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Abstract—Named Data Networking (NDN) is the most mature
proposal of the Information-Centric Networking (ICN) paradigm,
a clean-slate approach for the Future Internet. Although NDN
was designed to natively tackle security issues inherent to IP
networks, it also introduces new security threats which may
prevent its practical deployment by telco operators. Therefore
designing and implementing a dedicated security monitoring
plane is essential to enable such future deployment and in this
paper, we present a set of contributions in this area. It first
consists in featuring NDN significant attacks in a real operating
context to evaluate their actual impact. Then, by analyzing
the NDN Forwarding Daemon (NFD) data-plane pipelines, we
present a monitoring plane design which captures the state of
NDN nodes by instrumenting 18 metrics with dedicated probes.
We then correlate these metrics with a Bayesian Network which
allows the detection of potential abnormal behaviors. To validate
our approach, we demonstrate the efficiency of our monitoring
plane in the detection of Content Poisoning Attacks and Interest
Flooding Attacks in a testbed carrying real traffic.

Index Terms—Named Data Networking, Bayesian Network,
NDN monitoring, Network security, Anomaly detection.

I. INTRODUCTION

Despite its maturity and acknowledgment, Named Data
Networking (NDN) [1] also introduces novel critical security
issues [2] which may prevent it from replacing IP stacks in the
near future. If one wants Internet Service Providers (ISPs) to
adopt and deploy NDN in their operational infrastructures, a
generic security monitoring plane is indispensable. Such plane
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must be able to tackle not only existing security flaws as a
whole but also threats that remain undiscovered to date.

In order to demonstrate the threat of NDN attacks in reality,
we have implemented different attack scenarios and performed
a comprehensive study of two significant NDN attacks –
Interest Flooding Attack (IFA) and Content Poisoning Attack
(CPA) – under real deployment conditions. Then, based on
a thorough analysis of the NDN Forwarding Daemon (NFD)
operations, we have proposed a set of 18 metrics which ex-
haustively feature the NDN data-plane. For each metric, we de-
signed a statistical micro detector that raises alarms whenever a
metric strays from its expected behavior. Our detector follows
a design methodology which allows guaranteeing a prescribed
false alarm rate. Then, the core of our monitoring plane
leverages a Bayesian Network, a probabilistic graph-oriented
approach that formulates causal relationships while handling
uncertainty using probability theory. It allows us to correlate
different metrics and use them to jointly infer anomalies from
micro detectors’ alarms. To validate our monitoring plane, we
have implemented our proposal into a real NDN probes with
a monitoring operator. By using traffic data issued from a
real deployment, we then demonstrate the performance of our
micro detectors and the capability of our Bayesian Network
to detect attacks under different scenarios.

The present paper partially summarizes our prior contribu-
tions [3]–[7] that focused on detecting specific attacks using
dedicated metrics and an ad-hoc detection method. Further-
more, it also presents novel results from the implementation
of IFA and CPA detectors in an industrial tool: Montimage
Monitoring Tool (MMT)1.

The paper is organized as follows. Section II highlights
related works on NDN architecture and NDN security issues.
Section III shows the result of a measurement campaign for
featuring IFA and CPA. Next, Section IV presents the core
of our contribution, including the NFD pipelines instrumen-
tation, the micro detector design and the Bayesian Network
that combines micro detectors’ alarms to infer anomalies. In
Section V, by leveraging data collected on a real NDN testbed,
we provide numerical results that demonstrate our approach

1See: http://www.montimage.com/products.html. Accessed on November
10th , 2017.
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relevance and performance. Finally, Section VI concludes the
paper and presents our plans for future work.

II. RELATED WORKS

A. Information-Centric Networking and Named Data Net-
working

ICN is an emerging networking paradigm relying on content
objects [8]. Instead of identifying IP addresses of hosts, ICN
associates a content name to each content object. Among
ICN proposals [8], NDN [1] is the most mature candidate to
substitute for the current IP network. Communications in NDN
are performed by Interest and Data packets. When one wants
to get a specific content, he sends an Interest, and the content
is returned in a Data packet. NDN also introduces three new
router components. First, to improve the content delivery, the
Content Store (CS) caches Data of recent requests. Secondly,
the Forwarding Information Base (FIB) contains the routing
information used to forward Interests. Finally, to forward the
Data correctly, routers keep traces of all forwarded Interests
in the Pending Interest Table (PIT). Whenever an Interest is
forwarded, the associated incoming faces are recorded in a PIT
entry. As such, when the corresponding Data arrives, it can be
sent through the reverse path to the user. The router removes
the corresponding PIT entry after forwarding the matching
Data.

