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Abstract—Cloud computing has gained an important role in
providing high quality and cost-effective IT services by outsourc-
ing part of their operations to dedicated cloud providers. If
intrinsic security issues of this architecture have been extensively
studied, it has recently been considered as a ready-to-use platform
able to perform malicious activities, thus offering new targets for
indirect threats. However, its large scale, the heterogeneous and
dynamic nature of the activities it executes, as well as multi-
tenancy and privacy-related issues, make the security operation
complex. Consequently, cloud providers can hardly detect and
mitigate malicious activities they unknowingly host. Leveraging
the autonomic paradigm represents a promising solution to face
such a complexity, but it requires efficient grounded monitoring
and analysis functions to efficiently detect malicious activities
hidden within the large number of legitimate ones. In this
effort, this paper presents a robust and cost-effective solution
to detect malicious activities in a public virtualized environment.
Its contribution is twofold: (1) a scalable and robust workload
estimation of the virtual host activities in a cloud and (2) a
detection algorithm able to discriminate infected hosts with
low malicious activities hidden within their legitimate workload
and potentially scattered on several tenants. For both of these
contributions, we establish their theoretical performance, which
demonstrates their optimality, and we evaluate their efficiency on
a dataset made of real data collected on PlanetLab. Finally, we
study the scalability on a large dataset that consists of simulated
data resulting from the real dataset modeling. This demonstrates
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to what extent the proposal exhibits an excellent sharpness and
a reasonable cost, even at a very large scale.

Index Terms—Decentralized algorithm, Big Data, Source-end
anomaly detection, Scalable methods, Low-rate DDoS, Hypothe-
sis testing theory.

I. INTRODUCTION

T
ODAY, cloud computing is a widely adopted solution

for the production of IT services and it has become an

indispensable actor in the operation of various infrastructures.

The cloud is an IT model where massively scalable informa-

tion technology capabilities are delivered as a service and on-

demand to an outside clientele using Internet technologies. It

offers many advantages, such as rapid deployment of services,

cost reduction for its users, billing on demand and scalability

of support infrastructure. Despite the cloud’s benefits for

legitimate users, malicious users can use it as a large-scale and

ready-to-use platform that eases the deployment of an attack

toward any third party connected to the Internet. A Stratsec

study [1] was conducted in 2012 to investigate the potential

benefits of a cloud service infrastructure for a malicious third

party. The experiment consisted in purchasing Infrastructure

as a Service (IaaS), offered from five major cloud service

providers in current market, in order to exploit their services

and produce different types of attacks against a third party.

The experiments lasted 21 days in total and 48 hours for

Distributed Denial of Service (DDoS) without interruption.

However, no response was received from any of the service

providers.

Many cases of abusive use of cloud resources are reported

in the literature: Clark et al. [2] showed how the cloud can

be exploited to create a large Botcloud, in a few minutes

using a minimum of effort and going through the operation

of Amazon EC2 services in order to carry out DDoS and

click-fraud attacks. In 2011, researchers at Kaspersky1reported

that cybercriminals had been using Amazon Simple Storage

Service (Amazon S3) as a launching point for their SpyeEye

botnet operation for at least a couple of weeks. Even more,

1securelist.com/amazon-s3-exploiting-through-spyeye-13/
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according to Solutionary firm [3], cloud services like Google

and Amazon AWS host numerous instances of malware,

primarily from US-based cloud servers. Recently, the Booters

phenomenon has risen [4] thus providing an interface for

DDoS as a Service. The attack generated by a Booter depends

on the Botnet behind it and its power makes its notoriety. Thus,

in order to strengthen the Booter’s power, cloud resources

represent a boon.

The success of these experiments demonstrates that the

simplicity, robustness, flexibility and low cost of cloud services

make it an appropriate solution for those who wish to host

malicious services. Indeed, Cloud Service Providers (CSPs)

make it possible to use their resources without strong security

mechanisms. Ragan et al. [5] tested in 2014 the account

creation process for more than 150 CSPs and showed that

only a third of them required any credentials beyond an

email address, additional information like a credit card, phone

number, or filling out a captcha.

This paper is a contribution to the source-end detection

of malicious activities a CSP can host unknowingly. Given

the large spectrum of such activities, leveraging a network-

based anomaly detection approach, as commonly done in the

state of the art, is not satisfying. Indeed, malicious activities

may exhibit a very low or even null networking activity while

consuming other resources (e.g. CPU, memory, storage). Brut-

force attacks, which consist in leveraging huge computing

resources to crack a set of passwords, are an example of

such malicious activities that illustrates the need for host-based

detection approaches able to capture any abnormal usage of

available resources. However, in this context, implementing

such a detection solution presents several challenges that our

research work faces:

1) Generic detection approach and heterogenous legitimate

activities: Knowing that in the context of a public CSP,

malicious software can execute any sort of malicious activity,

an appropriate detection approach must be sufficiently generic

and scalable to allow the detection of any form of abnormal

activity. Additionally, the heterogeneous and highly dynamic

nature of the legitimate workload a cloud provider hosts must

be considered to enable a sharp discrimination of malicious

activities in such an unstable environment.

2) Data volume and velocity: Due to the volume and velocity

of the data generated by monitoring probes, whose load

is related to the number of virtual hosts2 executed in a

cloud computing infrastructure, it is imperative to consider

an efficient but low-cost approach in terms of resources and

computing time that can support the scaling factor.

3) Confidentiality and privacy: Monitoring user activities with

probes located at the tenant level induces legal problems

[6] related to the privacy of the cloud users. Therefore, the

proposed solution must take it into account by using a non-

intrusive approach that only solicits data available to a cloud

provider such as those made available at the virtualization

layer.

The contribution of the present paper stands for a practical

2In the following, we denote virtual hosts to indifferently refer to virtual
machines or containers.

and efficient method for source-end detection of malicious

activities in large scale virtualized environments. By source-

end detection, it is meant that the malicious activities are

identified by inspecting the activities of virtual hosts in

clouds. This approach thus allows an immediate identification

of infected virtual hosts and consequently the mitigation of

the attack, prevents any collateral damage when targeting

a remote third party, and avoids the difficult problem of

tracing back an attack. In order to deal with the dynamics

and large scale of public cloud infrastructures, the proposed

method relies on a fully decentralized model leveraging an

incremental Principal Component Analysis (PCA), where a

detection engine exhibiting a low computation cost is hosted

in each server of the cloud infrastructure. There, each detection

engine is associated to the set of virtual hosts the server

executes and all the engines can communicate to infer any

global information. As such it is thought to scale up to possible

extremely large number of servers, tenants and virtualized

hosts, which stands for the scaling factors of current and future

cloud infrastructure. Among the different malicious activities

a virtualized infrastructure can host, we consider the case of

DDoS attacks. If the latter are easy to detect from a networking

perspective at any aggregation point toward their target (e.g.

egress router of a cloud infrastructure), they are harder to

discriminate from a system perspective from other activities,

especially when, within the virtual host which executes their

supporting bot, they are mixed with a legitimate activity.

This paper further extends prior work by the authors. It

leverages the workload estimation engine presented in [7] and

the dataset presented in [8] (other previous works in that field

such as [9] are out of the scope of this contribution since they

do not follow the same research methodology). The original

contributions presented in this paper are: (1) a statistical

method for the detection of infected virtual hosts executing a

malicious activity potentially scattered over several tenants; (2)

the theoretical assessment of the method performance; (3) its

validation in terms of performance on a real dataset integrating

a botnet perpetrating a DDoS attack and (4) its scalability

support by leveraging a large-scale realistic dataset generated

from the real data.

The paper is organized as follows. Section II provides an

overview of the contributions taking part in our research field.

