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Abstract

The present study deals with Multi-Energy Systems (MES) modelling and ad-
vanced control with Economic Model Predictive Control (EMPC). MES provide
energy flexibility, efficiency, and adaptability thanks to several energy carriers.
MES are identified as a lever for integrating renewable energy. A MES novel
formulation technique called Multi-Prosumer Node (MPN) is developed in this
paper. MPN makes possible the modeling of MES, considering MES dynam-
ics, several energy carriers, converters, on-grid, and off-grid. In addition, this
MES modeling approach is compatible with predictive control strategies like the
EMPC. In fact, EMPC is able to take into account loads, weather, renewable
power and energy grid cost predictions to minimise economic costs. A real case
study is implemented to examine MPN capabilities, which it is composed of
renewable generators, loads, storages from two-energy carriers. Two real sce-
narios have been developed in order to represent realistic winter and summer
cases. Simulation results, thanks to modelling with MPN and EMPC advanced
control, demonstrate that the node is optimally controlled, devices dynamics
are considered on a minute scale, and energy conversion from one carrier to an-
other one is taken into account while economic cost minimisation is performed.
The gained results indicate that the presented MPN modelling and optimisation
approach reduces economic cost by 8.21% in winter case and 84.24% in summer
case compared to the benchmarks which are composed of rule-based control.

Keywords: Multi-Energy System, Economic Model Predictive Control,

Multi-Prosumer Node, Energy Hub

Email address: pierre.blaud@cea.fr (Pierre Clément Blaud)

Preprint submitted to Elsevier January 28, 2020



1. Introduction

Control and systems technologies in the energy sector are confronted with
great challenges in order to increase the share of renewable energy, optimise
energy harvesting, integrate intermittent renewable sources and use energy re-
sources wherever and whenever it is available [1]. Some of these challenges
can be addressed by Multi-Energy Systems (MES). MES is a framework which
couples different energy carriers. These couplings increase the flexibility of the
energy system and improves its efficiency by using energy carriers synergies.
Finally, MES are adapted to local and small-scale energy production and con-
sumption [2]. At the same time, wind turbines and solar power plants are spread
over a territory. Their intermittent production is a limit to their integration to
the local network. Their development is facing challenges to sustain the reliabil-
ity of the network and ensure the balance between demand and supply. These
challenges can be tackled by optimisation and control technologies [1].

In [3], the authors use optimisation techniques to control various energy sys-
tems like power plants, wind turbines, supermarket refrigeration systems, heat
pump, residential heating and electric vehicles’ battery. Additionally, in [4] the
control of a micro-grid community is done by a system composed of photovoltaic
panels, fuel cells and an electric storage. In another survey, an electric system
composed of photovoltaic panels, electric storage, electric vehicles, controllable
and non-controllable loads, is optimised [5]. MES made up of smart manufac-
ture of an olive mill is controlled in [6]. In this work,carriers which composed
the latter system were electricity, natural gas while the energy resources were
wind, biomass and sun.

A lot of optimisation techniques have been applied to renewable energies [7]
and MES [8], such as linear programming [9], nonlinear programming [10], in-
teger programming [11], heuristic [12], meta-heuristic [13], distributed comput-
ing [14], robust optimisation [15] and multi-objective optimisation [16]. Indeed,
the cost function of optimisation process needs to be minimised [8, 7]. Also,
some extra information can be added to the cost function. For instance, an
optimisation of a cost function over a horizon to follow the economic optimum,
system dynamic, multi-inputs and multi-outputs systems, constraints from ac-
tuators, disturbances and predictions to follow the optimum trajectory are taken
into account [17, 18, 19].

Some optimisation techniques are model-free and systems can be considered
as black boxes [20]. Some other optimisation techniques are model-based opti-
misation methods and a physical representation of the system is required [10].
Some papers deal with physical representation as state-space in order to control
the system with an optimisation [21]. Two main energy state-space model con-
cepts have been identified in literature for the energy systems control, namely
the Prosumer Node (PN) [4, 22, 23] and the Energy Hub (EH) [14, 6, 21, 24, 25].

Prosumer is a portmanteau word between producer and consumer [5, 26, 27].
Prosumer node is an energy system concept where producer and consumer are
linked to each other within a node. Prosumer node control can be seen in [4,
5, 22, 23]. The aim is to minimise the operation cost whilst maximising self-
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consumption and selling excess of energy from a micro-grid. Moreover, state-
space model and power balance of the prosumer node are visible in [4, 22, 23].
The main advantages of the prosumer node should be mentioned as state-space
model, power balance, and performing optimisation process in order to complete
economic optimisation. In addition, disturbances can be taken into account, and
bidirectional electric power flow is modelled in prosumer node strategy [4, 22,
23]. However, some drawbacks still remain because prosumer node deals only
with electricity vector [4, 5, 22, 23]. By the authors’ best knowledge,there are
few papers which deal with prosumer node concept and MES [28], likewise, a
state-space model and power balance which can be taken into consideration
by the optimisation problem is still not displayed. Moreover in literature, an
applied state-space model for electrical systems has not still been extended to
a MES.

EH concept was proposed in order to consider multi-energy carriers with
converters, conditioners and storage systems [29]. It has been employed in op-
timal power flow with MES [8, 30]. EH optimisation with a state-space model
has been proposed in literature [6, 14, 21, 24]. The main advantages of EH
state-space model may be mentioned as following: the state-space model can
be used for the optimisation process in order to complete economic optimisa-
tion, grid exchange and controllable equipment are modelled in distinct carrier
representation. However, some drawbacks are noticeable like charging and dis-
charging storage are shown with a double matrix formulation (one for charging
and second one for discharging), primary energies are used, and renewable en-
ergy systems are formulated only with a conversion factor. This conversion
factor from primary energies causes ratio to the central energy optimisation
problem. Renewable energy systems have their own optimisation process with
the purpose of maximising the harvested energy. For instance, in photovoltaic
systems this controller is called maximum point tracking. From a point of view
of a central controller with the purpose of dispatching energy and increasing
carrier synergies, the ratio from primary energy to power adds computational
issues. Conversion efficiency is expressed as steady state and therefore hourly
optimisation is done [6]. It is obvious that hourly optimisation process brings
lack of precision with long-time thermal dynamics.

Studies on both prosumer node and EH have shown some lacks among ex-
isting modelling techniques applied for optimisation. Proper modelling of pro-
sumer and of conversion are currently missing for MES. Besides, EH modelling
uses a steady state conversion factor, implementing constant value or leading to
computational issues for variable factors. The contribution of the present work
is to introduce the concept of Multi-Prosumer Node (MPN) that combines the
following features:

• MPN is able to model a MES to be used for optimisation in the case of
multiple carriers;

• Energy coupling from a carrier to another is not represented with constant
conversion factors: it relies on conversion models;
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• Systems dynamics are taken into account. Consequently, MPN is also
suitable for optimisation considering short time horizon;

• A methodology is presented to build the MPN from MES’s analysis,
since then controlling the MES through optimisation using MES model
is achievable by the method.

2. Multi-Prosumer Node Model

The flowchart in figure 1 summarizes the methodology proposed to form a
MES controller. It has three main steps, MES classification, MPN modelling
and EMPC tuning. These steps are detailed along with sections 2 and 3.

Cost 

function

Carriers

Storages

Grid connection

Controllable devices

Non-controllable devices

MES 

classification

MES to be 

controlled

Optimisation 

algorithm : 

constraints + cost 

function

Define MPN

Define cost 

function

MES controller

EMPC

MPN state-space

MPN power balance

MES

Figure 1: Designed and applied methodology in the present study.
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Figure 2: Node power flows of possible devices formed at the MES with three energy carriers.
CL: controllable loads, CT: ConverTers, GR: GRids, NCG: Non-Controllable Generator, NCL:
Non-Controllable Loads, ST: storages. Colour represents different energy carriers.

Equipment that compose MES are energy systems, such as storage, energy
carriers, converters from one energy carrier to other(s) energy carrier(s), re-
newable energy generators, controllable and non-controllable loads. All energy
systems are categorised in two distinct groups. The first group includes devices
with controllability feature like storages, converters, grid exchanges and con-
trollable loads. (Please note that controllable here means that a control action
can be carried out.) The second group contains devices without controllability
capabilities, like non-controllable loads and renewable energy sources such as
solar panels.

