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Introduction

There are three different important approaches to model traffic flow phenomena: microscopic models, mesoscopic models and macroscopic models. Microscopic models are based on the individual vehicles and their interactions; particular micromodels are cellular automata that prescribe stochastic rules how vehicles behave into cells in which the road is divided; mesoscopic models apply gas-kinetic equations to describe the traffic flow; macroscopic models consider quantities that characterize the collective behaviour of vehicles. In this paper we will consider the framework of macroscopic models. The first macroscopic traffic flow model, based on fluiddynamics equations, has been introduced in transportation literature since the midfifties of last century. It is the Lighthill, Whitham and Richards (LWR) model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]. The LWR model consists in one scalar equation that expresses the conservation of the number of cars:

∂ t ρ + ∂ x (ρ v(ρ)) = 0,
with ρ = ρ(t, x) representing the mean traffic density, i.e. the number of vehicles per unit length and v denoting the mean velocity. Due to the difficulty to simulate the Felisia Angela Chiarello Inria Sophia Antipolis Mediterranée, Université Côte d'Azur, 2004, route des Lucioles-BP 93, 06902 Sophia Antipolis Cedex, France, e-mail: felisia.chiarello@inria.fr 1 formation of traffic jams, several approaches have been developed during the years, addressing the need for more sophisticated models. In particular, the classical LWR model does not match the experimental data because it is based on the assumption that the mean traffic velocity is a function of the traffic density, which is not realistic in congested regimes. For these reasons, high order models were developed. In particular, in [START_REF] Payne | Models of Freeway Traffic and Control[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF] and [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF], the authors considered second order models consisting in a mass conservation equation for the density and an acceleration balance law for the speed. Recently, "non-local" versions of the LWR model have been proposed in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Sopasakis | Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics[END_REF]. In this type of models, the speed depends on a weighted mean of the downstream traffic density. As a consequence, the speed is a Lipschitz function with respect to space and time variables, ensuring bounded acceleration and overcoming the limitation of classical macroscopic models that allows for speed discontinuities. Non-local traffic models are intended to describe the behaviour of drivers that adapt their velocity with respect to what happens in front of them. For this reason, the flux function depends on a "downstream" convolution term between the density of vehicles and a kernel function supported on the negative axis ] -∞, 0] . As in classical (local) models, the speed is a monotone non-increasing function, because the higher is the density of cars on a road, the lower is their speed. There are general existence and uniqueness results for non-local equations in [START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF][START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF] for the scalar case in one-space dimension, in [START_REF] Colombo | Control of the continuity equation with a non local flow[END_REF][START_REF] Keimer | Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping[END_REF] for multi-dimensional scalar equations, and in [START_REF] Aggarwal | Nonlocal systems of conservation laws in several space dimensions[END_REF] for the multi-dimensional system case. To prove the existence of solutions for these non-local models, there are mainly two different approaches. One is providing suitable compactness estimates on a sequence of approximate solutions constructed through finite volume schemes, as in [START_REF] Aggarwal | Nonlocal systems of conservation laws in several space dimensions[END_REF][START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF]. Another approach relies on characteristics and fixed-point theorems, as proposed in [START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF][START_REF] Keimer | Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping[END_REF]. The first approach [START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF] requires Kružkov-type entropy conditions to prove the L 1 -stability with respect to the initial data through the doubling of variable technique, while in [START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF][START_REF] Keimer | Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping[END_REF] the uniqueness of weak solutions is obtained directly from the fixed point theorem. An interesting point is the numerical approximation of the solutions of non-local models. It results challenging due to the high non-linearity of the system and the dependence of the flux function on integral terms, which highly increase the computational cost. There are different ways to numerically integrate non-local conservation laws. A first order Lax-Friedrichs-type numerical scheme is used to approximate the problem and to prove the existence of solutions in [START_REF] Aggarwal | Nonlocal systems of conservation laws in several space dimensions[END_REF][START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF][START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Goatin | Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[END_REF] . Another first order numerical scheme is proposed in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF], where an upwind numerical scheme for a class of non-local flux problems is presented. Alternative first order schemes based on the splitting of the non-local equation in two equations, i.e. the Lagrangian and the remap steps are proposed in [START_REF] Chiarello | Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models[END_REF]. In comparison with Lax-Friedrichs scheme and upwind scheme, Lagrangian-Antidiffusive Remap schemes are much less diffusive. Concerning high-order numerical schemes, it is worth citing the papers [START_REF] Chalons | High-order numerical schemes for one-dimensional nonlocal conservation laws[END_REF][START_REF] Chiarello | High-order Finite Volume WENO schemes for non-local multi-class traffic flow models[END_REF][START_REF] Friedrich | Maximum principle satisfying CWENO schemes for nonlocal conservation laws[END_REF]. In [START_REF] Chalons | High-order numerical schemes for one-dimensional nonlocal conservation laws[END_REF], the authors propose discontinuous Galerkin and finite volume WENO schemes to obtain high-order approximations of non-local scalar conservation laws in one space dimension, where the velocity function depends on a weighted mean of the conserved quantity. The discontinuos Galerkin schemes give the best results, but under a very restrictive Courant-Friedrichs-Lewy (CFL) condition. On the contrary, finite volume WENO schemes can be implemented on larger time steps. In [START_REF] Chiarello | High-order Finite Volume WENO schemes for non-local multi-class traffic flow models[END_REF], the authors extend to 1D systems the finite volume WENO schemes proposed in [START_REF] Chalons | High-order numerical schemes for one-dimensional nonlocal conservation laws[END_REF]. In [START_REF] Friedrich | Maximum principle satisfying CWENO schemes for nonlocal conservation laws[END_REF], central WENO schemes are proposed, which, in contrast with the other high-order schemes for non-local conservation laws, neither require a restrictive CFL condition nor an additional reconstruction step. The paper is organized as follows: Section 2 is devoted to scalar non-local traffic flow models and the corresponding analytical results. A non-local multi-class traffic flow model is recalled in Section 3 and Section 4 presents an upwind numerical scheme, used in Section 5 for numerical tests of the multi-class non-local model with three classes of vehicles.