Section III formally states the problem of source-end detection

of malicious activities in virtualized hosts. Then, section IV

presents a decentralized methodology for workload estimation

which acts as the ground for a behavioral anomaly detection.

The problem of malicious activity detection is addressed in

Section V where an optimal statistical test is presented and

its statistical performance is established analytically. Sec-

tion VI exhibits results demonstrating (1) the relevance of

our approach to accurately evaluate a cloud workload; (2) the

capability of our detection solution to detect botnet activities

under various conditions, and (3) it assesses the scalability

support of our overall contribution in terms of virtual hosts,

tenants and servers. Finally, Section VII concludes the paper.
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II. RELATED WORK

A substantial part of the present work lies at the intersec-

tion of the three following research domains: (1) workload

estimation in cloud environments (2) distributed Principal

Component Analysis (PCA) for Big Data and (3) source-end

DDoS Detection. We survey all of them below.

A. Cloud Workload Estimation

The problem of workload characterization and prediction

has been widely studied [10], [11]. Among the proposals,

some research focuses on creating mathematical and statistical

models to characterize the workload in a cloud environment.

The classification of tasks based on CPU and memory usage

in [12] relies on the statistical identification of qualitative

coordinates (i.e., small, medium, large). A similar approach is

applied in [13] to study the CPU and memory usage of tasks

and jobs and discover task shapes and duration. In [14], period-

icity and patterns with homogeneous behaviors are identified

with spectral and autocorrelation analyses. The two works

which are the closest to ours are (1) a decentralized clustering

approach for a dynamic mix of heterogeneous applications in

cloud environments [15] and (2) a gossip protocol for dynamic

resource management in large cloud environments [16]. The

proposed mechanisms respectively leverage autonomic control

and decentralized algorithms to handle an efficient VMs provi-

sioning regarding resource utilization. In comparison, the first

part of our work does not aim at classifying activities but rather

provides the best average estimation of the global activity.

Besides, our method does not rely on a priori knowledge or

model but is fully data-driven for high adaptivity while being

completely decentralized.

B. Principal Component Analysis

Principal component analysis (PCA) is a powerful technique

for analyzing and identifying patterns in data. It finds the most

important axes to express the scattering of data by determining

the subspace which holds the largest variance. This subspace

is spanned by the principal axes and the projection of data

in this subspace constitutes the principal components, which

reflect the approximate distribution of data.

1) Background: PCA applied on the data matrix X of V

observations (in column), also called individuals, composed of

p variables, solves the eigenvectors decomposition problem:

Cwi = λiwi, i = 1, 2, · · · , p, (1)

where C is the covariance matrix of matrix X, calculated

when the observations have zero means by C = 1
V X

⊤
X with

X
⊤ the transpose of X. The values λ1 ≥ λ2 ≥ · · · ≥ λp

represent the eigenvalues sorted in descending order and

W = [w1,w2, · · · ,wp] is the corresponding eigenvector

matrix, where wi is the ith-axis direction. The mapping of

the data to principal axis wi, which is referred to as the ith

principal axis, whose variance is λi , is given by the projection

onto wi: Yi = w
⊤
i X. In other words, Yi represents the

contribution of the i-th axis wi.

The computational complexity for calculating the covari-

ance matrix is O(V p2), and it requires O(p2) memory

storage units. The computational complexity of the eigen-

decomposition problem is O(p3) [17]. To this cost, one should

also include the communication costs, which is O(V p) over

a distance O(1).

2) PCA in Big Data: PCA is widely used in Big Data

context [18] since it is usually leveraged as a first step in data

mining. However, because of the complexity of the covari-

ance matrix computation, PCA still appears as a challenging

problem when dealing with large datasets, and hence an active

research topic. In this area, the main strategies to make PCA

scalable, consists in reducing the dataset in order to allow the

computing of PCA. In [19] for instance, coresets are defined

as small sets that provably approximate the original data.

This method is based on merge-and-reduce that permits the

solving of computational problems such as PCA in parallel.

In [20], a model based on PCA is built on a small subset of a

large network producing a large amount of data. The principal

components of this smaller subgraph allow the out-of-sample

extension property.

3) Distributed PCA Approaches: Several attempts have

been made to alleviate the problem of scalability of PCA in

networking contexts by mainly distributing the computation.

This was proposed for instance in [21], [22] where algorithms

are investigated to compute the eigenspace, but still with

high computational costs. Recently, in [23], collective-PCA

technique was proposed, in which a fusion center only receives

the principal components, instead of the whole time series. In

[24], [25], the most relevant principal axis is estimated by

the power iteration method. However, this method requires

the computation of the sample covariance matrix and since

the latter can only be achieved by gathering all the dataset

on one single node, it is inappropriate for large-scale data.

In [25], the power iteration method is used but with sparse

matrices in order to reduce computational complexity. In [26],

the covariance matrix is first estimated by means of a con-

sensus averaging algorithm, then each node performs a local

eigenvector decomposition. The Distribute Adaptive Covari-

ance Matrix Eigenvector Estimation (DACMEE) algorithm,

presented in [27], recursively updates the eigenvector estimates

without explicitly constructing the full covariance matrix that

defines them. Nodes share only the first fused observation

and compute compressed covariance matrices. However, they

still require the eigen-decomposition of several matrices which

does not fit the context of large-scale systems. Similarly,

Candid Covariance-free fast Incremental PCA (CCIPCA) [28]

algorithm offers a very good compromise between statistical

accuracy and computational speed. It also has the advantage of

not having major dependence on tuning parameters. However,

this incremental algorithm is centralized and not adapted for

solutions built on decentralized approaches.

C. Source-end Detection of DDoS Attacks

Distributed Denial of Service attacks (DDoS) have been

widely studied in the literature [29]–[31], since they represent

one of the main attacks in computer networks due to their

easiness to perform and important impacts [32]. Recent works

typically focus on widely distributed low rate attacks. A
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notable prior work in this area is for instance [33] that

uses edge network routers in order to identify attack sources

and to mitigate or discard attack traffic. Those approaches

can either be easily scalable when edge network routers are

detecting attacks independently, with the drawback of not

leveraging information from other routers to improve detection

performance. On the opposite, some prior work focuses on

distributed or collaborative method for detection [32], [34].

Such approaches exploit information from different routers at

the cost of complexity and detection delay and the scalability

support of such approaches still has to be established.

If target level and intermediate level detection approaches

have been extensively studied [31], [32], [35], there are only

few works treating source-end detection due to implementation

and design complexity. Indeed, a source-end solution needs to

be implemented in a large number of locations and a dedicated

collaboration of the different instances is required, in order to

be efficient. The authors in [36] proposed EDS, an extrusion

detection system, that relies on source and destination IPs

and port numbers of each packet in order to draw a graph

that detects the attacks. The proposed method suffers from

a severe scalability issue and could not handle the huge

amount of cloud’s workload. In [37], the authors proposed

Botcloud detection method, using Artificial Immune System

(AIS). Through this process, they can detect the probability of

botnet infection based on the process of independent Poisson

process and detection based on negative selection. The authors

in [38] proposed EyeCloud, a system that detects members

of Botcloud that abuse cloud resources. To reach its goal,

EyeCloud relies on Virtual Machine Introspection (VMI). The

resulting data is then treated by clustering methods. The

authors in [39] proposed srcTrace, a method for the detection

of DDoS attacks generated by a Botcloud. The latter has

two components Bot_Chase and Mp_Trace and relies on the

analysis of traffic flows entropy variation. The authors of [40]

proposed a method for the detection of VMs members of a

Botcloud. The method relies on entropy calculation on each

of the selected parameters, for each VM. After that, a k-means

clustering method is applied on the obtained values.

