(p − p0)√
p0(1− p0)

; σ2
1 =

p

p0
.

1− p
1− p0

.

Transforming in the opposite way - normalizing the hy-
potheses under H1 by assigning Xn = Dn−In.p√

In p(1−p)
- is not

relevant because in order to compute the statistic Xn, except
measured values of In and Dn, p also must be known in
prior. This is impossible since p depends on the attacker’s
behavior and there is no way to measure it in prior. If we
already know p, we already know that an attack is going on
and hence there is no thing left to detect.

Now, the addressed hypothesis testing problem becomes:
• H0 {p = p0} : Xn ∼ N(0, 1);
• H1 {p < p0} : Xn ∼ N(µ1, σ

2
1),

where Xn =
Dn − In.p0√
In p0(1− p0)

.

The transformed Likelihood ratio of this test is:

(σ2
1 − 1)

N∑
i=1

X2
i + 2µ1

N∑
i=1

Xi (9)

The UMP test barely exists in reality. However, there exists
an UMP test if the LR is monotone [15]. Hence it is crucial to
study the conditions under which the LR of new hypotheses
is monotone. It is proved4 that the LR (9) is strictly monotone
if:

1− p− p0 6= 0. (10)

4The full proof is provided in the first author’s technical report.



Condition (10) allows us to come up with the following
UMP test for the transformed hypotheses:

δ̃(X1, . . . , XN ) =

{
H0 if

∑N
i=1Xi ≥ τ,

H1 if
∑N
i=1Xi < τ.

(11)

The threshold τ and the detection power β is determined
by the following equations:

τ = Φ−1(α)
√
N, (12)

β = Φ

(
Φ−1(α)

√
N −Nµ1

σ1
√
N

)
. (13)

According to (12), the threshold τ of this test only depends
on α and N . This test has two advantages over the previous
one. Firstly, the threshold’s calculation is simple and thus low
resources-consuming. The accuracy of τ can be improved by
gathering more samples in a longer period of time while
resources consumption is still unchanged. Again, changing
N represents a trade-off between delay and accuracy, but
this approach allows establishing a simple relation for this
trade-off. Secondly, the detection scheme no longer depends
on the user’s behavior. A router can use globally configured
or manually configured values of α and N . Thanks to these
two advantages, this proposed detection method ensures low
resources consumption and high scalability.

IV. EVALUATION

In our evaluation, we use ndnSIM to simulate data and
then run our detection method in MATLAB. The result is
compared with the performance of Satisfaction Ratio Test.
This test is used in three over four solutions that we presented
in Section II-B [12, 13, 14]. We evaluate our detector
regarding: (1) relevance of the approach; (2) probabilities of
false alarm and detection power as a function of threshold
τ ; (3) performance in comparison with the Satisfaction Ratio
Test; (4) detection power in challenging cases.

A. Simulation setup

We used ndnSIM - an open source NS-3 based simulator
- to generate empirical data. This simulator faithfully imple-
ments the basic components of a CCN network in a modular
way [5]. One of the topologies in [14] is reused for our
evaluation - a binary tree with 8 hosts, intermediate routers
and one content provider (as depicted in Figure 3). This
topology represents one of the worst cases to defend against
Interest flooding attack in reality since all the Interests will
be forwarded toward upper links and the content provider.

In this topology, the capacity of links and content provider
are set up large enough as described in Section III-B. We
generate randomly a set of parameters {p0, λ, a} for each
host, following these configurations:
• p0 ∼ unif (0, 75, 0, 85) : a legitimate user does

not send Interests for existent contents all the time,
sometimes he makes mistakes. Therefore, the value of
p0 must not be perfect and not too low. As a result, p0
is chosen randomly in a range of [0.75, 0.85];

Fig. 3. ndnSIM test scenario
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Fig. 4. Comparison between empirical and theoretical distribution of UMP
test results for one host under both H0 (right side) and H1 (left side).