The power flow exchange from an energy carrier to devices can be seen in
figure 2. In this research, we focused on power balanced approach. MPN model
formulation includes two components, the first one is the state-space model and
the second one is the power balance. MPN state-space model and MPN power
balance flowcharts are shown in figures 3 and 4. In these figures, each step is
related to a section hereafter.

2.1. Multi-Prosumer Node state-space model

State-space model is employed to model dynamic devices which are intercon-
nected into the node. These devices are storages, converters, and controllable
loads. Employed state-space model with one carrier is described firstly, then
augmented state-space model composed of several carriers will be described.
Node state-space model is decomposed in specific device types sub-models as
detailed below.
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Figure 3: Way to get the state space model (inside the MPN).

2.1.1. Storages state-space model

The first device state-space model concerns storage devices. For each energy
carrier, the state-space model is equal to:

ẋst(t) = Astxst(t) +Bustust(t) +Bdstdst(t) (1)

Where xst is the storage devices state vector, xst ∈ Rnxst , nxst ∈ N is the
number of states of storage devices. As whatever kind of state or energy can be
regarded, storage devices states can be for instance, a temperature (K) from a
thermal storage or an energy in electric vector (Wh). ust is the storage input
vector, ust ∈ Rnust , nust ∈ N is the number of storage devices’ control inputs. It
can be a charging power from an electric storage or a heat flow from a thermal
storage for example. dst is the disturbance input vector, dst ∈ Rndst , ndst ∈ N
is the number of storage devices disturbance inputs. Ast is the state matrix,
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Figure 4: Way to get the power balance (inside the MPN).

Ast ∈ Rnxst×nxst . Bust is the input matrix, Bust ∈ Rnxst×nust . Bdst is the
disturbances input matrix, Bdst ∈ Rnxst×ndst . The vector ust(t) is equal to:

ust(t) =
[
P1st1(t) P2st1(t) · · · P1stNst (t) P2stNst (t)

]
(2)

Where P1sti ∈ R+ is the charging power and P2sti ∈ R+ is the discharging
power. i from 1 to Nst and Nst ∈ N is the amount of storages for this energy
carrier.

2.1.2. Converters state-space model

The second state-space models are the converter devices. Converters are
specific because, they are used to convert an energy carrier into another one,
index co stands for converter’s output and index ci stands for converter’s input.
For each energy carrier, the state-space model is equal to:

ẋco(t) = Actxco(t) +Buctuci(t) +Bdctdct(t) (3)

Where xco is the converters output power, xco ∈ Rnxco , nxco ∈ N are the
number of states of converters in the carrier considered. uci is the converters
input vector, uci ∈ Rnuci , nuci ∈ N is the number of converter devices control
inputs. dct is the converter disturbance input vector, dct ∈ Rndct , ndct ∈ N is
the number of converter devices disturbance inputs. Act is the state matrix,
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Act ∈ Rnxco×nxco . Buct is the input matrix, Buco ∈ Rnxco×nuci . Bdct is the
disturbance input matrix, Bdct ∈ Rnxco×ndct .

Converter output state power vector can be determined as below:

xco(t) =
[
Pco1(t) · · · PcoNco (t)

]
(4)

Where Pcoi(t) ∈ R+ is the power transferred to an energy carrier from convert-
ers. i from 1 to Nco and Nco ∈ N denotes the number of converters output.

Converter input state power vector is calculated by:

uci(t) =
[
Pci1(t) · · · PciNci (t)

]
(5)

Where Pcij ∈ R+ is the power flow extracted by the converters from the energy
carrier considered. j from 1 to Nci and Nci ∈ N is the sum of all converters
which inputs are connected to the energy carrier.

2.1.3. Controllable loads state-space model

The third state-space model deals with the controllable loads. They are
used to perform load management within the MPN. For each energy carrier,
controllable load state-space model is equal to:

ẋcl(t) = Aclxcl(t) +Buclucl(t) +Bdcldcl(t) (6)

Where xcl is the controllable devices state vector, xcl ∈ Rnxcl , nxcl ∈ N is
the number of states of controllable loads of energy carrier considered. ucl is
the controllable loads input vector, ucl ∈ Rnucl , nucl ∈ N is the number of
controllable loads control inputs. dcl is the controllable loads disturbance input
vector, dcl ∈ Rndcl , ndcl ∈ N is the number of controllable loads disturbance
inputs. Acl is the state matrix, Acl ∈ Rnxcl×nxcl . Bucl is the input matrix,
Bucl ∈ Rnxcl×nucl . Bdcl is the disturbance input matrix, Bdcl ∈ Rnxcl×ndcl .

Controllable loads input state vector power is calculated by following equa-
tion:

ucl(t) =
[
Pcl1(t) · · · PclNcl (t)

]
(7)

Where, Pcli ∈ R+ is the power flow of the controllable loads connected to the
vector. i from 1 to Ncl and Ncl ∈ N is the sum of all connected controllable
loads to the energy carrier.

2.1.4. Non controllable loads matrix

Non controllable loads are not described by state-space model. They are
described as a power disturbance. dncl(t) is a non controllable load disturbance
input vector, dncl ∈ Rndncl , ndncl ∈ N is the number of non controllable loads
disturbance inputs. For each energy carrier, it can be determined as follow:

dncl(t) =
[
Pncl1(t) · · · PnclNncl (t)

]
(8)

Where Pncli ∈ R+ is the non-controllable loads power. i from 1 to Nncl and
Nncl ∈ N is the sum of all non-controllable loads connected to the energy carrier.
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2.1.5. Non controllable energy sources matrix

Non controllable generators are not described with state-space model. They
are described as a power disturbance. dncg(t) is a non controllable generators
disturbance input vector, dncg ∈ Rndncg , ndncg ∈ N is the number of non con-
trollable generators disturbance inputs. For each energy carrier, it is equal to:

dncg(t) =
[
Pncg1(t) · · · PncgNncg (t)

]
(9)

Where, Pncgi ∈ R+ is the non-controllable generators power. i from 1 to Nncg
and Nncg ∈ N is the sum of all non-controllable generators connected to the
energy carrier.

2.1.6. Grids matrix

Grids are not described with state-space model. They are described as a
power input. ugr(t) is the grids input vector, ugr ∈ Rnugr , nugr ∈ N is the
number of grids inputs. It can be described by:

ugr(t) =
[
P1gr1(t) P2gr1(t) · · · P1grNgr (t) P2grNgr (t)

]
(10)

Where, P1gri ∈ R+ is the power flow from the grid to the carrier and P2gri ∈ R+

is the power flow from the carrier to the grid. Thus, index i from 1 to Ngr
denotes number of grids connected to the carrier, and Ngr ∈ N is the sum of all
grids connected to the carrier.

2.1.7. Augmented carrier state-space model

Augmented state-space model is used to represent the state-space model of
all devices interconnected into the node for one energy carrier l. It is equal to:

ẋl(t) = Alxl(t) +Bulul(t) +Bdldl(t) (11)

Where xl is the energy carrier l state vector, xl ∈ Rnxl . ul is the energy
vector input vector, ul ∈ Rnul . dl is the energy vector disturbance input vector,
dl ∈ Rndl . Thus, nxl = nxst + nxco + nxncl , nul = nust + nuct + nuncl , ndl =
ndst + ndct + ndlnc . Vectors xl(t), ul(t), dl(t) are equal to:

xl(t) =
[
xst(t) xco(t) xcl(t)

]
(12)

ul(t) =
[
ust(t) uci(t) ucl(t) ugr(t)

]
(13)

dl(t) =
[
dst(t) dct(t) dcl(t) dncl(t) dncg(t)

]
(14)

Furthermore, Al, Bul , Bdl are adequate dimension and they are formed with
diagonal concatenation of device state-space model. Al is formed with Ast, Act,
Acl; Bul with Bust , Buct , Bucl ; Bdl with Bdst , Bdct , Bdcl .