A class of scalar non-local traffic flow models

In this section, we recall the class of scalar conservation laws with non-local flux arising in traffic modeling studied in [10]

∂ t ρ + ∂ x f (ρ)v(ω η * ρ) = 0, x ∈ R, t > 0, (1) 
where

ω η * ρ(t, x) := ∫ x+η x ω η (y -x)ρ(t, y)dy, η > 0. (2) 
In ( 1), ( 2), we assume the following hypotheses:

(H) f ∈ C 1 (I; R + ), I = [a, b] ⊆ R + , v ∈ C 2 (I; R + ) s.t. v ≤ 0, ω η ∈ C 1 ([0, η]; R + ) s.t. ω η ≤ 0, ∫ η 0 ω η (x)dx := J 0 , ∀η > 0, lim η→∞ ω η (0) = 0.
In this model, the function ρ(t, x) represents the density of vehicles on the road and η > 0 is proportional to the look-ahead distance of drivers. Indeed, the aim is to describe the reaction of drivers that adapt their speed with respect to a weighted mean of the downstream traffic density. In particular this class of equations includes the traffic flow models presented in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Goatin | Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[END_REF][START_REF] Li | Shock formation in a traffic flow model with Arrhenius look-ahead dynamics[END_REF][START_REF] Sopasakis | Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics[END_REF], which are detailed below. In [START_REF] Sopasakis | Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics[END_REF], the authors introduce a traffic flow model based on Arrhenius stochastic microscopic dynamics. Using scaling and limit arguments they obtain a macroscopic description of the microscopic dynamics leading to higher-order dispersive partial differential equations. The dynamics includes interactions with other vehicles ahead. The non-local traffic flow model that derives from this stochastic process is

∂ t ρ + ∂ x (ρ(1 -ρ) exp(-ω η * ρ)) = 0, ρ(0, x) = ρ 0 (x), (3) 
where the kernel acts only on the space variable x in this way

ω η * ρ(t, x) = ∫ x+η x J 0 η ρ(t, y)dy. (4) 
The kernel ω η is an anisotropic short range inter-vehicle interaction potential, η is proportional to the look-ahead distance and J 0 is the interaction strength. Numerical solutions in [START_REF] Kurganov | Non-oscillatory central schemes for a traffic flow model with arrehenius look-ahead dynamics[END_REF] show that solutions of ( 3)-( 4) allow for shock formations in finite time. In [START_REF] Li | Shock formation in a traffic flow model with Arrhenius look-ahead dynamics[END_REF], the authors show that the finite time blowup of the solution of ( 3)-( 4) must occur at the level of the first order derivative and the L p , 1 ≤ p ≤ ∞, norms of the solution are finite close to the blowup time. In this way, the results confirm the formation of shock waves for this non-local model. While pedestrians are likely to react to the presence of people all around them, drivers mostly adapt their velocity to the downstream traffic, assigning a greater importance to closer vehicles. In [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Goatin | Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[END_REF], the authors consider the following mass conservation equation for traffic flow with non-local velocity depending on a mean downstream density:

∂ t ρ(t, x) + ∂ x ρ(t, x)v ∫ x+η x ρ(t, y)ω η (y -x)dy = 0, for t ∈ R + and x ∈ R, η > 0. The kernel function ω η ∈ C 1 ([0, η]; R +
) is nonincreasing and the support η is proportional to the look-ahead visibility. The mean speed function v is continuous and decreasing. In [START_REF] Berthelin | Regularity results for the solutions of a non-local model of traffic flow[END_REF], the authors also study the regularity results for the solutions of this non-local model proving Sobolev estimates and the convergence of approximate solutions solving a viscous non-local equation.