With more than 70 contributors involved in all NDN devel-
opment projects, this solution is now mature enough for large
deployments. In this effort, the NDN project provides NFD2,
a functional implementation of NDN forwarder along with
libraries to develop NDN applications in multiple languages,
thus encouraging researchers to study and experiment in NDN.
Moreover, the global NDN testbed3 has been growing over the
past few years and currently consists of 39 sites located all
around the world.

B. Named Data Networking Security

As an approach for the Future Internet, NDN was designed
to natively tackle security issues inherent in IP network. Never-
theless, its communication model and new router components
expose the network to other attack types [2]. Among them, IFA
and CPA are identified by the NDN community as the most
significant ones4. IFA is a variation of the Denial of Service
attack in NDN [9], which has drawn the attention of the
NDN community from early stages [9]–[11]. Its principle is
to send many Interests for nonexisting content. Such Interests
cannot be satisfied and will occupy the PIT until expiration.
When the PIT is full, the router cannot handle new incoming
requests. Meanwhile, in CPA [12]–[14], a legitimate Interest
is responded by a bad Data packet which can be inserted
into the network by compromised routers or a collaboration
between malicious providers and consumers. Bad Data has a
valid content name, but its content is altered. Such an attack

2See: http://named-data.net/doc/NFD/current. Accessed on November 10th ,
2017.

3See: https://named-data.net/ndn-testbed. Accessed on November 10th ,
2017.

4See: http://named-data.net/project/faq. Accessed on November 10th , 2017.

leverages NDN caches to spread bad Data to as many users
as possible and is likely to target popular content names to
increase the attack impact.

III. FEATURING NDN ATTACKS IN A REAL DEPLOYMENT

As a first step toward the design and implementation of
a security monitoring plane for NDN data-plane, we imple-
mented the two most important attacks acknowledged by the
NDN community, IFA and CPA, as described in Section II-B.
This work allowed assessing the feasibility of these attacks,
identifying reproducible attack scenarios, and characterizing
their footprint on different components of the network (routers,
users, and providers).

A. Interest Flooding Attack

While IFA was straightforward to implement at the early
stage of NDN, its threat in real deployment remains un-
explored, especially since the Negative ACKnowledgement
(NACK) packet [15] was implemented in NFD. The NACK
packet enables a router to notify downstream neighbors when
it can neither satisfy nor forward an Interest, thus preventing
unresolved Interests from lingering indefinitely in the PIT.

To answer this question, we implemented a basic setup
consisting of a single NDN node and tried to overload the PIT
in all possible ways [5]. These experimentations demonstrated
that one could easily overload the PIT and eventually make
NFD crash with the help of a malicious provider which delays
Data packets for all Interests it receives. Besides increasing
the number of clients, the attack impact can be exacerbated
by leveraging long prefixes, regarding both the length and the
number of levels in the naming hierarchy.

To characterize IFA in an NDN node, prior works [9]–[11]
proposed using the “unsatisfied-Interest” (or unsatisfaction)
ratio as the primary indicator for such an attack. This indicator
is available by instrumenting the number of Interests sent and
the number of Data received on node’s faces. As depicted in
Figure 1, this novel attack pattern increases the unsatisfaction
ratio significantly and, therefore, does not outdate current
detection solutions.