To conclude, to the best of our knowledge, if cloud in-

frastructure still suffers from malicious activities they host

unknowingly, there is currently no dedicated solution able to

(1) analyze the activity of each host individually (2) capture the

large-scale and dynamic nature of such infrastructure and (3)

detect low footprint malicious activities, possibly distributed

over several tenants and hidden within legitimate workload.

These open problems motivate the present work that proposes

a generic and robust method to address them.

III. PROBLEM FORMALIZATION AND METHODOLOGY

The present paper proposes a host-based approach whose

purpose is to detect virtual hosts infected by botnets perform-

ing a malicious activity. An overall picture of the detection

system in a typical multi-tenant architecture is depicted in Fig-

ure 1. It shows different servers hosting a virtualization layer

executing different virtual hosts belonging to different tenants;

one tenant may have several virtual hosts located on different

Symbol Denotation

T Number of tenants

S Number of servers

V Number of VMs

M Number of metrics for system activity

L Number of measurements used for detection

xt,v System metrics from virtual machine v at time t

C Covariance matrix

w Principal axis

λ Eigen value

η Estimate of λw

φ Intermediate estimate of w at servers level

ψ⋆ Ideal estimation of w at tenants level

ψ Approximation of ψ⋆;
intermediate estimate of w at tenant level

t Index of time measurement for system activity

i Iteration index

ǫ Convergence error threshold

θ Time of data extraction

Θ Angle between the ith

estimated and real principal axis

TABLE I: Notations used to describe our algorithm
.

servers. Monitoring probes are located on the physical host

and use the virtualization layer to capture metrics related to the

usage of resources consumed by the virtual hosts. The metrics

are related to resources offered by the CSP to the tenants

through virtualization means. They are typically the processing

usage, memory consumption or network input/output. The

probes can communicate together and have the knowledge of

the belonging of virtual hosts to a given tenant. They also

compute the detection algorithm we present subsequently and

raise local alarms in case of abnormal behavior detection.

In this context, our detection approach leverages a two-step

approach for which we formalize the problem subsequently.

The first consists in estimating the cloud workload to enable

the detection algorithm to get the reference of what a normal

behavior is, while the second compares outlier virtual hosts

to the signature of well-known resource consumption attack

patterns.

For clarity purposes, all notations used in the following are

provided in Table I.

A. Cloud Workload Estimation

Generally speaking, let us denote vector xt,v ∈ R
M the data

activity from virtual host v , v ∈ {1, . . . , V } at time t, with

M the metrics related to the activity of the virtual host.

Our estimation approach relies on a statistical model

grounded by a PCA of the virtual host activities, stating that

all virtual hosts can be classified into coarse grain behaviors

[41]; typically some activities are related to the computation

with the use of CPU and memory while some others are

mostly related to networking by sending or receiving data over

the network. It is worth noting that in the present work, we

aim at estimating a coarse grain classification of activities

independently from the activity volume. Consequently, we

propose to model the legitimate activity of virtual hosts using

the following linear model:

xt,v ≈ Ŵt,vct,v (2)
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where matrix Ŵt,v represents the estimation of r , k < M

main principal components and vector ct,v is the weighting

vector that represents the contribution of each principal com-

ponent for the specific measurement of system activity metrics

xt,v . Such a linear model presents a good trade-off between

modeling accuracy and simplicity to design a statistical test.

One can note that in Eq. (2), as opposed to the PCA

background provided in Section II-B1, the PCA depends on

time t and virtual host v. Since computational and communica-

tion costs prevent from carrying out PCA calculations under

such conditions, we propose a novel strategy to ensure the

scalability support of the computation. The latter relies on two

main points: (1) a fully decentralized approach which prevents

any computation element to act as a bottleneck, and (2) the

avoidance of the sample covariance matrix computation and

its eigen-decomposition, thus allowing to significantly reduce

the computational complexity.

B. Abnormal Activity Detection

On the basis of the workload activity estimation, the de-

tection algorithm enables the detection of outlier virtual hosts

and especially those performing a malicious activity with a

low footprint, covered within a much larger activity related to

all legitimate virtual hosts. To that aim, we leverage the data-

driven nature of PCA which should not be impacted by sparse

activities, thus providing an overall detection accuracy.

Let us denote a the vector that represents the impact of a

malicious activity on the infected virtual hosts and let et,v =

xt,v − Ŵt,vct,v represent virtual host v workload estimation

error. The problem of malicious activity detection can be

formalized as a choice between the following hypotheses:

{
H0 : xt,v = Ŵt,vct,v + et,v,

H1 : xt,v = Ŵt,vct,v + et,v + a.
(3)

This formalization of the problem allows to clearly un-

derstand the main underlying difficulties. First, as discussed

in subsection II-B, computing an accurate estimation of the

principal components Ŵt,v for large-scale and dynamic data

sources is challenging and requires a dedicated approach to

circumvent the data volume and velocity issues. Second, the

trace of the malicious activity a on the system cannot be

known, especially because its operating mode largely influ-

ences the measurable impact on system activity. Formally, in

such a case, the hypotheses are referred to as being composite

and an optimal solution scarcely exists. Third, the metrics are,

by far, not independent and their correlation must thus be

carefully taken into account. Similarly, the legitimate activity

Ŵt,vct,v , which refers to a nuisance parameter, has no interest

for the detection of the malicious activity, while it must be

removed with caution in order to maintain a high detection

accuracy. Last, mastering the detection false alarm rate a priori

together with all the previously identified challenges, while

being crucial to provide an accurate and flexible detection

solution, remains of an overall complexity.

Network Infrastructure

tenant O

MADWE

Virtualization layer

Serveur 1

Virtual hosts

MADWE

Virtualization layer

Serveur 1

Virtual hosts

MADWE

Virtualization layer

Serveur s

Virtual hosts

. . . . . .

. . . . . .

. . . . . .

step 1

step 2

step 3

Fig. 1: Overview of the proposed multi-tenant workload es-

timation and Botcloud detection. Step 1 represents the local

Workload Estimation (WE) update at virtual hosts level. Step 2

represents the averaging over servers and step 3 is the random

selection of virtual hosts for a gossip exchange of information.

Once the iterative WE is carried out, the proposed statistical

test allows Malicious Activity Detection (MAD).

IV. DECENTRALIZED ESTIMATION OF LEGITIMATE

ACTIVITIES

We introduce a decentralized version of Candid Covariance-

free fast Incremental PCA (CCIPCA) algorithm [28], to in-

crementally compute the principal components of matrix Xt

without estimating the covariance matrix. In order to satisfy

with the privacy respect of tenants’ activities, we briefly

describe the proposed combine and adapt method for principal

components estimation. The main iterative process of the

method is based on the three following steps. First, at the

level of each physical server, the estimation of the principal

components of the virtual hosts it executes are averaged,

regardless of their tenant owner. Second, this averaged value

is shared between probes associated with virtual hosts that

belong to the same tenant. This leverages the belonging of a

virtual host to a dedicated tenant. Those two steps form the

combine phase. Last, the adapt phase consists in adjusting,

for each virtual host, the combined estimation with its system

activity. This approach offers the advantages of (1) allowing a

good adaptivity with respect to dynamic variations of activities

in time, (2) separating the heterogeneous behaviors within

different similar activities, and (3) representing the activities

with axes gathering similar activities regardless of the volume

of those activities.

Given the PCA computation reminded in section II-B, in

our decentralized method, for each virtual host with index

v, each probe replaces the covariance matrix C by a local

estimate xt,vx
⊤
t,v. Thus, at iteration step i, virtual host v is

associated with the estimation of the principal components

denoted ηt,v(i) with, at initialization, ηt,v(0) = xt,v . This is

represented as step 1 in Figure 1.