2.1.8. Augmented Multi-Prosumer Node state-space model

MPN state-space model contains plenty of energy carrier form the node.
state-space model provides opportunities to represents dynamics from equip-
ment interconnected into the node. MPN state-space model is composed of an
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augmented state-space model from primary energy carriers. The state-space is
equal to:

ẋmpn(t) =Ampnxmpn(t) +Bumpnumpn(t) +Bdmpndmpn(t) (15)

Where xmpn is the MPN state vector, xmpn ∈ Rnxmpn . umpn is the MPN
input vector, umpn ∈ Rnumpn . dmpn is the MPN disturbance input vector,
dmpn ∈ Rndmpn . Moreover, nxmpn = nx1

+ · · · + nxl + · · · + nxL , numpn =
nu1

+ · · · + nul + · · · + nuL , ndmpn = nd1 + · · · + ndl + · · · + ndL and L is the
number of carriers in the MPN.Vectors xmpn(t), umpn(t), dmpn(t) are equal to:

xmpn(t) =
[
x1(t) . . . xl(t) . . . xL(t)

]
(16)

umpn(t) =
[
u1(t) . . . ul(t) . . . uL(t)

]
(17)

dmpn(t) =
[
d1(t) . . . dl(t) . . . dL(t)

]
(18)

Ampn is the state matrix, Bumpn is the input matrix, Bdmpn is the disturbance
input matrix. They are adequate dimensions and they are formed with diagonal
concatenation of augmented carrier state-space model:

Ampn = diagonal
(
A1 . . . Al . . . AL

)
(19)

Bumpn = diagonal
(
Bu1 . . . Bul . . . BuL

)
(20)

Bdmpn = diagonal
(
Bd1 . . . Bdl . . . BdL

)
(21)

Finally, MPN state-space model is discretised in order to manipulate sampled
data:

xmpn(k + 1) =Ampnxmpn(k) +Bumpnumpn(k) +Bdmpndmpn(k) (22)

Where, k denotes the sampling period, furthermore the sampling period is con-
stant.

2.2. Multi-Prosumer Node power balance

2.2.1. Power balance

The power balance for one energy carrier extracted from figure 2 is equal to:

0 =Pgr(t)− Pncl(t) + Pncg(t) + Pco(t)− Pci(t)− Pcl(t) + Pst(t) (23)

Where Pgr is the power flow from the grid connected to the carrier, Pncl is the
power flow from the non-controllable loads connected to the carrier, Pncg is the
power flow from the non-controllable generator connected to the carrier, Pci is
the power flow that transforms energy from the carrier to another carrier, Pco
is the power flow received by the carrier from another carrier via a converter,
Pcl is the power flow from controllable loads and Pst is a power flow from or to
the storage devices. All units are in watts. The power balance in matrix format
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for one carrier l given xl, ul(t) and dl(t) is equal to:

0 = Exlxl(t) + Eulul(t) + Edldl(t) (24)

Where Exl , Eul , Edl are the node power balance matrices. Thus, Exl ∈ R1×nx
l ,

Eul ∈ R1×nu
l , Edl ∈ R1×nd

l .
Power balance defined with one carrier is described below and afterwards

augmented power balance composed of several carriers will be described.

2.2.2. Power balance matrices

Matrix Exl is used as output power offset received by converters within
energy carrier l. Exl is equal to:

Exl =
[
Exst Exct Excl

]l
(25)

Where, Exst is the storage state power balance matrix, Exct is the converter
state power balance matrix within carrier l, Excl is the controllable loads state
power balance matrix. Exst , Exct , Excl are equals to:

Exst =[O ] (26)

Exct =[O ] (27)

Excl =[O ] (28)

Where, O denotes zero matrix with adequate dimension.

Matrix Eul is employed to model power balance from controllable devices,
Eul is equal to:

Eul =
[
Eust Euct Eucl Eugr

]l
(29)

Where, Eust is the storage devices power balance. Euct is the converters input
power balance. Eucl is the controllable loads power balance. Eugr is the grids
power balance. Matrix Eust , Eugr , Euct , Eucl are equal to:

Eust = [−1 1 ... −1 1 ]︸ ︷︷ ︸
2×Nst

(30)

Euct = [−1 ... −1 ]︸ ︷︷ ︸
Nci

(31)

Eucl = [−1 ... −1 ]︸ ︷︷ ︸
Ncl

(32)

Eugr = [−1 1 ... −1 1 ]︸ ︷︷ ︸
2×Ngr

(33)

Where, Nst ∈ N is the number of storage devices connected to the carrier.
Nci ∈ N is the number of converters which inputs from the carrier. Ncl ∈ N
is the number of controllable loads connected to the carrier. Nncl ∈ N is the
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number of non controllable loads connected to the carrier. Nncg ∈ N is the
number of non controllable generators connected to the carrier. Ngr ∈ N is the
number of grids connected to the carrier.

Edl matrix is equal to:

Edl =
[
Edst Edct Edcl Edncl Edncg

]l
(34)

Where, Edst is the disturbance power balance of storage devices, Edct is the
converters disturbance power balance, Edcl is the controllable loads disturbance
power balance, Edncl is the non-controllable loads power balance, Edncg is the
non-controllable generators power balance. Edst , Edct , Edcl , Edncl and Edncg
are equal to:

Edst =[O ] (35)

Edct =[O ] (36)

Edcl =[O ] (37)

Edncl = [−1 ... −1 ]︸ ︷︷ ︸
Nncl

(38)

Edncg = [ 1 ... 1 ]︸ ︷︷ ︸
Nncg

(39)

Where, Nncl ∈ N is the number of non-controllable loads connected to the
carrier. Nncg ∈ N is the number of non-controllable generators connected to the
carrier.

2.2.3. Carrier power balance

Power balance matrix shape of one carrier is composed of matrices described
with respect to equation 24, it is equal to:

0 = [Exst Exct Excl ]︸ ︷︷ ︸
Exl

xst(t)xco(t)
xcl(t)


︸ ︷︷ ︸

xl(t)

+ [Eust Euct Eucl Eugr ]︸ ︷︷ ︸
Eul


ust(t)
uci(t)
ucl(t)
ugr(t)


︸ ︷︷ ︸

ul(t)

+

[Edst Edct Edcl Edncl Edncg ]︸ ︷︷ ︸
Edl


dst(t)
dct(t)
dcl(t)
dncl(t)
dncg(t)


︸ ︷︷ ︸

dl(t)

(40)
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Which is the power balance expression for one energy carrier l related to equation
24 .

2.2.4. Augmented Multi-Prosumer Node power balance

MPN power balance comes when several energy carriers are contained within
the node and power balance gives the opportunity to represent power balance
from all of these energy carriers. MPN power balance is composed of augmented
power balance from all energy carrier.

Matrix Exl→l′ is used to model power balance from converters that transform
energy from one carrier l to another carrier l′, Exl→l′ is equal to:

Exl→l′ =
[
Exst

l→l′
Exct

l→l′
Excl

l→l′

]
(41)

Where, Exst
l→l′

is the storage power balance matrix. Exct
l→l′

is the converter
power balance matrix. Excl

l→l′
is the controllable loads power balance matrix.

Exst
l→l′

, Exct
l→l′

, Excl
l→l′

are equals to:

Exst
l→l′

=[O ] (42)

Exct
l→l′

= [ 1 ... 1 ]︸ ︷︷ ︸
Nco

l→l′

(43)

Excl
l→l′

=[O ] (44)

Where, Ncol→l′ ∈ N is the number of power converters from carrier l which
outputs are connected to the carrier l′, otherwise, when there is no outputs
connections the matrix Exct

l→l′
equals to O.
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MPN power balance is equal to:

O
...
...
...
O


=



Ex1 · · · Exl→1
· · · ExL→1

...
. . .

...
...

Ex1→l
· · · Exl · · · ExL→l

...
...

. . .
...

Ex1→L
· · · Exl→L

· · · ExL


︸ ︷︷ ︸

Exmpn



x1(t)
...

xl(t)
...

xL(t)


︸ ︷︷ ︸
xmpn(t)

+



Eu1
O · · · · · · O

O
. . .

. . .
...

...
. . . Eul

. . .
...

...
. . .