B. Content Poisoning Attack

Following the same methodology, we have deployed an
NDN topology, depicted in Figure 2, which is simple yet
gathers all the basic components of a network operator. The
purpose is to search for all means enabling CPA in reality.
To the best of our knowledge, this is the first effort in this
security area of NDN since the current state of the art either
relies on strong assumptions (e.g., pre-polluted cache) or only
considers CPA in simulated environments [13], [14]. We have
eventually revealed attack scenarios in which the attacker
competes with legitimate clients to prefetch nodes’ caches
with poisoned contents by leveraging both the version number
and the Exclude field of an Interest. We have highlighted the
impact of these attack scenarios under the two NFD forward-
ing strategies, named bestroute and multicast. An alternative
scenario, entitled unsolicited, exploits the fact that an NDN

http://named-data.net/doc/NFD/current/
https://named-data.net/ndn-testbed/
http://named-data.net/project/faq
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Figure 1. IFA impact on unsatisfaction ratio

Figure 2. Use-case topology for Content Poisoning Attack.

node accepts Data even if it comes from a different face from
the one the corresponding Interest has been forwarded to. This
allows a bad provider to send Data packets unsolicitedly with
a chance to match a pending Interest in the target NDN node.

Results show that while the IFA can mostly be featured
using only the unsatisfaction ratio, it is more difficult to
characterize CPA because its impact is not limited to a single
metric and varies according to the location of the considered
node in the topology. To entirely feature this effect, we
performed a Principal Component Analysis (PCA), a well-
known method for analyzing sets of measurements to find the
most informative “axes,” which are a combination of metrics
that best represents the observations. The result is depicted
in Figure 3 using the two first components that account for
80.5 percents of data variance. The first component represents
the CPA impact on bad Data injection, while the second
one associates with the impact on the routers’ cache misses
and the additional traffic to the provider. The figure shows

Impact on bad Data injection
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Figure 3. Projections of CPA measurements on axes of the two first principle
components.

that the featuring of CPA heavily depends on the scenario,
especially for the unsolicited scenario, because it has a very
different footprint as compared to other scenarios. The PCA
also shows that most of the metrics are impacted by the CPA:
by generating additional traffic to put poisonous content in
NDN caches, the CPA affects both the traffic behavior, the
PIT usage and CS on each node. In other words, a single
metric cannot feature the CPA impact entirely and thus is
insufficient to enable an accurate CPA detection. This remark
emphasizes the relevance of a generic monitoring plane that
can raise alarms for any abnormal behavior, whether it is a
currently known attack or a threat that remains undiscovered
to date.

IV. DESIGN OF THE MONITORING PLANE

To design and implement a security monitoring plane for
NDN networks, one first has to collect a comprehensive set
of metrics in order to characterize a node’s operational state.
Then, local detection algorithms must be designed to identify
any deviant behaviors of a node. Finally, to deal with complex
events, a correlation engine that is able to aggregate events
from different node components and topology locations must
also be addressed. In this section, we present our contributions
in this area.

A. Featuring an NDN node Data Plane

Since we aim at designing a generic monitoring plane for
the security of NDN data-plane, we propose to monitor a
comprehensive set of metrics to provide as much information
as possible on a node’s operational state. The proposed set
results from a thorough analysis of packet processing de-
scribed in Section II-A. We consider all relevant components
inside an NDN node, including CS, PIT, and faces. The CS
is instrumented to monitor the use of the cache through the
number of content inserted, missed and hit on a periodic
basis. Similarly, from the PIT, one can periodically monitor the
number of Interests created, deleted, updated, as well as the
average existing time of PIT entries before they are removed.
Meanwhile, for each face, one can monitor the amount of
incoming, outgoing and dropped Interest, Data and NACK
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packets. We deliberately decided not to cover the FIB in
our metrics list. Different from other components involved in
our selected set, the FIB belongs to the control plane whose
changes only occur due to static routing configurations or
routing protocol announcements. Either way, its metrics are
less likely to change as compared to those of other components
and, thus, are less useful for featuring the node’s behavior
promptly. Moreover, we argue that the FIB malfunctions can
be indirectly captured by other metrics. For instance, an
increase in the number of dropped Interests and Data can mean
that the FIB is not working correctly.

Current NFD implementation already proposes a manage-
ment protocol5 which mostly features a node from a perfor-
mance perspective with several basic metrics and the capability
to configure an NDN node from a remote manager. This
existing solution partially satisfies security requirements since
it cannot provide fine-grained metrics (e.g., number of CS
hits). Therefore, we have leveraged data from NFD logs to
perform the node instrumentation. Altogether, this set of 18
metrics, is integrated into a local monitoring agent.

