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Abstract :   
 
The development of methods to automatically determine the chemical nature of microplastics by FTIR-
ATR spectra is an important challenge. A machine learning method, named k-nearest neighbors 
classification, has been applied on spectra of microplastics collected during Tara Expedition in the 
Mediterranean Sea (2014). To realize these tests, a learning database composed of 969 microplastic 
spectra has been created. Results show that the machine learning process is very efficient to identify 
spectra of classical polymers such as poly(ethylene), but also that the learning database must be 
enhanced with less common microplastic spectra. Finally, this method has been applied on more than 
4000 spectra of unidentified microplastics. The verification protocol showed less than 10% difference in 
the results between the proposed automated method and a human expertise, 75% of which can be very 
easily corrected. 
 
 

Highlights 

► A machine learning algorithm was developed to determine the chemical nature of microplastics. ► 
This method allows a fast and reliable automated identification even when several thousand of FTIR 
spectra have to be studied.► This method is the first part of a software dedicated to the study of 
microplastics: POSEIDON. 
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than 4,000 spectra of unidentified microplastics. The verification protocol showed less than 10% 24 

difference in the results between the proposed automated method and a human expertise, 75% of 25 

which can be very easily corrected. 26 

Keywords 27 

Microplastic, Tara Mediterranean campaign, FTIR spectra, Machine learning, k-nearest neighbor 28 

classification 29 

1. INTRODUCTION 30 

Pollution of the marine environment by plastics, and especially by microplastics (Thompson et al., 31 

2004), is the subject of an increasing number of studies (Barboza and Gimenez, 2015). Many 32 

expeditions have been carried out at sea (Brach et al., 2018; Dussud et al., 2018; Kanhai et al., 2017; 33 

Pedrotti et al., 2018, 2016), on lakes (Eriksen et al., 2013; Free et al., 2014; Imhof et al., 2013) or in 34 

the ice pack (Obbard et al., 2014; Peeken et al., 2018) to determine the state of contamination of the 35 

environment. Among the parameters studied on these particles, the chemical nature of microplastics 36 

is increasingly determined (Gewert et al., 2017; Imhof et al., 2017; Löder and Gerdts, 2015; Qiu et al., 37 

2016; Wang et al., 2017). As the number of particles to be analyzed can range from several hundred 38 

to several thousand (Falcou-Préfol et al., 2018; Pedrotti et al., 2018, 2016), it is necessary to develop 39 

methods for efficient microplastics analysis (Kedzierski et al., 2019). When determining the chemical 40 

nature of samples, methods based on thermal degradation as pyrolysis-gas chromatography in 41 

combination with mass spectrometry (GC/MS) are fast and efficient (Dümichen et al., 2017, 2015; 42 

Gimeno et al., 2015). Nevertheless, this type of method results in the destruction of the analyzed 43 

sample (Primpke et al., 2018) which is considered as a limitation in the study of microplastics (Rocha-44 

Santos and Duarte, 2015). Indeed, with this type of analysis, important parameters such as the size 45 

distribution, particle mass or the plastisphere are lost (Amaral-Zettler et al., 2015; Dussud et al., 46 

2018; Frère et al., 2018; Primpke et al., 2018; Zettler et al., 2013). Furthermore, in the case of large 47 

sampling campaigns, the samples, taken at a given location and time, are unique and must be 48 
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preserved over the long term in library. Thus, destructive analyses must be kept to a strict minimum. 49 

Other methods, based on Raman (Frère et al., 2016; Imhof et al., 2017, 2012; Lenz et al., 2015; Zhao 50 

et al., 2017) or Infrared (IR) spectroscopy (Ioakeimidis et al., 2016; Löder and Gerdts, 2015; Primpke 51 

et al., 2018, 2017), have shown their efficiency for the identification of the chemical nature of 52 

microplastics. However, the analysis of the spectra is time-consuming and can be a source of 53 

misinterpretation (Elert et al., 2017; Käppler et al., 2016; Löder et al., 2015; Primpke et al., 2018). It is 54 

indeed often necessary to compare one by one the different spectra obtained with reference 55 

spectra. Moreover, a significant part of misinterpretations is due to the fact that, during the aging of 56 

the plastics, additional bands appear on spectra (Albertsson et al., 1995; Andrady, 2017; Fotopoulou 57 

and Karapanagioti, 2012; Küpper et al., 2004). This phenomenon also become noticeable because of 58 

the fouling present on particles (Howe et al., 2002; Maquelin et al., 2002; Sudhakar et al., 2007). 59 