. . . O
O · · · · · · O EuL


︸ ︷︷ ︸

Eumpn



u1(t)
...

ul(t)
...

uL(t)


︸ ︷︷ ︸
umpn(t)

+



Ed1 O · · · · · · O

O
. . .

. . .
...

...
. . . Edl

. . .
...

...
. . .

. . . O
O · · · · · · O EdL


︸ ︷︷ ︸

Edmpn



d1(t)
...

dl(t)
...

dL(t)


︸ ︷︷ ︸
dmpn(t)

(45)

Which summarises to the MPN power balance:

O = Exmpnxmpn(t) + Eumpnumpn(t) + Edmpndmpn(t) (46)

Where xmpn ∈ Rnxmpn is the MPN power balance state. umpn ∈ Rnumpn is the
MPN power balance input vector. dmpn ∈ Rndmpn is the MPN power balance
disturbance vector. Exmpn , Eumpn , Edmpn are the power balance matrices, they
have adequate dimension. Thus, nxmpn = nx1

+ · · ·+ nxl + · · ·+ nxL , numpn =
nu1

+ · · · + nul + · · · + nuL , ndmpn = nd1 + · · · + ndl + · · · + ndL and L is the
number of vectors that form MPN.

Finally, vectors from power balance and state-space model that form MPN
are X ∈ {xmpn}, U ∈ {umpn}, and D ∈ {dmpn}. X and U are decision vectors
which are solved by optimisation process and D are the disturbance vectors
with no control from the optimisation process. However, disturbances can be
measurable and predictable, in this study, all disturbances are considered known
and predictions perfect.
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3. Economic Model Predictive Control

The control of an energy system with an EMPC algorithm has caught re-
searchers’ attention because of its ability to perform optimisation of a cost
function over a horizon following the economic optimum. EMPC can take
into account the system dynamic, multi-inputs & multi-outputs systems, con-
straints from actuators, disturbances and predictions to follow the optimum
trajectory [17, 18, 19]. A wide range of systems are controlled with EMPC.
For instance, in [55] an EMPC is used to control HVAC (heating and ventila-
tion air-conditioned) with thermal storage within a building. Moreover, in [56]
HVAC from a commercial building is controlled thanks to EMPC. In [57] the
scheduling of a chemical stirred tank reactor is performed with EMPC. In [3], a
supermarket refrigeration, a heat pump, a heat tank with a solar collector and
an electric vehicle are controlled thanks to EMPC.

EMPC is solved on a receding horizon, at each time period, states mea-
surement, disturbances measurements, and predictions are received by EMPC.
Then, EMPC computes the optimal input trajectory at each sampling time and
the first action computed by EMPC (which is the U vector) is sent to the actu-
ators. Then at next sampling time, EMPC process is done again. In this study,
grid flows are taken into account with wishes to minimise energy cost extracted
from grids. EMPC mathematical formulation is described below:

min
c,s

N∑
k=1

c(k) + ρ s(k) (47)

s.t. xmpn(k + 1) = Ampnxmpn(k) +Bumpnumpn(k) +Bdmpndmpn(k) (48)

0 = Exmpnxmpn(k) + Eumpnumpn(k) + Edmpndmpn(k) (49)

xmin − s(k) ≤ xmpn(k) ≤ xmax + s(k) (50)

umin ≤ umpn(k) ≤ umax (51)

0 ≤ s(k) (52)

xk=1 = x(t) (53)

Where, equation (47) is the cost function with the purpose to minimise opera-
tional cost. The operational cost c is specific for each case considered. It could
be for instance, the cost of service operation, the sum of energy purchasing cost
and the sum of energy selling benefits from the grids. Moreover, a slack vari-
able s and a slack price ρ are introduced, to be able to release states vectors
constraints in order to have soft state constraints. Equation (48) is the MPN
state-space model. Then, equation (49) is the MPN power balance. Equation
(50) is the state vector constraints. Equation (51) is the power constraints
applied to the input vector. Equation (52) is the slack variable constraint.
Equation (53) is the measurement state at time (t) and t is the starting point
when optimisation is computed. Furthermore, in this study it is assumed that
all states are measurable. Studies dedicated to predictive control using state
observers are available in [58, 59]. EMPC formulation has no terminal cost or
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terminal constraints, in that case, states have the possibility to fluctuate inside
the constraints.

4. Case study

An application of MES controlled by an EMPC and modelled as MPN is
presented in this section. Methodology describes in section 2 is applied to the
case study.

The application deals with a residential house with a floor area equal to 95m2

and 6 rooms heated by electrical heaters. The house is connected to electrical
utility grid (GR). It is also equipped with photovoltaic panels (NCG) and an
electrical storage system (ST). The domestic hot water (DHC) is supplied by a
heat pump (CT) coupled by a thermal energy storage (ST). It can be considered
that this house is equipped with a MES with two energy carriers: electricity and
heat and a converter (the heat pump) which couple them. Therefore, it can be
modelled as a MPN and controlled by EMPC. The MPN is presented in figure 5.

Thermal Carrier

Electric Carrier

ST CLNCL

CT

GR

ST NCL

NCG

Figure 5: Connected devices to the MPN in this case study (acronyms explanation are visible
in figure 2).

For the sake of simplification, table 1 represents devices’ acronyms, link
between devices acronyms and MPN vectors and link between MPN vectors
and used case signals.

4.1. Electric carrier

Controllable devices are house heating system, grid connection, converter
and battery. Non-controllable devices are loads with no control action and pho-
tovoltaic generator. State-space model of controllable devices will be described
in the next section.
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Table 1: Devices, MPN and physical indication of use case.

Devices MPN Electric carrier Thermal carrier
ST xst(t) Ebat(t) Ttes(t)
CT xco(t) ∅ Qhp(t)
CL xcl(t) Ta(t) Tw,i(t) Tw,e(t) ∅
ST ust(t) P1bat(t) P2bat(t) P1tes(t) P2tes(t)
CT uci(t) Php(t) ∅
CL ucl(t) Phtg(t) ∅
GR ugr(t) P1grid(t) P2grid(t) ∅
ST dst(t) ∅ Troom(t)
CT dct(t) ∅ ∅
CL dcl(t) Qsun1(t) Qsun2(t) Text(t) ∅

NCL dncl(t) Pncle(t) Pnclt(t)
NCG dncg(t) Ppv(t) ∅

4.1.1. State-space of storage devices

The storage system is is based on a battery. The energy derivative can be
represented by [14]:

Ėbat(t) = ηPbat(t) (54)

Where, Ebat is the stored energy in J, Pbat is the power in W and η is the charging
or discharging efficiencies, without units. In order to model bidirectional power
from the battery system and with discretised matrix, the electric storage state-
space model is extracted from [23]:

[Ebat(k+1) ] = [Ebat(k) ] + [ ηch∆t − 1
ηdch

∆t ]
[
P1bat(k)
P2bat(k)

]
(55)

Where, Ebat is the stored energy in Wh, ηch and ηdch are the dimensionless
values for the charging and discharging efficiencies and ∆t is the sampling time.
P1bat is the charging power in W and P2bat is the discharging power in W. Links
from device’s acronym and MPN is mentioned in table 1. Ebat(t) is the state
xst(t) from the electrical carrier while the battery power (P1bat(t), P2bat(t))
form control input ust.

4.1.2. State-space model of the converter

The converter transforms energy from electric carrier to thermal carrier
(from carrier one to carrier two), with the aim to heat up domestic water.
The converter is a heat pump. There are plenty of heat pump technologies [31].
Dynamic heat pump responses can be seen in [32, 33]. In this study, the heat
pump system output power is modelled as a first order linear system. The
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Tw,e Tw,iText Text

Cw /2 Ci

UAKiKwKe Ta

Qsun1 PhtgQsun2 

Cw /2

Figure 6: The equivalent thermal model, derived from [37].

first-order model is:[
Q̇hp(t)

]︸ ︷︷ ︸
ẋco(t)

=
[
− 1
τhp

]
︸ ︷︷ ︸
Act

[
Qhp(t)

]︸ ︷︷ ︸
xco(t)

+
[
Khp
τhp

]
︸ ︷︷ ︸
Buct

[
Php(t)

]︸ ︷︷ ︸
uci(t)

(56)

Where, Qhp is the delivery heating in W, τhp is the time constant in seconds,
Khp is the steady state efficiency of the heat pump which is the heat pump
coefficient of performance, without units, and Php is the heat pump electric
power in W.