B. Micro Detector

The next step toward the design of a security monitoring
plane, and indeed the most crucial part, consists in combining
each measurement to get the relevant metric on the event that
one wishes to detect and to design a method that decides when
an abnormal event alarm should be triggered. The two main
difficulties in the design of such a detector are the capability
of (1) adapting with the natural dynamic aspect of network
traffic and (2) modeling both normal and abnormal behavior
of all the metrics.

The general idea of the method we used to design our micro
detectors is based on constant Rate of False Alarm (RFA) tests
that aim at (1) achieving a prescribed RFA and (2) maximizing
the probability of detecting abnormal events under this false
alarm constraint. We argue that controlling the RFA is crucial
from an operational point of view to avoid numerous false
alarms, and hence, to have a reliable detection of abnormal
events. It is noteworthy that, in practice, maximizing abnormal
event detection probability is hardly possible when numerous
different events are considered. Therefore, most of our micro
detectors are two-sided tests built upon a statistical model of
legitimate traffic. For several of those metrics, an anomaly
is expected to shift the metric in a specific direction. The
unsatisfaction ratio, for instance, can only be increased under
an IFA. In such case, a one-sided most-powerful detector may
be designed. Examples of NDN attack micro detectors that
are built on such statistical models and adaptable to dynamic
aspect of traffic can be found in [3], [4].

C. Correlation Engine of Security Events

The proposed micro detectors, based on a single metric,
can characterize only a specific aspect of an NDN node’s
status. Such limitation is highlighted in the case of CPA.

5See: https://redmine.named-data.net/projects/nfd/wiki/Management. Ac-
cessed on November 10th , 2017.

As indicated in Section III-B, CPA increases at the same
time the PIT size, the number of packets on faces and the
turnover in the CS due to the competition between bad and
good content. Generally speaking, NDN attacks can differently
impact nodes according to (1) their topological locations and
(2) their internal components. Besides, it appears that alarms
from a single micro detector cannot accurately detect and
characterize an anomaly in an NDN network, thus making
the combination of alarms from micro detectors essential.

To consider the causal relationships between micro detec-
tors in our monitoring plane, we have proposed a Bayesian
Network (BN) structure, depicted in Figure 4, whose nodes
correspond to micro detectors associated with a given metric.
BN is a probabilistic graph-oriented approach that formulates
causal relationships while handling uncertainty using proba-
bility theory. Each node in its structure represents a random
event/variable. A relation between two events is visualized by
an edge between two corresponding nodes, starting from the
parent (“cause” event) and pointing to the child (“affected”
event). Nodes’ relationships are quantified by their parameters,
i.e., the probability of a child’s value given values of its
parents. Thus, given values of several nodes, one can infer
the probability of a specific node’s value. The reasons for
our choice of BN are many. First, in BN, most of the events
and their impact can be correlated on a small set of metrics.
The repetition of the process for all metrics and all variables
enables BN to use all of those relations to classify the final
observed event, which is, in our case, the anomaly occurring
in an NDN node. Secondly, as BN is a graphical model, the
whole anomaly detection system can leverage a hierarchical
approach with local metrics associated with local detectors,
and a global detector acting as the root component for the
network security. Finally, the metrics measured in computer
networking are generally not entirely predictable. BN can
efficiently deal with the underlying random nature of observed
metrics using the Bayesian probabilistic approach.

In our BN, the Anomaly node represents the anomalies that
can occur in an NDN network, and the directed edges are
sketched based on NFD forwarding pipelines. A forwarding
pipeline is a series of steps that operate on a packet or a PIT
entry, triggered by a specific event as designed in the NFD
node architecture specification6. For our security purpose, we
group NFD pipelines in four main categories that are triggered
by external factors: (1) incoming Interest; (2) unsatisfied Inter-
est; (3) incoming Data and (4) incoming NACK. For instance,
to partially motivate the edges provided in Figure 4, when
an Interest arrives, NFD first checks if it violates reserved
prefix and drops it, meaning that Incoming Interest impacts
Drop Drop Interest. Afterward, if the Interest is duplicated
with one that was already registered in the PIT, NFD sends a
NACK message to notify the downstream. Otherwise, NFD
inserts a new PIT entry or updates the corresponding one
that already exists by canceling the unsatisfied timer. Hence,
Outgoing NACK, PIT Create, and PIT Update are affected by
Incoming Interest.