However, the reference spectra are made on new and clean plastics. Thus, an aged plastic is 60 

sometimes matched to the spectrum of a reference plastic due to the fact that this reference plastic 61 

has characteristic bands similar to those which appear during plastic aging. So, the greater the weight 62 

of the bands associated with aging and fouling, the more automated interpretation based on new 63 

and clean reference plastics may diverge from the actual nature of the polymer. 64 

The development of methods to automatically determine the spectra of microplastics is therefore an 65 

important challenge of the coming years. Very recent publications began to take an interest in the 66 

issue and proposed answers. In 2017, an automated method based on the identification of the most 67 

relevant bands was tested (Renner et al., 2019, 2017). In 2018, an automated identification method 68 

based on hierarchical cluster analysis was published (Primpke et al., 2018). More recently a new 69 

method based on Random Decision Forest was proposed (Hufnagl et al., 2019). 70 

These three methods have shown a high degree of spectrum identification. However, other 71 

approaches are possible and have not been yet tested for the recognition of microplastic spectra. 72 

This is the case, for example, of methods belonging to the machine learning family which are quite 73 
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commonly used in the field of spectrometry and are known to give good results (Wehrens, 2011). 74 

Recently, a machine learning process has been successfully used on the determination of the 75 

chemical nature of microplastics (Hufnagl et al., 2019). Among these methods, one of them, called K-76 

Nearest Neighbors (KNN), is known for its simplicity and efficiency in automated spectrum 77 

recognition (Ripley, 1996; Venables et al., 2002; Wehrens, 2011). The originality of this work is the 78 

test of this machine learning method in the context of the study of microplastics. This project is part 79 

of the Tara Expedition in the Mediterranean Sea (2014). Tara Foundation is a French non-profit 80 

organization acting for the environment since 2003. In 2014, Tara Expedition conducted sampling for 81 

7 months across the Mediterranean Sea. The objective of this expedition was to characterize 82 

microplastic contamination in order to better describe the effects of plastic litter on marine 83 

ecosystems. In particular, the Tara Mediterranean consortium is trying to evaluate the spatial 84 

distribution of floating debris in the Mediterranean Sea, to chemically characterize the different 85 

types of plastics and to characterize bacteria communities (Dussud et al., 2018) as well as the micro- 86 

and macro-organisms fixed on these plastic particles (Pedrotti et al., 2018). The scientific knowledge 87 

provided by this project will allow in the long run to better target the actions to be taken to reduce 88 

contamination by plastic waste in the Mediterranean Sea. In this context, the development of an 89 

automated spectrum identification tool would facilitate the analysis of microplastics collected during 90 

the expedition. This study therefore attempted to answer the following questions: can k-nearest 91 

neighbors classification method be used for the automated identification of the chemical nature of 92 

the FTIR spectra of microplastics? What is the origin of the misinterpretations and how could they be 93 

reduced? Finally, this method was applied for the analysis of more than 4,000 microplastic spectra. 94 

2. MATERIALS AND METHODS  95 

2.1. Sample collection 96 

Microplastic samples were collected from Mediterranean Sea waters during the Tara Expedition 97 

which was conducted between May and November 2014. Sampling was conducted using a 4.4 m long 98 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

manta net (mesh size: 333 µm; net opening: 16 x 60 cm), from 120 sites which were selected based 99 

on ocean color satellite images supplied by ACRI-ST and analyzed with the Mercator circulation 100 

model (Fig. 1). Geographical coordinates and dates of sampling analyzed are available at Pangea Data 101 

Publisher http://www.pangaea. At each site, the manta net was towed on the sea surface for ca. 60 102 

min behind the boat at an average speed of 2.5 knots, enabling thus the filtration of about 507 m
3
 of 103 

seawater. 104 

 105 

Fig. 1. Sampling effort during the Tara campaign in the Mediterranean Sea. Ocean Data View 106 

(Schlitzer, 2015). 107 

2.2. Laboratory preparations and subsampling 108 

Under dissecting microscope, preserved organic material was removed from microplastics. Particles 109 

were then counted and measured using the ZooScan image analysis method at the Laboratoire 110 

d’Océanographie de Villefranche-sur-Mer (LOV, Villefranche-sur-Mer, France) (Pedrotti et al., 2016). 111 
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A total of 13,374 particles, larger than 315 µm from 42 mantas trawls, were then transferred to 96-112 

well microplates and named with a unique identifier at the Institut de Recherche Dupuy de Lôme 113 