4.1.3. State-space of the controllable loads

The heating system is a good candidate to allow the load management [34,
35, 36], because of its ability to use the walls as storage, thanks to their in-
ertia. In this study, the building is considered as a controllable load, in other
case studies, it could be modelled as loads or storage with heat losses. The
building model used in this study is a first order linear model simplification
technique with resistance and capacitance. The equivalent thermal model is
taken from [37], and it can be seen in figure 6. Moreover, the equivalent ther-
mal resistance is derived with the assumption of a plane wall. State-space model
of equivalent thermal building model from [37] can be described as follows: Ṫa(t)

Ṫw,i(t)

Ṫw,e(t)


︸ ︷︷ ︸

ẋcl(t)

=

−
UA+Ki
Ci

Ki
Ci

0
Ki
Cw/2

−Kw+Ki
Cw/2

Kw
Cw/2

0 Kw
Cw/2

−Ke+KwCw/2


︸ ︷︷ ︸

Acl

 Ta(t)
Tw,i(t)
Tw,e(t)


︸ ︷︷ ︸

xcl(t)

+

 1
Ci
0
0


︸ ︷︷ ︸
Bucl

[
Phtg(t)

]︸ ︷︷ ︸
ucl(t)

+

 0 0 UA
Ci

0 1
Cw/2

0
1

Cw/2
0 Ke

Cw/2


︸ ︷︷ ︸

Bdcl

Qsun1(t)
Qsun2(t)
Text(t)


︸ ︷︷ ︸

dcl(t)

(57)

Where Ke is the heat transfer coefficient by convection from outdoor wall to
outside in W

K . Kw is the heat transfer coefficient by conduction through concrete

and insulation building in W
K . Ki is the heat transfer coefficient by convection
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from indoor wall to inside air in W
K . UA is the heat transfer coefficient related

to ventilation heat loss in W
K . Cw is the concrete wall thermal mass in J

K . Ci
is the air thermal mass in J

K . Also, Ta is the indoor air temperature in ◦C,
Tw,i is the wall internal surface temperature in ◦C and Tw,e is the wall external
surface temperature in ◦C, Text is the outdoor temperature in ◦C. Qsun1 is the
solar radiation that gets to external wall in W. Qsun2 is the solar radiation that
reaches internal wall through glazing in W. Phtg is the building heating power
in W.

4.2. Thermal carrier

Devices are divided into two groups, the first one is composed of the equip-
ment that the controller is able to control and the second is composed of equip-
ment which can not be controlled. The water tank forms the controllable devices
and loads form the non-controllable ones. State-space model of the thermal stor-
age will be described in the next section.

4.2.1. State-space of the storage device

The thermal storage is formed by the water tank, with the ability to store
heat. Water temperature is studied and the thermal storage is simplified with a
first order linear model, it is extracted from [42]. It can be represented as below
formula:

CtesṪtes(t) = Utes(Troom(t)− Ttes(t)) + P (t) (58)

The state-space model of the thermal storage device is equal to:[
Ṫtes(t)

]︸ ︷︷ ︸
ẋst(t)

=
[
−Utes
Ctes

]
︸ ︷︷ ︸

Ast

[
Ttes(t)

]︸ ︷︷ ︸
xst(t)

+

[
1

Ctes
− 1
Ctes

]︸ ︷︷ ︸
Bust

[
P1tes(t)
P2tes(t)

]
︸ ︷︷ ︸

ust(t)

+
[
Utank
Ctes

]
︸ ︷︷ ︸
Bdst

[
Troom(t)

]︸ ︷︷ ︸
dst(t)

(59)

Where, Ttes is the storage temperature inside the storage tank in ◦C. Utes is
the thermal conductance in W

K . Ctes is the heat capacity in J
K . Troom is the

temperature where the storage is located in ◦C. P1tes is the charging power
and P2tes is the discharging power, both units are in W.

4.3. Multi-Prosumer Node state-space model

The MPN state-space model is formed of state-space models from electrical
and thermal carriers, it is shown by equation (60).
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

Ėbat(t)

Q̇hp(t)

Ṫa(t)

Ṫw,i(t)

Ṫw,e(t)

Ṫtes(t)


︸ ︷︷ ︸
ẋmpn(t)

=



0 0 0 0 0 0
0 − 1

τhp
0 0 0 0

0 0 −UA+Ki
Ci

Ki
Ci

0 0

0 0 Ki
Cw/2

−Kw+Ki
Cw/2

Kw
Cw/2

0

0 0 0 Kw
Cw/2

−Ke+KwCw/2
0

0 0 0 0 0 −Utes
Ctes


︸ ︷︷ ︸

Ampn


Ebat(t)
Qhp(t)
Ta(t)
Tw,i(t)
Tw,e(t)
Ttes(t)


︸ ︷︷ ︸
xmpn(t)

+



ηch − 1
ηdch

0 0 0 0 0 0

0 0
Khp
τhp

0 0 0 0 0

0 0 0 1
Ci

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

Ctes
− 1
Ctes


︸ ︷︷ ︸

Bumpn



P1bat(t)
P2bat(t)
Php(t)
Phtg(t)
P1grid(t)
P2grid(t)
P1tes(t)
P2tes(t)


︸ ︷︷ ︸

umpn(t)

+



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 UA

Ci
0 0 0 0

0 1
Cw/2

0 0 0 0 0
1

Cw/2
0 Ke

Cw/2
0 0 0 0

0 0 0 Utes
Ctes

0 0 0


︸ ︷︷ ︸

Bdmpn



Qsun1(t)
Qsun2(t)
Text(t)
Troom(t)
Pncle(t)
Ppv(t)
Pnclt(t)


︸ ︷︷ ︸

dmpn(t)

(60)

Where, P1grid and P2grid are the grid power (from MPN to grid and from grid
to MPN) in W. Pncle is the non-controllable load in electric carrier in W. Ppv
is the photovoltaic power in W. Pnclt is the non-controllable load in thermal
carrier in W. Other symbols and subscripts were presented in sections 4.1 and
4.2. They are not mentioned here for conciseness.

4.4. Multi-Prosumer Node power balance

MPN power balance is formed of power balance from carrier one and carrier
two, it is described by to equation (61).
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[ 0
0 ] = [ 0 0 0 0 0 0

0 1 0 0 0 0 ]︸ ︷︷ ︸
Exmpn


Ebat(t)
Qhp(t)
Ta(t)
Tw,i(t)
Tw,e(t)
Ttes(t)


︸ ︷︷ ︸
xmpn(t)

+
[−1 1 −1 −1 −1 1 0 0

0 0 0 0 0 0 −1 1

]︸ ︷︷ ︸
Eumpn



P1bat(t)
P2bat(t)
Php(t)
Phtg(t)
P1grid(t)
P2grid(t)
P1tes(t)
P2tes(t)


︸ ︷︷ ︸

umpn(t)

+

[
0 0 0 0 −1 1 0
0 0 0 0 0 0 −1

]︸ ︷︷ ︸
Edmpn



Qsun1(t)
Qsun2(t)
Text(t)
Troom(t)
Pncle(t)
Ppv(t)
Pnclt(t)


︸ ︷︷ ︸

dmpn(t)

(61)

4.5. Simulation models
In order to experiment the control based on MPN and EMPC, a realistic

model is considered within the Simulink framework, especially involving Sim-
scape [39]. Control and simulation models are split according to figure 7. The
battery considered is based on the Power System battery model as in [38]. Ther-
mal storage model is built with Simscape [39], further building model is also
built with toolbox Simscape. The converter simulation model is built as a trans-
fer function block of Simulink. Simulink solver used to perform the simulation is
ode4 (Runge-Kutta) with a fixed-step of 0.1s, also, no local solver configuration
is applied with Simscape models. Thus, simulation is performed with an Intel
Xeon Gold, Windows 10 and Matlab/Simulink version R2018a.

Control of the system:

MPN and EMPC with 

Yalmip

Simulation models 

with Simscape

Control inputsStates reading

Simulation

Figure 7: Links between control and simulation models.