In the original method [28], the first combine phase consists

in gathering all estimations from all nodes. Since this is hardly

possible in a large-scale cloud infrastructure, we propose to

split this phase into two steps, the first consisting in averaging,

for each server, all the estimates ηt,v(i) from the virtual hosts

it executes:

φt,s(i) =
1

|Vs|
∑

v∈Vs

ηt,v(i). (4)
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In Equation (4), s represents the index of a server, Vs repre-

sents the set of all virtual hosts on server s, |Vs| denotes the

cardinality of set Vs, that is the number of hosts on server

s and the notation v ∈ Vs means that the virtual host with

index v is hosted on server s ; the sum over all v ∈ Vs thus

represents the sum over the set of all virtual hosts hosted on

a given server s. This is represented as step 2 in Figure 1.

The second step for combining estimations is very similar

but performed for all virtual hosts belonging to a particular

tenant. Ideally, we would like to obtain the average of all

estimations φt,s(i) from VMs belonging to the tenant owner

O:

ψ⋆
t,O(i) =

1

|SO|
∑

s∈SO

φt,s(i), (5)

with, similarly to (4), SO the set of all servers that host

at least one host that belongs to tenant owner O, |SO| the

number of servers in set SO ; the sum over all s ∈ SO thus

represents the sum over the set of all servers that executes a

host belonging to tenant owner O.

It is worth noting that combining first estimation from

all virtual hosts from the same server, regardless of their

tenants, and then combining the estimation over virtual hosts

that belong to the same tenant, regardless of the server that

hosts them, allows to quickly combine the estimations from

a wide range of virtual hosts at a small communication and

computational costs, while preserving tenant privacy.

Due to the same scalability reasons, which may make the

communication cost to compute Equation (5) prohibitive, we

propose to perform the computation of the estimate ψ⋆
t,O(i)

at a reasonable communication cost, by replacing it by the

approximation obtained using a symmetric gossip as described

in [42], [43]. More precisely, at iteration t, the probe associated

with virtual host v randomly selects one of its neighbors

u, belonging to the same tenant, and they both exchange

estimations, obtained at the server level, to perform an update

as follows:

ψt,v(i) = (1 − ρ)× φt,v(i) + ρ× φt,u(i), (6)

ψt,u(i) = ρ× φt,v(i) + (1− ρ)× φt,u(i), (7)

with ρ ∈ [0, 1] a mixing parameter that defines the rate

of update. It is worth noting that the estimations at tenant

level may differ from a virtual host to another due to the

random selection of a neighbor. Hence we adopt the notation

ψt,v(i) instead of ψT . Since the updates of the principal

axes described in Equations (6)-(7) are performed for all

virtual hosts of all tenants, the latter should have very similar

estimations at the end of the gossip process. This is represented

as step 3 in Figure 1.

Finally, the last step of the workload estimation consists

in adapting the estimations ηt,v(i) at the virtual hosts level,

by taking into account the combined estimations obtained

at the tenant level ψt,v(i). To this end, we propose to use

the CCIPCA the amnesic factor proposed in [28] that allows

forgetting the oldest estimates and hence allows handling the

dynamicity of system activity. Adapting the CCIPCA to the

case of dynamic leads us to redefine the update as follows:

ηt,v(i) =
i−1−l
i

ψv(i−1) +
1+l

i
x
⊤
t,vxt,v

ψt,v(i−1)

‖ψt,v(i−1)‖ , (8)

where the positive parameter l is referred to as the amnesic

parameter, which gives more weight to new samples to

gradually decrease the effect of oldest ones. Note that the

two modified weights still sum to 1.

Beyond the basic operations presented above, we propose

two improvements which fasten the convergence of the esti-

mations. The first improvement, related to the estimation of

the principal components, simply consists in initializing the

method with the latest estimates computed at the previous time

ηt,v(0) = ηt−1,v(i). This improvement relies on the fact that,

though cloud activity is dynamic, it is not likely to change

abruptly very often. The second improvement is mainly related

to the detection accuracy. It consists in using the K latest

measurements of system activity instead of the latest one only.

Indeed, one can replace in all the previous equations vector

xt,v by matrix (xt−K+1,v, . . . ,xt−K+1,v) at a very small extra

computational cost. This second improvement does not help

much the estimation of the principal components but it greatly

helps to ensure that after the malicious activity starts, it will not

be modeled within the main principal components by adding

a lot more of less recent activity measurements.

Finally, one can note that the previous description only fo-

cuses on the estimation of the first main principal component.

The estimation of other principal components, associated with

smaller eigenvalues, can be computed using the orthogonality

of the eigenvectors. By using the Gram-Schmidt process, it is

thus possible to subtract the first axis ηt,v(i) from the data

contribution with the following projection:

x
(1)
t,v = xt,v − ηt,v(i)

x
⊤
t,vηt,v(i)

‖ηt,v(i)‖2
, (9)

and to iteratively compute the other principal components by

applying the aforementioned method using the results from

Equation (9).

V. AN OPTIMAL SOURCE-END DETECTION METHOD

In this section, we demonstrate to what extent, by leveraging

the workload estimation presented in the previous section, we

are able to detect malicious activities which are concealed in

infected virtual hosts. The rejection approach we follow has

been widely used in literature [44]. However the specificity of

the proposed approach is that, thanks to the PCA, the proposed

linear model is data driven, built upon the data themselves. In

a second time, to feature the exact nature of the malicious

activity, we do rely on a signature-based approach where

we compare the residual activity of virtual hosts to a given

footprint.

A. Legitimate Workload Rejection

From empirical data, described in Section VI-A, it is pro-

posed in the present paper to model distribution of estimation
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errors et,v = W
⊥
t,vxv (15) as a realization of multivariate

Gaussian random variables. In addition, we noted that the

attack traces depends linearly on the attack payload, or band-

width: the Botcloud activity is roughly a linear function of the

attack payload.

With those assumptions3, the detection problem (3) can be

formalized as a choice between the following statistical hy-

potheses:

{
H0 : {xt,v ∼ N (Wt,vct,v,Σ)} ,
H1 : {xt,v ∼ N (Wt,vct,v + pa,Σ)} . (10)

where N (µ, σ2) represents the Gaussian distribution with ex-

pectation µ and variance σ2, p represents a malicious activity

payload factor and a the intrinsic reference of the malicious

activity for a standard payload.

As stated in Section III, the main challenges here consists

in (1) dealing with nuisance parameter Wt,vct,v , (2) consid-

ering the covariance Σ between metrics and eventually, (3)

designing a statistical test with properties known a priori.

Subsequently, we first deal with the case of the nuisance

parameters.

The covariance matrix can be estimated in the basis of the

dataset of all the observations. It is thus easy to normalize the

data as follows:

x
⋆
t,v = Σ

−1/2
xt,v, (11)

where Σ
−1/2 is the matrix defined as Σ

−1/2
Σ

−1/2 = Σ
−1.

It follows, from Equation (11) and from the properties of affine

transformation of Gaussian multivariate random variables, that

the distribution of x⋆
t,v , after normalization, is given by:

{
H0 :

{
x
⋆
t,v ∼ N (Ht,vct,v, I)

}
,

H1 :
{
x
⋆
t,v ∼ N (Ht,vct,v + pΣ−1/2

a, I)
}
.

(12)

with H = Σ
−1/2

Wt,v and I the identity matrix. One can

note that the Gaussian distribution remains invariant under

affine transformation [46, Chap. 6]. The proposed approach

thus exploits invariance principle to transform the problem

stated in Equation (10) into the easier one stated in Equa-

tion (12) while proving their equivalence. This allows the

estimation of parameters of a linear estimation with indepen-

dent Gaussian noise which has been well studied. In such a

case, it is known that the least square estimation coincides

with the maximum likelihood estimator and is given by:

ĉt,v =
(
H

⊤
t,v ×Ht,v

)−1
H

⊤
t,vx

⋆
t,v.