6See: NFD Developer’s Guide - Revision 7. Accessed on November 10th ,
2017

https://redmine.named-data.net/projects/nfd/wiki/Management
https://named-data.net/wp-content/uploads/2016/10/ndn-0021-7-nfd-developer-guide.pdf
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Figure 4. The proposed Bayesian Network.

V. DEPLOYMENT AND EXPERIMENTAL ASSESSMENT

The assessment of our methodology is presented in three
steps. First, the experimental setup, implementing a real
deployment of NDN environment with routers, consumers,
and providers is introduced. Secondly, micro detectors are
evaluated with IFA that exclusively impacts a single metric.
Finally, the monitoring plane is evaluated with CPA. Although
the monitoring plane was designed for a general purpose, only
a handful of NDN attacks are discovered and, for most of
them, their practical implementation in real NDN environment
remains unexplored. This dramatically reduces the number of
potential abnormal events that can be used to validate the
monitoring plane.

A. Testbed and Scenarios

The experimental results are obtained within a virtualized
environment that reproduces the topology presented in Fig-
ure 2. Such environment allows us to adjust the topology
according to the need (e.g., adding users only requires spawn-
ing new containers). The topology consists of three routers:
an edge router on the client side R1, a core router R2 and
router R3 that represents the edge router and caching system
on the legitimate provider side. Good clients and attacker
clients connect to R1. In each router, an MMT probe is
deployed to collect data for the 18 selected metrics. The
MMT probe is implemented as an independent application
that runs separately from NFD and extracts data from NFD
logs. The probe consumes about 10% of memory and does
not have a notable impact on the router. Then, the data
is processed by micro detectors, which retrieve the node’s
parameters from a local database. Finally, the results of micro
detectors are aggregated by the Bayesian Network to determine
the abnormal event of the node.

Good clients’ behavior is implemented by reproducing a
realistic network traffic pattern which considers both the
popularity of contents and the statistical properties of the
requests over time. The attack is launched by dedicated bots.

The payload of the attack is controlled by the amount of traffic
sent by bots as well as their number.

B. Micro Detector Validation: The Case of Interest Flooding
Attack

To evaluate the efficiency of both the micro detectors and
the monitoring plane, all experiments were carried out for
10 minutes. There is only normal traffic during the first 5
minutes. By contrast, during the last 5 minutes, the bots attack
by sending malicious traffic. For IFA, those experiments were
repeated 50 times to ensure the reliability of results.

As shown in prior works [3], [4], [9], [10] and stated in
Section III.A, IFA almost exclusively affects the unsatisfaction
ratio. Thus, this single metric can be used to detect it and
evaluate the relevance of our micro detector design. The design
approach for micro detectors relies on the modeling of each
metric such that the micro detector raises the alarm only when
the associated metric shift from the expected statistical model
with a prescribed level of significance. For the unsatisfaction
ratio used in IFA detection, after some processing [3], [4]
and normalization, it can be modeled as a Gaussian (normal)
distribution. Figure 5 shows that this model fits well with
the statistical distribution of IFA’s micro detector output. The
figure also compares the micro detector’s output when the
IFA is occurring, with two different attack payloads. One can
note that, while the micro detector’s output is expected to
increase under IFA, it mostly spreads in a much wider range.
Such phenomenon emphasizes the complex reaction of real
NDN deployment and also highlights the relevance of having
general-purpose micro detectors that do not focus on detecting
a specific event but instead alert when observations do not fit
with the model. This is also illustrated in Figure 5 through the
bounds of significance level, outside which value is considered
as “abnormal” for the significance levels of 5% and 0.1%.
With those thresholds, the empirical RFA is about 5.12% and
0.38%, respectively, while the IFA detection probability, i.e.,
true positive rate, is about 69.21% and 55.54%, respectively.
This shows the excellent match between the expected and
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Figure 5. Comparison between empirical and theoretical distribution of the
transformed unsatisfaction ratio for legitimate and attack traffic.

practical RFA, as well as the very high level of attack detection
which can be further increased by analyzing consecutive
observations.