In real life, the box ”simulation models” is replaced by the real MES, and
control is performed thanks to a remote computing machine involving MPN

21



model and EMPC. This controller computes the actuators’ input from the cur-
rent MES state available from sensors and overall policy elements.

4.6. EMPC tuning

The control is composed of MPN, detailed in section 4, and EMPC presented
in section 3. Models are discretised with Matlab command c2d with bilinear
Tustin method. However, the discretisation with c2d is not applied to the
battery model but its discretisation state-space is taken from equation (55).
The optimisation problem is linear and is implemented in Yalmip [40]. Solver
used is CLP [41] with interior point method (barrier), and maximum number of
iterations is modified to 10000. EMPC is solved with a horizon of 24 hours, and
a step time of 5 minutes, which gives 288 steps. The EMPC dynamic models
are discretised with 5 minutes sample times and all state and predictions are
perfectly known. The parameters of MPN models calculated by equation (60)
can be seen in table 2, and EMPC constraints can be seen in table 3.

Table 2: Parameters of MPN state-space models.

Parameters Data
τhp 2 min, from [32]
Khp 3, assumed
Ci 277611 J K−1

Cw 61839000 J K−1

Ke 3183 W K−1

Kw 25.03 W K−1

Ki 3183 W K−1

UA 55 W K−1, assumed
Utes 3.31 W K−1

Ctes 837000 J K−1

{ηch, ηdch} 0.9, assumed
Troom 15 ◦C, assumed

Table 3: EMPC constraints.
Minimum Parameters Maximum

0 W {P1bat, P2bat} 1.1 kW
0 W {P1grid, P2grid} 20 kW
0 W Php 3.5 kW
0 W Phtg 9 kW
0 W {P1tes, P2tes} 24 kW

0.33 kW h−1 Ebat 3.3 kW h−1

20 ◦C Tbuil 28 ◦C
55 ◦C Ttes 75 ◦C
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4.7. Case study properties

House floor area is equal to 95m2, wall and insulation thickness are respec-
tively 0.1m and 0.4m. Moreover, wall height is 2.5m and rated electric heater is
1.5kW, see table 4. Thermal storage and heat pump are assumed to be installed
in a cellar with constant temperature and constant water supply, these lead to
constant ambiant temperature for these systems. The time response and coef-
ficient of performance of the heat pump are taken from [32]. Building thermal
parameters can be seen in table 2. Heat transfer is calculated once and it is
assumed constant during the simulation. Also, glass windows of the building are
assumed to be 5m2 and Qsun1 pass across the windows area. Thermal storage
is assumed to be a 200L capacity, see table 4, and the thermal leakage resis-
tance is calculated with a heat transfer of 0.6W m−2 K−1 taken from [42]. The
battery system parameters are derived from the manufacturer’s data [43], rated
energy is 3.3kW h−1, see table 4. Grid power constraints are derived from [44].
Furthermore, the slack price of the slack variable is equal to 1× 1015.

The operating cost c is composed of the economic cost from energy swap
with grid (grid pricing). It is a cost when energy is imported denoted cgr and
it is a gain denoted vgr when energy is injected. c is equal to:

c(k) = cu(k)ugr(k) (62)

cu(k) =
[
−vgr(k), cgr(k)

]
(63)

Grid pricing is composed of time-of-use (TOU) tariff, it is a time-varying price
with a peak rate and off-peak rate [45]. TOU is chosen in this study, because it
is used by many worldwide utilities as incentives in order to enable consumers
to be part of demand response programs [46, 47]. TOU tariff is defined by two
prices during a day, the first price is the high tariff with e15.79c per kW h from
6h30 to 22h30, and the second is low tariff with e12.28c per kW h from 22h30
to 6h30. These tariffs are taken from the regulated rate utilities in France [44].
The sell tariff of MPN energy keeps constant during all the day time by the price
of e10c per kW h, which is also taken from regulated rate utilities in France [48].
Grid tariffs are the same in all scenarios presented in this study.

Table 4: Related parameters of the real case application.

Parameters Data
Floor area 95 m2

Glass windows 5 m2

Wall thickness 0.1 m
Insulation thickness 0.4 m

Wall height 2.5 m
Thermal storage 200 L
Electrical storage 3.3 kW h−1

One electric heater power 1.5kW

23



4.8. Benchmarks

In order to assess MPN performance, two benchmarks were built for the sake
of comparison. The first benchmark is made of three separate control procedures
and it focused on charging the battery when photovoltaic energy is produced.
The second benchmark is also composed of three control strategies similar to the
benchmark I. However charging process of both electric and thermal storage are
modified in order to maximising self-consumption of energy when it is produced
by photovoltaic generators.

4.8.1. Benchmark I

The first benchmark has three controls designed to handle house temper-
ature, hot water storage and battery respectively. Each of these controls are
working separately as described below:

• The temperature of the house is regulated invariably at 20◦C, with a PI
controller.

• Hot water storage regulation is active in case of an incentive grid tariff
while the heat pump remains off when the grid tariff is high. A bang-bang
controller is used (also called on-off controller [49]) with a hysteresis at
the set-points from 73◦C till 75◦C.

• The battery is charged when solar power generation is available and dis-
charged otherwise, if loads request power. The solar production is dis-
patched first to the battery, second to the loads and finally to the grid.
This control is replicated from industrial self-consumption kit which they
are commercially available nowadays [50, 51].

4.8.2. Benchmark II

The second benchmark has three controls to handle house temperature, hot
water storage and battery. Additionally, hot water storage and battery are
working with photovoltaic generators:

• The temperature of the house is regulated invariably at 20◦C, with a PI
controller.

• Hot water storage regulation is active in case of an incentive grid tariff and
photovoltaic energy production, while the heat pump remains off when the
grid tariff is high and photovoltaic energy is no longer available. A bang-
bang controller is used (also called on-off controller [49]) with a hysteresis
at the set-points from 73◦C till 75◦C.

• The battery is charging when solar power generation is available and dis-
charging in the case of power requested by the loads.

• The solar production dispatches to: first the loads, second the battery,
third the thermal storage and fourth the grid.
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4.9. Simulation scenarios

In this research, two scenarios have been studied, namely, 1-winter and 2-
summer day. Winter day has been studied due to its importance, as the weather
is cold, photovoltaic generation is low and energy demand is high. By contrast,
in a typical summer day, it is expected that the energy demand is lower and
photovoltaic energy is more available. In this study, loads data are taken from
CREST model, this model is able to deliver heat and electricity simulation data
for housing in minute scale from Leicestershire in England [52]. Sun’s radiation
and outside temperature are taken from HELIOCLIM-3 archives [53]. For the
sake of consistency with the CREST model, the location of HELIOCLIM-3 data
was specified at Leicestershire. It should be noted that the simulation was run
for 48 hours and divided to two equal periods of 24 hours: the first 24 hours
data were run in order to stabilise the building model and the second 24 hours
data are reported in this paper.

5. Results

Plots in figures 8, 9 and 10 have right and left ordinates. The left ordinate in
black corresponds to data in black and right ordinates in red with data in red.
Furthermore, the legend is displayed for each subplot. Finally, filigrees highlight
information discussed in the results section and help to focus on selective time
windows. These three figures focus on the winter scenario.

Figure 8 depicts the results from benchmark I. The first three plots depict
input data, figures 8.a, 8.b and 8.c. It can be noticed (figure 8.d) that the
building temperature Ta Bench.I remains constant over time.

Moreover, blue filigrees from 27h to 27.35h, 28.26h to 28.8h and 46.5h to
47.14h highlight the increasing thermal storage temperature (Ttes Bench.I, fig-
ure 8.f). It climbs to 75◦C. Also, Ttes Bench.I, at 24 hours is equal to 75◦C.
The thermal storage temperature is loaded in accordance to the second con-
troller built with a bang-bang controller which is on when the grid tariff is low.
The thermal temperature is heated up to maximum temperature and the control
did not reduce heat losses.

Furthermore, it can be seen from 32.68h to 39.88h (highlighted in red fili-
gree), that photovoltaic power is available, 8.a. Three main events are visible:

• At the beginning of the period, from 32.68h to 36.78h, the PV production
is used to charge the battery, figure 8.g.