With the estimated parameter ĉt,v , the estimation of the

legitimate activity expectation is given by:

x̂
⋆
t,v = Ht,vĉt,v = Ht,v

(
H

⊤
t,vHt,v

)−1
H

⊤
t,vx

⋆
t,v (13)

3These assumptions are verified in the numerical results provided in
Section VI-B. Besides, we have conducted a standard (Mardia’s) test for
multivariate Gaussian distribution, which are based on skewness and kurtosis
of whitened data: both tests failed to reject the multivariate normal distribution
at the significance level of 5%. Eventually, note that the model of Botcloud
activity has been adopted for clarity and simplicity and can easily be adapted
with a specific behavior for each metric.

Therefore, it is straightforward from (13) to remove the

estimated legitimate activity from the measured metrics as

follows:

x
⋆
t,v−x̂

⋆
t,v=x

⋆
t,v−Ht,v

(
H

⊤
t,vHt,v

)−1
H

⊤
t,vx

⋆
t,v=H

⊥
t,vx

⋆
t,v,

(14)

where matrix

H
⊥
t,v = I−Ht,v

(
H

⊤
t,v ×Ht,v

)−1
H

⊤
t,v (15)

represents the projection onto the orthogonal complement of

the subspace spanned by the main principal components after

removing covariance Σ
−1/2

Wt,v.

Eventually, putting the definition of linear model of obser-

vations xt,v = Wt,vct,v + et,v and H = Σ
−1/2

Wt,v into the

method of rejection in Equation (14), a short algebra shows

that:

x
⋆
t,v−x̂

⋆
t,v = H

⊥
t,vΣ

−1/2 (Wt,vct,v + et,v) ,

= H
⊥
t,vHt,vet,v+H

⊥
t,vHt,vΣ

−1/2
et,v = H

⊥
t,vHt,vΣ

−1/2
et,v.

This shows that the efficiency of the rejection approach to

exploit the geometrical properties of the data, here standing

for the activity metrics, can project the data onto the subset

spanned by the orthogonal complement of Ht,v.

B. Source-end Statistical Detection of Malicious Activities

Given the geometric approach for the nuisance parameters

rejection described above and formulated in Equations (13)-

(14) as well as the affine property of Gaussian distribution,

the statistical problem of source-end malicious activity detec-

tion can now be written as a choice between the following

statistical hypotheses:
{
H0 :

{
H

⊥
t,vx

⋆
t,v ∼ N

(
0,H⊥

t,v

)}
,

H1 :
{
H

⊥
t,vx

⋆
t,v ∼ N

(
pH⊥

t,vΣ
−1/2

a,H⊥
t,v

)}
.

(16)

To address this statistical problem, it appears that the

optimal detector, maximizing the detection accuracy for a

prescribed false alarm rate [47], is simply given by the projec-

tion of the residuals H
⊥
t,vx

⋆
t,v onto the vector pH⊥

t,vΣ
−1/2

a

of expectation under hypothesis H1. This optimal test, often

referred to as the match space detector [48] is formally given

by:

δ(x⋆
t,v) =

{
H0 if Λ(x⋆

t,v) ≤ τ,

H1 if Λ(x⋆
t,v) > τ,

(17)

where it is proposed to normalize the generalized likelihood

ratio Λ(x⋆
t,v) such as:

Λ(x⋆
t,v) =

a
⊤
Σ

−1/2
H

⊥
t,vx

⋆
t,v∥∥∥H⊥

t,vΣ
−1/2

a

∥∥∥
2

. (18)

One of the main advantages of the proposed methodology is

that the statistical performance of the proposed test can be

analytically established. To this end, one needs to establish the

statistical property of the generalized likelihood ratio Λ(x⋆
t,v).

While the expectation under hypothesis H0 is straightforward
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to establish, the calculation of expectation under H1 and of

the variance requires the following short algebra:
(
H

⊥
t,vΣ

−1/2
a

)⊤

H
⊥
t,vx

⋆
t,v = a

⊤
Σ

−1/2
H

⊥
t,vH

⊥
t,vx

⋆
t,v,

= a
⊤
Σ

−1/2
H

⊥
t,vx

⋆
t,v.

because matrices Σ
−1/2 and H

⊥
t,v are both symmetric and

because H
⊥
t,vH

⊥
t,v = H

⊥
t,v since H

⊥
t,v is an orthonormal

projector.

Using the distribution of H⊥
t,vx

⋆
t,v as given in (16), by applying

once more the affine transformation of Gaussian one has:
{
H0 :

{
Λ(x⋆

t,v) ∼ N (0, 1)
}
,

H1 :
{
Λ(x⋆

t,v) ∼ N (p
∥∥∥H⊥

t,vΣ
−1/2

a
⋆
∥∥∥
2
, 1)

}
.

(19)

Establishing the false-alarm probability is straightforward

from Equation (19) as, from the definition of the cumulative

distribution function, one has:

α0(τ) = PH0 [Λ(xt,v) > τ ] = 1− PH0 [Λ(xt,v) ≤ τ ]

= 1− Φ(τ). (20)

Equation (20) also immediately allows the setting of the

decision threshold τ to achieve a prescribed false alarm rate as:

τ(α0) = Φ−1(1−α0). Note that, here, Φ and Φ−1 respectively

denote the Gaussian standard cumulative distribution function

and its inverse.

Conversely, the probability of correctly detecting a mali-

cious activity with a payload p, also referred to as the power

function, is given by:

β(p, α0) = PH1 [Λ(xt,v) > τ(α0)]

= 1− Φ
(
τ − p

∥∥∥H⊥
t,vΣ

−1/2
a
⋆
∥∥∥
2

)
,

=1−Φ
(
τ−Φ−1(1−α0)

∥∥∥H⊥
t,vΣ

−1/2
a
⋆
∥∥∥
2

)
.(21)

Finally, to improve the detection accuracy, instead of testing

each metrics observed at each time t, t− 1, . . . independently,

we propose to consider system activities over a longer period

of time, thus bringing more information to the detection

framework. For simplicity and computational efficiency, it is

proposed here to apply the detection process only every L

samples. Consequently, we propose to leverage a fixed-window

size statistics, which is defined as:

Λ(L)(xt,v, . . . ,xt−L+1,v) =
1√
L

t∑

u=t−L+1

Λ(xu,v), (22)

with Λ(xu,v) the detection statistic at time u as defined in (17).