The Blandin-Goatin model belongs to the class of equations considered in [START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF] and in [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF]. In [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF], the authors propose a general non-local vehicular traffic flow model based on a mean downstream traffic velocity. This is the main difference with the models in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF], where drivers adapt their velocity with respect to a mean downstream traffic density. In particular, the model in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF] allows to capture changes in the velocity function and for this reason, it could be extended to junctions, as in [START_REF] Chiarello | A non-local traffic flow model for 1-to-1 junctions[END_REF].

Analytical results for a class of scalar non-local traffic flow models

Adding an initial condition

ρ(0, x) = ρ 0 (x), x ∈ R, (5) 
with ρ 0 ∈ BV(R; I), entropy weak solutions of the Cauchy problem (1), ( 5), are intended in the following sense [START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF][START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF].

Definition 1 A function ρ ∈ (L 1 ∩ L ∞ ∩ BV)(R + × R; I
) is an entropy weak solution of (1), ( 5), if

∫ +∞ 0 ∫ R | ρ -κ|ϕ t + sgn(ρ -κ)( f (ρ) -f (κ))v(ω η * ρ)ϕ x -sgn(ρ -κ) f (κ)v (ω η * ρ)∂ x (ω η * ρ)ϕ dxdt + ∫ R | ρ 0 (x) -κ|ϕ(0, x)dx ≥ 0 (6)
for all ϕ ∈ C 1 c (R 2 ; R + ) and κ ∈ R. The following results are obtained in [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF], approximating the problem (1)-( 5) through a Lax-Friedrichs type numerical scheme and recovering L ∞ and BV estimates for the sequence of approximate solutions. Stability with respect to the initial data is obtained from the entropy condition using the doubling of variable technique.

Theorem 1 (Well-posedness)

Let hypotheses (H) hold and ρ 0 ∈ BV(R; I). Then the Cauchy problem (1), ( 5), admits a unique weak entropy solution ρ η in the sense of Definition 1, such that

min R {ρ 0 } ≤ ρ η (t, x) ≤ max R {ρ 0 }, for a.e. x ∈ R, t > 0. ( 7 
)
Moreover, for any T > 0 and τ > 0, the following estimates hold:

TV(ρ η (T, •)) ≤ e C(ω η )T TV(ρ 0 ), (8a) 
ρ η (T, •) -ρ η (T -τ, •) L 1 ≤ τe C(ω η )T ( f v + J 0 f v ) TV(ρ 0 ), (8b) 
with

C(ω η ) := ω η (0) v ( f ρ 0 + 2 f ) + 7 2 J 0 f v .
Under more regular assumptions, an estimate of the dependence of the solution with respect to the kernel function, the speed and the initial datum ca be proven, see [START_REF] Chiarello | Stability estimates for non-local scalar conservation laws[END_REF]. Above, and in the sequel, we use the compact notation • for • L ∞ .

Corollary 1 (Limit model as η → +∞)

Let hypotheses (H) hold and ρ 0 ∈ BV(R; I). As η → ∞, the solution ρ η of (1), ( 5) converges in the L 1 loc -norm to the unique entropy weak solution of the classical Cauchy problem

∂ t ρ + ∂ x ( f (ρ)v(0)) = 0, x ∈ R, t > 0 ρ(0, x) = ρ 0 (x), x ∈ R. ( 9 
)
In particular, we observe that C(ω η ) → 0 in (8a) and (8b), allowing to recover the classical estimates.