• λ ∼ unif (200, 600) packets/second: since the
capacity of links and content provider are assumed to
be sufficient in our scenario, choosing a large value for
λ is unnecessary. In addition, running simulations with
large values of λ is time-consuming while the results
are not much different;

• a ∼ unif (6, 12) packets/second: instead of sending
a large amount of malicious Interests to make routers
and content provider go down quickly, an attacker can
send a small amount of Interests over time, eventually
take up memory space in the PIT. Such attack will
require more time to overload routers, but will be more
sophisticated and much harder to detect.

Since the addressed Interest flooding is a type DoS attack,
there is only one compromised host in each scenario. Each
host will become an attacker, alternately. For each scenario,
the simulation is run 10 times under each hypothesis H0

and H1. The generated parameters of each host remain
constant for all runs. Finally, 500 seconds are simulated
in each run with one sample measured every second. This
set up is for gathering a large enough amount of data for
post-processing in MATLAB. The simulation code of [14]
is re-used as a source code and is modified to integrate
all the configurations that we described. Our evaluation
results are demonstrated in the following subsection.

B. Evalution results

1) Relevance of approach: Figure 4 shows that although
a host’s histograms of UMP statistics (Xn) varies under both
H0 and H1, their empirical distributions perfectly match the
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Fig. 5. Comparison between the theoretical and empirical for both false
alarm probability and detection power as a function of decision threshold τ .
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Fig. 6. Comparison between the proposed UMP test and the Satisfaction
Ratio Test for a single host with fixed traffic properties.

theoretically established distributions, see (8). The distribu-
tions of UMP test statistics from other nodes also provide
us with the same conclusion, implying that transforming
the original hypotheses with CLT approximation is a very
relevant approach for the addressed problem.

2) Probabilities of false alarm and detection power as
function of τ : Figure 5 illustrates the change of PFA and
detection power as function of threshold τ . The empirical
values of detection power and PFA are close to the theoretical
ones, implying that no matter what τ is, both detection power
and PFA of our detection method are always under control.
In other words, when τ needs to be modified, one knows
exactly how the proposed detector will change. Meanwhile,
none of the existent solutions have studied this problem yet
and hence, their performance remains formally unknown.

3) Performance in comparison with Satisfaction Ratio
Test: Figure 6 and Figure 7 present the Receiver Operating
Characteristic (ROC) curve of our UMP test and the Satis-
faction Ratio Test with fixed traffic properties for a single
host and all nodes, respectively. A ROC curve illustrates the
performance of a test by showing the variation of detection
power as a function of PFA. A good statistical test will have
a ROC curve which reaches the top-left corner of the graph.
Such curve demonstrate a statistical test with high power and
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Fig. 7. Comparison between the proposed UMP test and the Satisfaction
Ratio Test for several nodes which have different traffic properties.

low false alarm probability.
Figure 6 shows a comparison between performances of

the Satisfaction Ratio Test and the proposed UMP test for a
single host. Although the empirical ROC curve of our UMP
test for a single host precisely matches the theoretical one, the
Satisfaction Ratio Test also achieves the same performance.
However, the latter has not been studied statistically and the
condition under which it is optimal has never been identified
as well as its statistical performance.

However, if we draw the ROC curve for an overall
performance (as depicted in Figure 7) by concatenating all
simulated data from all nodes which have different traffic
properties, the difference is now revealed. The proposed UMP
test’s performance not only perfectly matches the theoretical
one, but also shows a much better performance than the
Satisfaction Ratio Test.

4) Detection power in challenging cases: In this evalua-
tion, our proposed detector will be challenged in some special
cases. First, a graph of the Probability of Missed Detection
(PMD) as a function of hit ratio p will be presented to find
out which values of p will defeat our proposed detector.
Secondly, we indicate our proposed UMP test’s advantage
over those challenging cases.

Figure 8 depicts the empirical and the theoretical PMD of
our UMP test as a function of hit rate under attack p with
fixed values α = 0.05, N = 1 and p0 = 0.85. The PMD is
is the probability that H1 is rejected when it is actually true.
In other words, PMD = 1− β. A graph of PMD is used to
better illustrate the result of this evaluation and to improve
the readability.