It can be shown that, adapting the algebra detailed in [49],

[50], gathering L independent metrics of system activity, the

performance of the test proposed in (22) is given by:

α
(L)
0 (τ) = 1− Φ (τ) , (23)

for the false alarm probability while the detection accuracy is

defined as:

β(L)(p, τ) = 1− Φ
(
τ −

√
Lp

∥∥∥H⊥
t,vΣ

−1/2
a

∥∥∥
2

)
. (24)

The previous results (20)-(24), related to the performance

of the proposed source-end detection method for malicious
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Fig. 2: Overall workload estimation performance: (a) Rela-

tionship between the relative magnitude of the eigenvalues

and the number of factors; (b) Convergence of the proposed

strategy, measured by the average angle Θ1 = acos(w⊤
1 w̃1)

and Θ2 = acos(w⊤
2 w̃2); (c) Density of the distances between

real data and its estimate (semi-log scale)

activities, exhibit relevant operational properties. First of all,

relation (23) emphasizes the possibility for the user to set a

desired false alarm rate and to adjust the threshold accordingly,

without needing any extra parameter or knowledge. Second,

Equation (21) provides valuable insights by explicitly showing
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how the detection depends mostly on two parameters only, that

are, the desired probability of false alarm α0 and the malicious

activity payload p. The detection power, explicitly provided

in (24) also points out the tradeoff between the detection delay

L and the accuracy. Indeed, the greater L is, the larger the

detection delay is and, more generally, the less reactive the

window-based detection system (22) is. However, gathering

samples allows the increasing of the detection accuracy for

the same false alarm probability. Eventually, it is worth noting

that the detection also depends on the norm of the projected

attack through the term

∥∥∥H⊥
t,vΣ

−1/2
a

∥∥∥
2
. This norm is difficult

to measure in practical cases. However, it reveals relevant

insights. Indeed, this term shows that the more the malicious

activity is in line with legitimate activities, the more the

projection onto H
⊥
t,v will reduce the detection power. This

is why we emphasize that the proposed method can hardly

work for very large malicious activities, as the latter would fall

into the principal components. In practice we note, however,

that malicious activities have specific footprints and that they

are likely distinguishable from legitimate ones, though part of

them will unavoidably be modeled as part of legitimate ones.

VI. NUMERICAL RESULTS AND EXPERIMENTATIONS

In this section, we present the numerical results we obtained

by evaluating our approach. To that aim, we implemented both

the workload estimation algorithm as well as the detection

one in Matlab. As input data, we considered two datasets.

The first one was collected on PlanetLab, which leverages a

container-based virtualization technology, during a large-scale

measurement campaign while the second one is a simulated

dataset produced by synthesizing these real data. The general

methodology used to generate the latter is provided in ap-

pendix A. First, we describe the overall scenario we consider.

Second, we demonstrate to what extent our theoretical models

are compliant with the reality of the algorithms and data.

Third, we study the detection performance under various

conditions, considering a botnet performing a DDoS attack.

Four and last, we push forward the scalability of the cloud

infrastructure we consider to evaluate the scalability support

of our whole approach.

A. Scenario and Datasets

1) Measuring Legitimate Activities: The first dataset we

consider for our evaluation consists in the capture of con-

tainer activities from more than 40 PlanetLab servers hosting

between one and two thousand containers that belong to about

120 tenants. The system traces have been harvested 15 times

within 3 hours with a sampling frequency of one second using

the Slicestat4 tool. Over the whole dataset, this represents a

number of distinct 97 physical servers, 254 tenants and 6426

containers for a total of more than 253 million system traces.

Among all the metrics captured through Slicestat, we kept

the CPU activity (in %) the memory usage (in KB and in

%), the size of virtual memory used, and the sending and

receiving rates averaged over one minute, five minutes and

4codeen.cs.princeton.edu/slicestat/
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Fig. 3: Validation of assumptions: (a) sharpness of statistical

analysis providing expression for false-alarm rate (FAR); (b)

fidelity of the Gaussian statistical model used in the paper:

(c) relevance of the linear model impact of attack payload on

system activity.

fifteen minutes. This gave us a set of 10 metrics among which

some are highly correlated, especially sending and receiving

rates averaged over various durations. It is also worth noting

that for all the results provided in the present section, we have

estimated the two main principal components and that we kept,

for each container, only the component associated with the

http://codeen.cs.princeton.edu/slicestat/
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largest absolute weight. The reasons are that with only 10

metrics, the number of principal components should be kept

low and that this setting, aiming at reducing the complexity,

already provides overall good results.

Before considering this dataset for our evaluation purposes,

we have first pre-processed it to especially remove all inconsis-

tent data. These are: (1) PlanetLab servers that are not always

responding or even getting disconnected, and (2) containers

with an absence of activities over a capture period. Also, since

PlanetLab does not provide a balanced scheduling algorithm

of virtual hosts on servers, we have removed (3) tenants with

fewer than 10 containers and, (4) servers with fewer than 10

containers, in order to make our dataset better fit a realistic

cloud infrastructure. In total, we ended up with about 89

million system activity traces which are those we consider

in the following.

2) Featuring the Botcloud Activity: Regarding the mali-

cious activity, we considered two different botnets deployed

in isolated containers that belong to us, one per server. These

bots are (1) Hybrid_v1.05, programed in PERL, a high-level

language, and communicating via the HTTP protocol, and (2)

Kaiten6, programed in C, a low-level language, and using the

IRC protocol for communications. The 15 experiments we

carried out cover both UDP Flood attacks as well as SYN

Flood TCP attacks both with corresponding attack payload

from 1 MB/s to 10 MB/s per container.

Eventually, it is important to note that the Botclouds refer-

ence activity, referred to as a in Section V, has been computed

by simply averaging the whole measurements of containers

whose activity corresponds to the Botcloud activity alone.

3) Generating Infected Container Activities: For all nu-

merical experiments, we did not use the data collected from

the containers that only runs the Botcloud. Instead, to meet

the usual attack scenario in which legitimate users have the

containers corrupted, we have “artificially” created infected

containers by merely adding a randomly selected container that

performs a legitimate activity with another randomly selected

one that only runs the Botcloud. All the experiments have been

repeated 10 times to limit the effect due to randomness of the

chosen containers to be corrupted.

Hence, it is acknowledged that the computed Botclouds

reference activity is not completely independent from the

additional activity it is aimed at detecting. However, we men-

tion that the detection is carried out on workload estimation

residuals, which are quite different from the Botcloud activity

alone. Besides, note that the Botcloud reference activity is an

average of more than 2 million corrupted activity traces that

have been collected; the detection system thus does not aim

at detecting a specifically known pattern.

B. Verification of the Proposed Method and Models

1) Workload Estimation: The first part of our evaluation

consists in verifying the accuracy of the assumptions our

model relies on. The first assumption made concerns the

decentralized workload estimation where the main types of

5http://security-sh3ll.blogspot.fr
6www.hackforums.net/showthread.php?tid=974543

behaviors are almost exclusively represented within the first

few principal components. This assumption allows the design

of a rather sparse linear parametric model, with few basis

vectors. Figure 2 exhibits empirical results which verify this

assumption. In particular, Figure 2(a) shows the averaged

eigenvalues which stand for the weight of associated com-

ponents. Here, by averaged, it is meant that all the activities

from all the measurements have been analyzed at once. This

figure clearly emphasizes the quickly decreasing values of

eigenvalues. This demonstrates that only a few numbers,

typically four at most, feature the axes along which all the

data are distributed. The other axes represent either noise

or abnormal events. Then, Figures 2(b) and 2(c) show the

capability of the decentralized estimation approach to precisely

compute the principal components. First, Figure 2(b) focuses

on the accuracy of the estimation by showing, according

to the number of iterations of the decentralized estimation

process, the averaged angle between the first two estimated

principal components and the real components computed in a

centralized manner. This figure shows that a small number of

iterations allows an accurate estimation. Interestingly, it also

shows that the first principal component is estimated faster

than the second. This phenomenon is due to the sequential

nature of the estimation process where each component is

estimated according to the most important ones. Consequently,

it is necessary to estimate the first principal component prior

being able to estimate the second one, hence explaining the

slower convergence of the latter. Eventually, Figure 2(c) shows

the distribution of the distance (in semi-log scale) between

normalized metrics of the estimated and the real activity. By

exhibiting most of the values in a short distance (typically 1),

this last figure confirms the actual accuracy of the proposed

decentralized approach for estimating principal components

of containers’ activities and more generally this confirms the

efficiency of the data-driven approach for designing a linear

model.