• From 36.78h to 39.88h, the PV production powered the heating system,
figure 8.d, or even sold only when the battery SOCbat Bench.I is fully
charged, figure 8.g and Pgr Bench.I is lower than 0W, figure 8.e. In ad-
dition, the power heating system Phtg Bench.I gradually decreased when
the sun heated the building Qsun1, figure 8.d and figure 8.a.

• After 39.88h, PV power is not available anymore, the battery is discharged,
figure 8.g, and the imported energy from the grid is null. In addition, when
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Figure 8: Simulation results with benchmark I. Figure 8.a depicts photovoltaic power Ppv

and sun heat Qsun1. Figure 8.b depicts non-controllable loads from electric carrier Pncle and
thermal carrier Pnclt . Figure 8.c depicts grid cost cgr and outdoor temperature Text. Figure
8.d depicts indoor air temperature Ta and building heating power Phtg . Figure 8.e depicts
grid power Pgr. Figure 8.f depicts thermal storage temperature Ttes and converter delivery
heating Qhp. Figure 8.g depicts battery stored energy as state of charge SOCbat.
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Figure 9: Simulation results with benchmark II. Figure 9.a depicts photovoltaic power Ppv

and sun heat Qsun1. Figure 9.b depicts non-controllable loads from electric carrier Pncle and
thermal carrier Pnclt . Figure 9.c depicts grid cost cgr and outdoor temperature Text. Figure
9.d depicts indoor air temperature Ta and building heating power Phtg . Figure 9.e depicts
grid power Pgr. Figure 9.f depicts thermal storage temperature Ttes and converter delivery
heating Qhp. Figure 9.g depicts battery stored energy as state of charge SOCbat.

no energy is available inside the battery, energy is imported from the grid
(it started at 42.61h), figure 8.e.

This behaviour is in strict accordance with the Bench.I controller presented
in section 4.8. Here, the lack of anticipation for Bench.I leads to request energy
from the grid even when the tariff is higher. The benchmark I did not anticipate
the energy cost variations.

Figure 9 depicts the results from the Bench.II. The first three plots depict
input data, figures 9.a, 9.b and 9.c. Same behaviour as Bench.I is observed
from the building temperature Ta Bench.II, figure 9.d, and the thermal storage
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Figure 10: Simulation results with MPN. Figure 10.a depicts photovoltaic power Ppv and sun
heat Qsun1. Figure 10.b depicts non-controllable loads from electric carrier Pncle and thermal
carrier Pnclt . Figure 10.c depicts grid cost cgr and outdoor temperature Text. Figure 10.d
depicts indoor air temperature Ta, wall temperature Tw,i and building heating power Phtg .
Figure 10.e depicts grid power Pgr. Figure 10.f depicts thermal storage temperature Ttes and
converter delivery heating Qhp. Figure 10.g depicts battery stored energy as state of charge
SOCbat.

temperature Ttes Bench.II, figure 9.f. However, compared to Bench.I when the
PV power is available, figure 9.a, highlighted in red filigree, the grid power, and
the battery SOCbat Bench.II, are not the same, figures 9.e, 9.g. The PV power is
first used to power the loads rather than to charge the battery. This behaviour
is in exact accordance with the Bench.II controller presented in section 4.8.
Also, when the PV power is higher than the loads, the energy is used to charge
the battery. Here, Bench.II did not anticipate the cost variation like Bench.I.
However, compared to Bench.I, it reduced the exported energy to the grid and
reduced battery usage.
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Figure 10 depicts the output results from the MPN introduced in this work.
The first three plots depict input data, figures 10.a, 10.b and 10.c. From 28.9 to
30.5h, we can first observe a huge power consumption from the grid, Pgr MPN,
figure 10.e and blue filigree. 30.5h is the end of the low tariff period. During
this period, this consumption is over 9kW (Fig. 10.d):

• Part of these power is dedicated to complete battery charging SOCbat
MPN, figure 10.g;

• 9kW are dedicated to the heating system to overheat the air in the build-
ing that reaches 24◦C while the set point is 20◦C, Phtg MPN, Ta MPN,
figure 10.d. Note that 9kW is the maximum constraint of Phtg MPN, see
table 3;

• TES was charged through the use of heat pump Qhp MPN, explaining the
output power peak of 10kW at the end of the low grid tariff, figure 10.f.
The output power peak appeared just before the end of low grid tariff
allowed to minimise TES heat loss and it reduces economic cost.

This behaviour of EMPC is due to prediction capabilities and 24 hours ahead
of time horizon that leads to anticipate the grid tariff variations: when the grid
tariff is low, EMPC stores energy to reduce energy consumption from the grid
when the tariff is higher. In that view, EMPC controls the building temperature
Ta MPN and overheats the building. Then, heat is stored through thermal
inertia of the walls when the grid tariff is low and is released during the rest of
the day when the grid tariff is high. The idea to use building thermal inertia
is usually employed in order to reduce heat cost [54]. Whereas, since Bench.I
and Bench.II had not the prediction capabilities and they did not overheats the
building.

Moreover, Ta MPN decreased dramatically when Phtg MPN dropped to 0W,
figure 10.d right after 30.5h. This drop has happened because the air inertia
is smaller than the wall inertia. When the building air is overheated, the walls
are heated by the surrounding air, but their temperature, Tw,i MPN, increased
moderately over 20◦C, figure 10.d. It remains colder than the air. When the
heater stops, the heat flow is reversed that means the wall heats the air. This
behaviour can be reduced by different heating system where Phtg is leaked to
Tw,i, rather than connected to air node Ta, figure 6.

Besides, we can observe that non-controllable loads Pncle achieved 2kW
sometimes, highlighted in yellow filigree, figure 10.b. At the same time, SOC
of batteries SOCbat is decreased, and small peaks in the power demand on the
grid Pgr MPN, figure 10.g, 10.e and yellow filigree. As a result, loads is powered
both by the batteries and the grid. The resort to the grid is only due to the
battery power limitation at 1.1kW (table 3). On the contrary, in the case of
Bench. I and II, only the grid provides power at these periods, since the bat-
tery is discharged. Here again, EMPC anticipated the resort to the battery by
charging it when the tariff is low whereas the lack of anticipation for Bench. I
and II leads to request the grid even when the tariff is higher.
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PV power Ppv is not null from 32.68h to 39.88h, highlighted in red filigree,
figure 10.a. Two main events are visible:

• From 32.68h to 33.58h, PV power is smaller than the loads power Pncle
and the battery or the grid brought out additional power, figure 10.g and
10.e. As a result, SOCbat MPN is decreased, figure 10.g.

• From 33.58 to 39.88h, PV power is higher than the loads. Power is sent
off in the heating system Phtg MPN, from 33.8h to 38h, or in the heat
pump Qhp MPN, figure 10.d and 10.f. In the meantime, the grid power
Pgr MPN remained null and battery SOCbat MPN is not fully charged,
figure 10.e and 10.g.

In MPN case, PV production is used to powered the non-controllable loads,
overheating the building or heat the TES, instead of selling energy to the grid
or storing it in the batteries in the way as Bench.I and Bench.II did. This
behaviour reduces energy loss from battery charging and discharging and MPN
allocates energy efficiently compared to benchmarks.

Finally, from 24h to 30h, Ttes MPN plateaued at the lower constraint, 55◦C
(table 3), figure 10.f. Moreover, from 30h to 30.5h, thermal storage is heating
up, but the thermal storage temperature from MPN didn’t reach the maximum
temperature (75◦C), figure 10.f. 30.5h is the end of the low tariff period. Fur-
thermore, thermal loads Pnclt (figure 10.b) are offset during the simulation, it
is visible at 27h, 32.42h and 46.58h with Qhp MPN greater than 0 during that
time, figure 10.f. In MPN case, TES temperature is low in order to minimise
heat loss and to reduce economic cost. The among of energy losses by TES for
benchmarks and MPN during the simulation is shown in table 5. This behaviour
is due to prediction capabilities and 24 hours ahead of time horizon that leads
to anticipate the TES loss, the PV power, the loads and the tariff variations.

Table 5: Energy losses by TES.