As demonstrated in the Figure 8, the empirical PMD of
our test perfectly matches the theoretical one, proving that
our detector is well established and results deduced from this
figure are reliable. The figure emphasizes that the proposed
UMP test achieves very low PMD for most values of p. If
the attacker wants to defeat the proposed UMP test, he is
limited to an attack with a very small amount of malicious
Interests (p is very close to p0). Such attack requires more
time to overload routers and content providers.

Empirical results for attacks with large amount of bad
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and p0 = 0.85.
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Fig. 9. Comparison between the empirical and the theoretical power of the
proposed UMP as a function N . Here α = 0.05, p = 0.85 and p0 = 0.825.

Interests (p < 0.75) are also simulated. Since the detection
power for those cases is nearly perfect (i.e. PMD ≈ 0),
those results cannot be demonstrated in the logarithm scale
of the figure.

Figure 9 demonstrates the detection power of our UMP test
as a function of sample size N with fixed values α = 0.05,
p0 = 0.85 and p = 0.825. First, this figure presents the trade-
off between accuracy and detection delay through sample size
N in the most visual way. Secondly, our empirical result is
perfectly compatible with the theoretical one, implying that
our detector is well established and the results deduced from
this figure are reliable.

This configuration represents a challenging case for our
proposed detector since the attacker’s and the legitimate
user’s traffic are very similar to each other. As depicted in
Figure 8, this attack causes a high PMD to our optimal sta-
tistical test. However, it also requires more time to overload
routers and content providers, offering our detector more time
to gather samples in order to enhance the detection power
against this attack. In short, our proposed UMP test has an
advantage over Interest flooding attack, even when the attack
is launched with a small amount of malicious Interests.

With all of the previously presented numerical results, we
come to the following conclusions. Firstly, CLT approxima-
tion is a very relevant approach for our problem. Secondly,
we can master the detection power and the PFA of our UMP
test. Thirdly, our proposed detection method has a better
overall performance than the Satisfaction Ratio Test. Fourthly,
the optimal statistical test provides a great power in most
values of p. In addition, attackers are limited to attacks with
a very small amount of malicious Interests. Finally, thanks
to the analytically established statistical performance of the
proposed detector, one can select a balance point for the
trade-off between accuracy and delay for the proposed UMP
test. Moreover, our proposed UMP test has an advantage over
Interest flooding attack, even when the attack is performed
with a small amount of mischievous Interests.

V. CONCLUSION

Motivated by the Internet’s shortcomings and users’ de-
mand, many ICN architectures have been being proposed.
Among these proposals, CCN is the most popular one in the
research community. New network components in CCN come
with new security threats, including Interest flooding attack.
Several solutions for this threat have been proposed, but they
do not solve the problem in a satisfying way because of some
drawbacks in either their detection performance, scalability
support or restricted scenario of usage. Our goal is to design
a reliable detection method against Interest flooding since
we believe that a trustworthy detector can reduce a lot of
resources for unnecessary seamless reaction.

Using statistical hypothesis testing theory, we achieved the
required detection method for our problem and the result is
promising. The proposed detector is simple enough to be
deployed on every interface of all routers. Its threshold does
not depends users’ behavior on each interface and can be
globally or manually configured. We performed simulations
in ndnSIM to evaluate the performance of the optimal statisti-
cal test and compare it to existent Satisfaction Ratio Test. The
optimal statistical test provides a better overall performance
than the Satisfaction Ratio Test and the observed empirical
results perfectly matches the theoretically established one
thanks to a thorough statistical analysis. Furthermore, even
though the Interest flooding attack is launche with a very
small amount of bad Interests, our proposed detector always
gain an upper hand over the attack.

However, there are some limitations that we want to
improve in our future work. First, in order to actually evaluate
the scalability and the resource consumption, our proposal
must be experimented on more large-scale topologies with
consideration to other factors. Secondly, a mitigation strat-
egy after the detection phase should be developed in order
to neutralize the Interest flooding attack. Thirdly, we will
address a more clever attack in which the attacker’s behavior
as well as the hit ratio under normal case change over time.
Finally, the proposed detector need to be actually integrated
in a CCN implementation and be evaluated with real traffic.
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