2) Theoretical Model of the Detection Process: We have

then verified the validity of the assumptions on which the

proposed detection method is based. For such validation, first

Figure 3(a) presents a comparison between the theoretical and

empirical false alarm rates obtained by executing our detection

algorithm on both the real and simulated datasets. This result

is fundamental to establish the relevance of the design of

our detection method and it enables the mastering of various

parameters such as the false alarm rate, detection accuracy,

reactivity or detection delay and attack payload, as presented in

Section V. The excellent fitting of the theoretical and empirical

false alarm rate, up to probability smaller than 2.10−3, as

presented in Figure 3(a), emphasizes the sharpness of the

theoretical results and hence, the relevance of the method. This

is one of the main strengths of the present approach.

Similarly, Figure 3(b) presents a comparison between the

empirical distribution of normalized system activity metrics

after rejection of legitimate activity, that is H
⊥
t,vΣ

−1/2
xt,v,

and the Gaussian model. Once again, one can observe, for all

the presented metrics, an excellent match between theoretical

and empirical probability distribution functions, denoting the

relevance of the statistical model and that of the linear rejection

http://security-sh3ll.blogspot.com/2010/01/hybrid-botnet-system-v10-released.html
http://www.hackforums.net/showthread.php?tid=974543
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(f) Kaiten BotCloud, attack payload 10MB/s

Fig. 4: Performance of the proposed detector over the real dataset for various attack payloads (from 1MBps up to 10MBps)

and for various infection rates, that is, the ratio of infected virtual hosts.
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.
method for removing legitimate activities.

Finally, Figure 3(c) shows the relation between the attack

payload and the Botcloud activity. To this end, it presents with

red and blue crosses the CPU usage and the transmission rate

(TX) as a function of the attack payload. One would expect

that TX would be close to the attack payload. Interestingly,

TX rate is, on average, about 0.7 smaller than the attack rate,

and one can note the very large deviation of TX for the same

attack rates. Similarly, this figure also highlights the excellent

correlation between the CPU usage and the attack payload.

This confirms the relevance of the linear approximation of the

Botcloud activity as a function of the payload.

C. Detection Accuracy on Real and Simulated Datasets

This subsection presents a performance evaluation of the

proposed method for a wide range of settings. First we inves-

tigate the efficiency over the PlanetLab dataset that features

all the properties of real containers activities. In this empirical

evaluation, we consider each harvesting campaign data sepa-

rately. Botcloud activities, that are initially performed in 40

dedicated containers, are incrementally mixed with randomly

chosen legitimate containers, thus varying the infection rate.

Figure 4 shows the efficiency of the detection method

under different infection rates, attack payloads and for the

two considered Botclouds. The detection accuracy is presented

as ROC (Receiving Operational Characterics) that present the

power function β as a function of the false alarm probability

α0. Figures 4(a) and 4(b) compare the two different imple-

mentations of the aforementioned Botcloud, both for an attack

payload of 1MB/s per infected host. They show that the two

Botclouds, while having different implementation features, can

be detected with almost the same accuracy, that is nearly

perfect.

The other figures present the detection accuracy for the

proposed detection method for various attack payloads. We

empirically observe that for all payloads, the efficiency of the

method only slightly changes from a Botcloud to another.

Consequently, the results obtained with Kaiten are solely

presented. Interestingly, one can note that while the attack

payload increases, the detection accuracy decreases, which

seems counterintuitive. Indeed, Figure 4(c) shows that when

the attack payload increases to 2MB/s, the detection accuracy

remains almost perfect. However the decrease in detection ac-

curacy becomes more obvious when the attack payload reaches

5MB/s, as depicted in Figure 4(d). In this case indeed, the

highest number of infected hosts tends to lower the detection

performance. The same effect becomes more perceptible for

the results presented in Figure 4(e) for an attack payload of

7MB/s and it makes the detection accuracy rather poor at a

payload of 10MB/s as shown in Figure 4(f).

These results emphasize the limit of our approach which

focuses on low rate attacks as referred to as the most difficult

to detect. In the framework of the proposed methodology,

the linear model, used to represent the legitimate data and

provided in Section V and Equations (13)-(14) especially, is
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Fig. 6: Principal components estimation method efficiency, in terms of the number of iterations, and workload estimation

accuracy according to the number of (a) tenants, (b) servers, and (c) containers.
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one of the method originality since it uses the data themselves

to build the estimation of the principal components for such

a linear model. As aforementioned in Section V, this method

works accurately as long as the malicious activity remains

negligible within the overall cloud activity. The effect that

can thus be observed in Figures 4(d)-(f) is that, as the attack

payload increases, the principal component analysis tends to

model the activity of the Botcloud itself. One can note that

the estimation of the principal components is made by using

an average of the last 100 samples, which explains a rather

decent detection just after the attack starts, hence ROC curves

with somewhat decent power for low false alarm probability.

Besides, one interesting phenomenon is that, though real data

might be corrupted with effects that are hardly interpretable,

the number of infected hosts does not seem to affect the

detection much. This is due to the averaging method for

principal components estimation that prevents overfitting for

specific behavior of a minority of containers.

To confirm and extend the results obtained on the real

dataset, we leveraged simulated data for which the legitimate

activity and the attack can be tuned. The methodology for

generating realistic simulated data is described in detail in

Appendix A. The results presented in Figure 5 confirm the

high accuracy of the proposed method for low-rate attacks as

well as the limits for the detection of high attack payload.

Indeed, Figure 5 gathers two results for lower attack rates,

namely at 10 KB/s and 100 KB/s with 1% of infected

containers among the 100, 000 considered here. In this setting,

the method proposed in this paper performs with the highest

accuracy. We can also note the limit of the proposed detection

method that is achieved around 10 KB/s at which the detection

accuracy significantly decreases. At the opposite, when setting

the attack payload at 10MB/s with 50% of the containers

infected, we observe a performance of the detector very similar

to that observed on real data.

D. Scalability of the Proposed Method

Eventually, we evaluated the scalability of our whole ap-

proach. Indeed, in the context of cloud computing the number

of virtual hosts, tenants and, to a lesser extent, servers can

be very large. It is thus crucial to evaluate to what extent the

method can fit deployment at such large scales.

First, the results presented in Figure 6 aim at showing how

the workload estimation performs with respect to such scaling

factors. In particular, they are given as a function of the number

of tenants in Figure 6(a), number of servers in Figure 6(b)

and number of containers in Figure 6(c). The baseline setting

consists in 10 tenants, 100 servers and 1000 containers, each of

these parameters being changed at once. To evaluate the accu-

racy and efficiency of the principal components estimation, we

consider two metrics which are (1) the number of iterations

required to achieve the overall convergence of the principal

components estimation over the gossip protocol, depicted with

the blue curve, and (2) the amount of data that falls into the

first largest principal components depicted with the red curve.
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The results overall show that neither the number of servers,

nor tenants, nor containers have an impact on the number of

iterations required for principal components estimation, which

clearly demonstrates the scalability support of our approach.

As for the accuracy of the principal components estimation,

when the number of servers, tenants or containers is too low,

their estimation is difficult because individuals with different

behaviors are scattered apart. However, the accuracy rises at a

quick pace when increasing the number of servers, tenants and

containers, and seems to stabilize around 70%, which stands

for a very good result given the fact that only one, out the two

main principal components, is used for each container.

Finally, Figure 7 shows the evolution of computational and

communication costs, with respect to the same scaling factors.

To consider a very large scale which is not reachable with the

real dataset, we consider here the simulated one. Note that to

reproduce realistic conditions, we have used a larger number

of containers (between one thousand and one million) and

a smaller number of servers (between ten and ten thousand)

while the number of tenants ranges from hundred to hundreds

of thousands.