Case Data Gain Percent
Bench.I 10.52kWh - -
Bench.II 10.52kWh 0 0

MPN 9.89kWh 0.63kWh 5.99%

Table 6 depicts economic results comparison for simulations, MPN and
benchmarks. It shows that MPN has the lowest economic cost by the price
of e4.104, meanwhile Bench. I has the highest cost for this winter day scenario
with e4.471. MPN and EMPC reduced cost by 8.21% compared to Bench. I.
Then, tables 6 depicts grid energy swap from MPN and benchmarks. MPN
extracted more energy than benchmarks with 32.09kW h. Furthermore, the
lowest amount of energy extracted from the grid is achieved by Bench. II with
31.37kW h. In addition, it can be seen from table 6 that Bench. I has injected
to the grid more energy than MPN and Bench. II with 0.6014kW h. Finally,
the lowest amount of energy injected to the grid is achieved by MPN with

30



Table 6: Winter scenario results.
Balance sheet Gain Percent

Benchmark I e4.471 – –
Benchmark II e4.402 e0.069 1.54%

MPN e4.104 e0.367 8.21%
Energy imported Gain Percent

Benchmark I 31.88kWh – –
Benchmark II 31.37kWh 0.22kWh 0.7%

MPN 32.09kWh – 0.04kWh – 0.12%
Energy injected Gain Percent

Benchmark I 0.6014kWh – –
Benchmark II 0.4872kWh 0.1142kWh 18.99%

MPN 0.2532kWh 0.3482kWh 57.9%
Self-consumption Self-production

Benchmark I 93.07 % 13.03 %
Benchmark II 94.38 % 14.41 %

MPN 97.08 % 14.4 %

0.2532kW h. This result is counter-intuitive, because MPN has reduced income
from selling energy to the grid. However the overall cost is reduced. This result
is explained by self-consumption and self-production rates. They are calculated
based on:

Self-consumption = 100× Energy produced− Energy injected

Energy produced
(64)

Self-production = 100× Energy consumed− Energy imported

Energy consumed
(65)

According to self-consumption, Bench. I has the lowest self-consumption index
with 93.07% and MPN has the highest self-consumption index with 97.08%. Ac-
cording to self-production index, Bench. I has the lowest index with 13.03% and
Bench. II has the highest index with 14.41%. However Bench. II is followed
closely by MPN with 14.4%. MPN and EMPC have capability to conjointly
increase self-production and self-consumption, while keeping economic perfor-
mance optimised. When self-production and self-consumption are increased,
dependence from grid is reduced and energy is consumed close to energy gener-
ators.

Table 7 depicts results from the second scenario. This scenario is directly
related to a summer day with more solar production and less consumption than
winter day. It can be seen that the MPN solution provides the lowest economic
cost with e0.049 compared to benchmarks. Both the imported and injected en-
ergies are reduced using the MPN solution with the lowest amount of imported
energy (3.568kW h) and the lowest amount of injected energy (4.455kW h). Fur-
thermore, it increases self-consumption up to 86.35% and self-production 67.29%
compared to benchmarks. These results are consistent with the winter scenario,
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the MPN (using EMPC) having capability to reduce dependency from grid.

Table 7: Summer scenario results.
Balance sheet Gain Percent

Benchmark I e0.3111 – –
Benchmark II e0.074 e0.2371 76.21%

MPN e0.049 e0.2621 84.24%
Energy imported Gain Percent

Benchmark I 7.057kWh – –
Benchmark II 4.372kWh 2.685kWh 38.05%

MPN 3.568kWh 3.489kWh 49.44%
Energy injected Gain Percent

Benchmark I 6.812kWh – –
Benchmark II 5.11kWh 1.702kWh 33.30%

MPN 4.455kWh 2.357kWh 34.6%
Self-consumption Self-production

Benchmark I 79.57% 37.44%
Benchmark II 84.68% 61.63%

MPN 86.35% 67.29%

6. Conclusion

A MPN based solution was proposed in this work to cope with drawbacks
from prosumer node and EH. The case study dealt with MES made of elec-
tric and thermal carriers. Carriers coupling was done through a heat pump
converting electricity in to thermal energy. Moreover, electric carrier had grid
connection while thermal carrier did not. The proposed MPN and simulation
resultshave shown that:

• MPN is able to model MES dynamics and multiple energy carriers are
considered;

• MPN is able to model MES without using conversion factors for energy
carriers. The conversion relies on devices models;

• MES dynamics bring variable coupling between energy carriers and may
support satisfactorily minute scaled optimisation;

• The proposed methodology conveniently applies to MES models based on
two energy carriers, to be controlled by EMPC;

• MPN can deal with on-grid and off-grid connection, and power flow is
bidirectional from MPN to grid or grid to MPN.

In order to assess MPN performance, two benchmarks have been proposed
to be compared to MPN with EMPC. In terms of economic performance, it
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is observed that in the simulation scenario, MPN with EMPC decreased eco-
nomic cost compared to the benchmarks, with a cost cut of 8.21% compared to
benchmark I. Cost decrease has been performed thanks to:

• EMPC performs optimisation whilst prediction from disturbances (loads,
photovoltaic power, temperature) are taken into account;

• The proposed MPN deals with system dynamic whilst different energy
carriers are taken into account with state-space model and power balance;

Concerning self-producer index, MPN has gained the best rates compared
to benchmarks I and II. In terms of energy imported, MPN imported more
energy to the grid compared to benchmarks, however, this is balanced out with
less energy injected to the grid by the MPN compared to benchmarks. These
results show that better economic results can be achieved with more imported
energy compared to benchmarks.

However, some opened issues still remain. The present work has some lim-
itations as it relies on models’ assumptions. Indeed, it uses power balance
and energy approach; this brings restrictions because the electric carrier could
be more precisely described in terms of current and voltage, and the thermal
carrier, in terms of mass flow, temperature and pressure. Secondly, the ap-
proach is limited to minute scale energy flow optimisation and is not suited
for second scale control systems (less than minute scale) because of the power
balance and energy approach. Third, energy devices like a heat pump, battery,
thermal storage, thermal building are highly non-linear. In this study, linear
first-order models were used to model them. Future works will focus on physical
MES’ modelling together with the MPN framework in order to overcome power
modelling limitations. In addition, model uncertainties and suitable EMPC
algorithm should be studied to handle uncertainties in the MPN framework.
Also, hierarchical control should be investigated with aiming to get a regulatory
control and multi-time scale optimisation.
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[40] Löfberg, J.: ‘YALMIP : a toolbox for modeling and optimization in
MATLAB’, Proc. IEEE International Symposium on Computer Aided
Control Systems Design, Taipei, Taiwan, September, 2004, pp. 284–289,
10.1109/CACSD.2004.1393890

[41] Lougee-Heimer, R.: ‘The Common Optimization INterface for Operations
Research: Promoting open-source software in the operations research com-
munity’, IBM Journal of Research and Development, 2003, 45, (1), pp. 57–
66, 10.1147/rd.471.0057

[42] Knudsen, M., D., Petersen, S.: ‘Model predictive control for demand
response of domestic hot water preparation in ultra-low temperature
district heating systems’, Energy and Buildings, 2017, 146, pp. 55–64,
10.1016/j.enbuild.2017.04.023

[43] ‘LG chem RESU 3.3’, https://www.sharp.co.uk/cps/rde/xchg/gb/hs.xsl/-
/html/product-details-batterie-solutions-2219.htm?product=LGCHEMRESU33,
accessed August 2018

37



[44] ‘Tarif Bleu EDF’, https://particulier.edf.fr/fr/accueil/offres/electricite/tarif-
bleu/option-heures-creuses.html, accessed August 2018

[45] Boßmann, T., Eser, E., J.: ‘Model-based assessment of demand-response
measures—A comprehensive literature review’, Renewable and Sustain-
able Energy Reviews, 2016, 57, pp. 1637–1656, 10.1016/j.rser.2015.12.031

[46] Shariatzadeh, F., Mandal P., Srivastava A., K.: ‘Demand response for
sustainable energy systems: A review, application and implementation
strategy’, Renewable and Sustainable Energy Reviews, 2015, 45, pp. 343–
350, 10.1016/j.rser.2015.01.062
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