We observe that when the look-ahead distance η → ∞, the non-local problem (1)-( 5) becomes a classical transport equation [START_REF] Chiarello | A non-local traffic flow model for 1-to-1 junctions[END_REF]. Besides the mathematical implications, Corollary 1 may give information on connected autonomous vehicle flow characteristics. Indeed, large kernel supports could account for the information range between connected autonomous vehicles. On the other hand, when the visibility η → 0, the non-local problem (1)-( 5) is again reduced formally to a local problem, but the singular local limit is more challenging from the mathematical point of view. The derivation of this limit was initially conjectured in [START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF] for the one-dimensional scalar case motivated by numerical evidence, later corroborated in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF]. See [START_REF] Colombo | Recent results on the singular local limit for nonlocal conservation laws[END_REF][START_REF] Colombo | On the singular local limit for conservation laws with nonlocal fluxes[END_REF][START_REF] Keimer | On approximation of local conservation laws by nonlocal conservation laws[END_REF][START_REF] Zumbrun | On a nonlocal dispersive equation modeling particle suspensions[END_REF] for more details regarding the analytical derivation of the singular local limit for non-local conservation laws.

Non-local multi-class traffic flow models

In this Section, we consider the following class of non-local systems of M conservation laws in one space dimension, introduced in [START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF]:

∂ t ρ i (t, x) + ∂ x (ρ i (t, x)v i ((r * ω i )(t, x))) = 0, i = 1, ..., M, (10) 
where

r(t, x) := M i=1 ρ i (t, x), v i (ξ) := v max i ψ(ξ), ( 11 
) (r * ω i )(t, x) := ∫ x+η i x r(t, y)ω i (y -x)dy, (12) 
and we assume:

(H)

ω i ∈ C 1 ([0, η i ]; R + ), η i > 0, s.t. ω i ≤ 0, ∫ η i 0 ω i (y)dy = J i . W 0 := max i=1,...,M ω i (0). v max i are the maximal velocities 0 < v max 1 ≤ v max 2 ≤ . . . ≤ v max M . ψ : R + → R + is a smooth non-increasing function s.t. ψ(0) = 1, ψ(r) = 0 for r ≥ 1.
For simplicity, we can consider the function ψ(r) = max{1r, 0}. We couple [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF] with an initial datum

ρ i (0, x) = ρ 0 i (x), i = 1, . . . , M. (13) 
The model takes into account the distribution of heterogeneous drivers and vehicles characterized by their maximal speeds and look-ahead visibility in a traffic stream.

It is a non-local generalization of the n-populations model for traffic flow described in [START_REF] Benzoni-Gavage | An n-populations model for traffic flow[END_REF] and it is a multi-class version of the one dimensional scalar conservation law with non-local flux proposed in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF], where ρ i is the density of vehicles belonging to the i-th class, η i is proportional to the look-ahead distance and J i is the interaction strength. The authors consider the following definition of weak solution because solutions to nonlinear conservation laws are in general discontinuous, even if the initial datum is smooth.

Definition 2 A function ρ = (ρ 1 , . . . , ρ M ) ∈ (L 1 ∩ L ∞ )([0,T[ ×R; R M ), T > 0,
is a weak solution of ( 10), ( 13) if

∫ T 0 ∫ ∞ -∞ (ρ i ∂ t ϕ + ρ i v i (r * ω i )∂ x ϕ) (t, x)dx dt + ∫ ∞ -∞ ρ 0 i (x)ϕ(0, x) dx = 0, for all ϕ ∈ C 1 c (] -∞,T[ ×R; R), i = 1, .
. . , M. The main result in [START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF] is the proof of existence of weak solutions to [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF], [START_REF] Chiarello | High-order Finite Volume WENO schemes for non-local multi-class traffic flow models[END_REF], locally in time.

Theorem 2 Let ρ 0 i (x) ∈ (BV ∩ L ∞ ) (R; R + ), for i = 1, .
. . , M, and assumptions (H1) -(H3) hold. Then the Cauchy problem [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF], ( 13) admits a weak solution on [0,T[ ×R, for some T > 0 sufficiently small.

An upwind numerical scheme

For the numerical simulations in Section 5, we consider the following conservative scheme for the model ( 10)-( 13) introduced in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF] in the scalar case and generalized in [START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF] to the multi-class case. First of all, we extend ω i (x) = 0 for x > η i . For j ∈ Z and n ∈ N, let x j+1/2 = j∆x be the cell interfaces, x j = ( j -1/2)∆x the cells centers and t n = n∆t the time mesh. We approximate the initial datum ρ 0 i for i = 1, ..., M and the kernel as follows.