Figures 7(a) and 7(b) respectively show the computation

cost with respect to the number of tenants and the commu-

nication cost as a function of the number of servers. For

readability, we have only plotted one of these metrics in each

figure because the main computationally expensive process is

the workload estimation; the detection only requires a single

locale evaluation of an expression. In this estimation process,

almost each computation is followed by a communication to

exchange estimates with one random neighbor over the gossip

protocol. The number of communications and the number of

computations are thus similar. These figures show that (1) the

number of tenants only affects the number of computations

required to estimate the workload a little, with a linear increase

from 1.8 × 108 to 2.2 × 108 when the number of tenants

grows up to three orders of magnitude, and (2) the number

of servers has almost no impact on the communication cost

when the latter grows up to three orders of magnitude too.

Figure 7(c) finally addresses the communication cost with

respect to the number of containers. This metric highlights

a linear relationship between the overall communication cost

of our approach and their number. But, for a better readability,

we plot in figure 7(c) the number of communications per

container which thus remains almost constant, regardless of

their number. Altogether, these results confirm the overall

scalability of the proposed method with the independence, or

at worst the linear growth, of its cost according to the different

considered scaling factors.

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper consists in designing and

validating a solution for the detection of malicious activities

perpetrated by virtual hosts infected by botnets in a public

cloud context. To that aim, we have proposed a two-step

approach based on PCA which first consists of (1) estimating

the current workload of virtual hosts to highlight outliers by

rejecting the legitimate activity, thus acting as a behavioral

approach, and (2) then to compare the footprint of residual

activities to known signatures. By avoiding the computation

of the covariance matrix and decentralizing the workload

estimation, we have demonstrated the capability of our ap-

proach to support very large scale infrastructure counting

thousands of servers, hundreds of thousands of tenants and

millions of virtual hosts. We have especially shown that the

estimation accuracy remains constant whatever the size of

the infrastructure and that communication costs related to the

decentralized estimation remain also acceptable. In a second

part, we have proposed a detection approach based on the

statistical hypothesis theory which enables the detection of

malicious activities perpetrated in virtual hosts. The theoretical

performance of the detector has been established analytically

and the accuracy of the model, as compared to empirical

scenarios, has been shown. We have especially demonstrated

to what extent our approach allows an operator to master

the false-alarm probability and tune other parameters accord-

ingly. To validate our approach, we have considered a large-

scale dataset providing real container traces as well as a

simulated ones which enabled us to reach very large scales.

For both of these datasets, we have shown the capability of

our system to detect activities of botnets perpetrating DDoS

attacks whatever the infection rate and attack payload are.

Our approach especially provides high performance against

low footprint activities. Finally, by only considering the sole

metrics available at the virtualization level, we have preserved

the privacy of tenant activities and avoided the placement of

probes into the tenant’s space.

Main directions for future work are twofold. The first one

we are currently exploring, is the adaptation and evaluation of

our approach against other kinds of malicious activities. We

are especially bringing our attention to data leakage which

exhibits a footprint that largely differs from that of a DDoS

attack. As longer term future work, we plan to implement our

solution in a real monitoring probe to actually evaluate the

performance of our approach in a real infrastructure.
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APPENDIX A

METHODOLOGY FOR REALISTIC DATA GENERATION

In order to evaluate the performance and cost of our

detection approach against very large infrastructure, we have

generated realistic synthesis data. To that aim, the method-

ology we considered consists in the four following steps (1)

activity generation (2) behavior generation (3) association to

a tenant and (4) association to a server.

A. Activity Generation

The first step of realistic data generation consists in assign-

ing an activity to virtual hosts. To this end, it is proposed

to characterize the joint distribution of projections of all the

real datasets onto the first-main axes given by the PCA. The

interest in using the principal components here is to be able

to restore almost all the diversity observed in the real dataset

while using only a limited number of variables, here typically

six variables for the projection on the first six components

instead of the 10 captured metrics. It is also worth noting that

the joint distribution of data projections on main components

allows us to take into account the conditional distribution of

each component, thus intrinsically reproducing the correlation

between the various captured metrics and leading to realistic

activities.

The empirical joint distribution is captured using 21 points

sampled to represent the boundaries of 20 quantities, for

each projection individually. It is important to note that it is
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hardly possible to capture more precise joint distribution of

data because 20 quantities for six variables represent a joint

distribution characterized by 64 million data (206).

Then, using the empirical Cumulative Distribution Func-

tion (CDF) F it is proposed to adapt the inverse transform

sampling to generate data drawn from the same distribution.

The principle of inverse transform sampling is to generate

a random variance uniformly distributed in the range [0; 1]
and to transform it using an inverse distribution function

F−1 to ensure that the results have the desired distribution

characterized by its CDF, the inverse function of F−1. In

the case of PCA projection, we used six independent random

variables x1, . . . , x6 that are distributed uniformly in [0; 1].
The first one is transformed using the inverse distribution of

the first projection individually. Once the value of the first

projection is set, one can measure the empirical distribution

of the second PCA conditionally to the value of the first one.

We apply the inverse transform sampling on this conditional

distribution, and apply the same method on third projection

knowing the values of the two firsts. The process is repeated

until the six projections have been drawn. In order to get a

higher accuracy, in this process it is proposed to make a linear

interpolation between the two quantities values between which

the random values xn fall. This process ensures that when

the end is reached the generated random variable follows the

same joint distribution of PCA projection that mimics the real

dataset.

At the end of this step, an activity is generated for each

virtual host, representing the mean activity of the latter.

B. Behavior Generation

The second step to simulate realistic data consists in ad-

dressing the behavior over time of the virtual hosts. To this

end, a similar approach is used, where the empirical joint

distribution of the first six principal components is computed.

The main difference here is that the components are computed

from features extracted to characterize the behavior of virtual

hosts over time. From this empirical joint distribution, we use

the same method adapted from inverse transform sampling

to generate data that follow the same distribution of features

from the original dataset. This set of features characterize the

activity of each tenant. In order to obtain behavior over time

from this set of features we generated data with the same

number of edges, following a normal distribution, with the

same expectation and variance between abrupt changes and

the same expectation and variance of change values. Note that

this process is iterative in the sense that each change is added

one by one, ordered by occurring time. The difficulty here is

to ensure that the activity when evolving remains close to the

mean activity samples from the first step. To this end, at each

step we adjust the sign of the change choosing the one that

minimizes the distance with the activity obtained from the first

step.

C. Association to tenants and servers

Finally, the two remaining steps are the association of each

virtual host to a tenant and to a server. To ensure that we

associate to the same tenant data which are close to each other,

we used a hierarchical cluster analysis method [51] based

on Ward’s distance [52] to cluster the data into exactly the

number of groups that equals the number of desired tenants.

In fact, such a clustering method is here relevant as it is

aimed at gathering virtual hosts with similar activities, similar

behaviors taking into account the volume of activity. The

clustering method is applied on both PCA projection obtained

to characterize the activity and those obtained to feature the

behavior over time. This allows us to guarantee that all virtual

hosts belonging to the same tenant has similar activities and

similar behaviors.

The last step which consists in associating each virtual

host to a server is made iteratively. For each new tenant, we

measure the mean activity of all servers. Note that the activity

of all servers is normalized, for each metric by the empirical

mean observed on virtual hosts over the real dataset in order

to scale each metric so that they can all be compared to each

other. It is then tried to associate a new virtual host to each

server and the Euclidean distance between the activity of this

server and the mean activity of all the servers is measured.

Once all those distances have been measured, the new virtual

host is associated to the server for which adding this virtual

host onto this server minimizes the distance between the

activity of this server with the mean activity of servers. This

simple process is used here to ensure that at the end, all the

servers have similar overall activities and guarantees that a

server is not given too much CPU consumption or receiving

bandwidth for instance.
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