C. Monitoring Plane Assessment: The Case of Content Poi-
soning Attack

Among the three CPA scenarios mentioned in Section III-B,
the unsolicited scenario can easily be fixed by patching
NFD [6]. Indeed, since version 0.5.0 (October 4th , 2016),
NFD has prevented unsolicited Data from being forwarded.
Although the two other scenarios (i.e., bestroute and multicast)
are more tedious to implement, they can hardly be circum-
vented as they make use of the NDN protocol and the NFD
forwarding rules. Therefore, we leverage them to exhibit the
relevance and efficiency of the proposed security monitoring
plane.

Similarly to IFA, each CPA experiment lasts 10 minutes,
and the attack is launched during the last 5 minutes. The bad
provider in Figure 2 has a smaller delay than the legitimate
provider but it does not take part in the default route and,
therefore, it is associated with a higher cost. Legitimate users
keep sending Interests until the good content is retrieved, using
the Exclude field to avoid getting any previously received bad
Data. Meanwhile, the attacker clients behave the other way
round: they keep sending Interests excluding the good content
so that the requests for the poisoned content names can be
tricked to go to the bad provider. For a meaningful comparison,
the average traffic amount from legitimate clients is set to 10
Interests per second. The attacker average traffic amount varies
from 5 to 50 Interests per second, following a logarithmic
scale. It is noteworthy that we also consider a scenario in
which there is additional traffic from legitimate users [7]. Data
collected from this scenario was added to the learning data set
for the BN so that it can differentiate between the additional
legitimate traffic and the malicious one.

The monitoring plane results for CPA detection are sum-
marized in Table I. The table shows that the larger the attack
payload, the better the detection. Even for a rather small attack
payload, the monitoring plane can detect the CPA with rather
high efficiency. It is noteworthy that those results correspond

Table I
EFFICIENCY OF MONITORING PLANE WITH RESPECT TO CPA DETECTION

FOR TWO DIFFERENT SCENARIOS AND VARIOUS ATTACK PAYLOAD.

Scenario Attack rate
(# Interest/s) 5 10 20 50

CPA bestroute % True Positive 95 95.33 97 98.33
% False positive <0.01 <0.01 <0.01 <0.01

CPA multicast % True Positive 63.33 72.83 79.33 96.33
% False positive <0.01 <0.01 <0.01 <0.01

to the CPA detection done by correlating all metrics’ measure-
ment at a given instant, which is very powerful for real-time
anomaly detection. Moreover, regardless of the attack payload
and the scenario, the monitoring plane achieves a minimal
amount of false positives (less than 0.01%) which is especially
important in an operational context.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we featured the two most significant NDN
attacks, IFA and CPA, and proved their feasibility in an NDN
real deployment. While a single metric can feature IFA, more
insights of the NDN node status is needed to characterize
CPA as well as unrevealed potential attacks in the future. This
fact motivates the necessity of a security monitoring plane.
To this aim, we proposed a comprehensive set of 18 NFD
metrics based on a thorough analysis of NFD pipelines. For
each metric, a micro detector was designed to capture any
abnormal variation from the metric’s normal behavior with a
prescribed RFA. The relevance of the micro detector’s design
was evaluated through its performance against IFA in our
testbed. For attacks that affect several aspects of NDN node
status, like CPA, a correlation engine for monitored metrics
based on a Bayesian Network is proposed to combine micro
detector alarms in order to identify any abnormal security
events in an NDN node. To validate these proposals, two CPA
scenarios were considered in a real testbed that implements all
of these contributions. Results demonstrated that our solution
accurately detects these attacks with various rates.

Our future research directions will focus on: (1) addressing
other attacks and larger topologies to assess the genericity of
our approach; (2) continuing the implementation of our solu-
tions into MMT probes to contribute to the secure deployment
of NFD; and (3) distributing the BN to correlate different
alerts from multiple nodes, thus enabling a potential trace-
back mechanism.
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