ρ 0 i, j = 1 ∆x ∫ x j+1/2 x j-1/2 ρ 0 i (x) dx, j ∈ Z. ω k i := 1 ∆x ∫ (k+1)∆x k∆x ω i (x) dx, k ∈ N, so that ∆x +∞ k=0 ω k i = ∫ η i 0 ω i (x) dx = J i .
We underline that the sum is finite since

ω k i = 0 for some k ≥ N i . Moreover, we set r n j+k = M i=1
ρ n i, j+k for k ∈ N and

V n i, j := v max i ψ ∆x +∞ k=0 ω k i r n j+k , i = 1, . . . , M, j ∈ Z. (14) 
We obtain the following upwind scheme:

ρ n+1 i, j = ρ n i, j -λ ρ n i, j V n i, j+1 -ρ n i, j-1 V n i, j , (15) 
where we have set λ = ∆t ∆x .

Numerical tests

In this section we show some numerical simulations of the model ( 10)-( 13) for M = 3. The space step is ∆x = 0.001. We use the numerical scheme in Section 4 to approximate the solution of ( 10)-( 13).

Test 1: impact of connected autonomous trucks on a circular road

We study the impact of connected autonomous trucks on road traffic performances on a circular road. For this reason, we consider the space interval [-1, 1] with periodic boundary conditions at x = ±1. In this case model ( 10)-( 13) reads

                         ∂ t ρ 1 (t, x) + ∂ x ρ 1 (t, x)v max 1 ψ((r * ω 1 )(t, x)) = 0, ∂ t ρ 2 (t, x) + ∂ x ρ 2 (t, x)v max 2 ψ((r * ω 2 )(t, x)) = 0, ∂ t ρ 3 (t, x) + ∂ x ρ 3 (t, x)v max 3 ψ((r * ω 3 )(t, x)) = 0, ρ 1 (0, x) = α (0.5 + 0.3 sin(5πx)), ρ 2 (0, x) = β (0.5 + 0.3 sin(5πx)), ρ 2 (0, x) = (1 -α -β) (0.5 + 0.3 sin(5πx)), (16) 
with

ω 1 (x) = 1 η 1 , η 1 = 0.3, ω 2 (x) = 2 η 2 1 - x η 2 , η 2 = 0.05, ω 3 (x) = 2 η 3 1 - x η 3 , η 3 = 0.1, ψ(ξ) = max {1 -ξ, 0} , ξ ≥ 0, v max 1 = 0.8, v max 2 = 1.3, v max 3 = 0.8.
Above ρ 1 represents the density of autonomous trucks, ρ 2 the density of humandriven cars and ρ 3 the density of human-driven trucks. α ∈ [0, 1] is the penetration rate of autonomous trucks and β ∈ [0, 1] is the penetration rate of human-driven cars. Figure 1 displays the traffic dynamics in the case α = 0.3 and β = 0.5, and Figure 2 displays the traffic dynamics in the case α = 0 and β = 0.5 (no presence of autonomous trucks). We observe that oscillations are reduced if autonomous trucks are not present on the road, see Figure 3. 

Test 2: stretch of straight road with autonomous trucks

In this test case, we propose a stretch of road with human-driven cars and trucks, and autonomous trucks. We consider the space domain [-1, 1], imposing absorbing boundary conditions at the boundaries x = ±1. The initial conditions for the equation [START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF] with M = 3 are the following. Above ρ 1 represents the density of autonomous trucks, ρ 2 the density of humandriven trucks and ρ 3 the density of human-driven cars. α 1 ∈ [0, 1] is the penetration rate of autonomous trucks. Figure 4 displays the traffic dynamics in the case α 1 = 0.1 and α = 0.4. In this case, the presence of autonomous trucks reduces the vehicle densities during the overtaking phase, see Figure 4.
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 1 Fig. 1 Density profiles corresponding to the non-local problem (16) with α = 0.3 and β = 0.5 at different times.
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 1115182 Fig. 2 Density profiles corresponding to the non-local problem (16) with α = 0 and β = 0.5 at different times.

Fig. 3

 3 Fig.3 (t, x)-plots of the total density r(t, x) = ρ 1 (t, x) + ρ 2 (t, x) + ρ 3 (t, x) computed with the upwind scheme[START_REF] Colombo | Recent results on the singular local limit for nonlocal conservation laws[END_REF], corresponding to different penetrations rate of autonomous trucks: (a) mixed autonomous/human-driven traffic, (b) fully human-driven traffic.

ρ 1 (

 1 0, x) = (1 -α 1 ) χ [-0.6,-0.1](x) , ω 2 (x) ) = max {1 -ξ, 0} , ξ ≥ 0.

Fig. 4

 4 Fig. 4 (t, x)-plots of the total density r(t, x) = ρ 1 (t, x) + ρ 2 (t, x) + ρ 3 (t, x) computed with the upwind scheme (15), corresponding to different penetrations rate of autonomous trucks: (a) α 1 = 0.1, (b) α 1 = 0.4.
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