(IRDL, Lorient, France) (Kedzierski et al., 2019). To perform the tests of the machine learning method, 114 

3,090 particles were randomly selected. For samples M14 (767 particles) and M23 (207 particles), the 115 

particles were entirely analyzed during a previous study (Falcou-Préfol et al., 2018; Kedzierski et al., 116 

2019). Therefore, a total of 4,064 spectra, performed on the samples of Tara Expedition, were used 117 

in the study. The particles chosen for analysis came mainly from M14 (762 particles; 18.9%), M8 (289 118 

particles; 7.1%), M209 (272 particles; 6.7%), M25 (212 particles; 5.2%) and M23 (207 particles; 5.1%), 119 

all sampled in the Ligurian sea (Fig. 2.A). 120 

 121 

 122 

Fig. 2. Characteristics of the data used. A) Origin of the spectra available for the study (%). B) Origin 123 

of the spectra used for the machine learning database (%). C) Proportions (%) of the different classes 124 

of the machine learning database. 125 
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 126 

The preparation step was performed in an area dedicated to the treatment of Tara Mediterranean 127 

Sea samples in controlled conditions (chemical laboratory). Contamination risks were avoided during 128 

the sample preparation stage by cleaning the different parts of the apparatus, especially glassware, 129 

with distilled water, ethanol and/or acetone. The use of plastic apparatus was avoided as far as 130 

possible. If this was impossible, the Fourier-transform infrared spectroscopy (FTIR) spectra from 131 

these materials were obtained to check whether potential contamination of the samples had 132 

occurred. 133 

2.3. Fourier-transform infrared spectroscopy (FTIR)  134 

The spectra of the particles were acquired using a non-destructive Attenuated Total Reflection 135 

Fourier Transform Infrared spectrometer (ATR-FTIR Vertex70v, Bruker). All spectra were recorded in 136 

absorbance mode in the 4,000-600 cm
-1

 region with 4 cm
-1

 resolution and 16 scans. Each particle was 137 

placed onto the germanium diamond cell (ATR Golden Gate) used to obtain a better quality 138 

spectrum. After each analysis by ATR-FTIR, the sample holder was cleaned with ethanol or acetone. 139 

The sample chamber was also cleaned out with a vacuum cleaner after every sixty analyses. A total of 140 

4,064 particles was analyzed. 141 

2.4. Machine learning database 142 

The learning database consists of 969 spectra, with 64.4% of them came from the M14 and M23 sites 143 

already analysed during a previous study (Falcou-Préfol et al., 2018; Kedzierski et al., 2019) (Fig. 2.B). 144 

5.6% of the database's spectra were acquired from cigarette filters, based on cellulose acetate, 145 

collected on the beach of Toulhars (Larmor-Plage, France). The latter data were not part of the Tara 146 

Mediterranean campaign, but were used to complete and to test the learning database. The 147 

remaining 30.0% came from 22 different manta samples (Fig. 2.B). The spectra of the learning 148 

database were selected to represent the diversity present in the initial sample. In order to facilitate 149 

automated learning, "rare" spectra were systematically kept for the machine learning database while 150 
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more "common" spectra (mostly poly(ethylene) and poly(propylene)) were often discarded so as not 151 

unnecessarily slow down the learning process. As a result, "rare" spectra are over-represented in the 152 

machine learning database compared to more "common" spectra. The diversity of the database is 153 

currently representative of the diversity of plastic pieces found on the surface of the Mediterranean 154 

Sea. The database must be gradually enriched with new spectra such as PVC, PET, paints. 155 

Each of the 969 spectra were then compared with the OMNIC specta 2.0 software (Thermo 156 

Scientific). The reference database was the Hummel Polymer Sample Library. This library, developed 157 

by Professor Dieter Hummel of the Institute of Physics and Chemistry at the University of Cologne 158 

(Köln), included about 2,000 spectra of polymers, polymer impurities and additives. The software 159 

interpretation was then systematically validated or rejected and reinterpreted by a polymer expert. 160 

Thus, 17 classes were created (Fig. 2.C). The best represented class was poly(ethylene) (23.5%). It 161 

was closely associated with two other classes: "poly(ethylene) + fouling" (15.3%) and "poly(ethylene) 162 

like" (2.6%). The "poly(ethylene) + fouling" class was characterized by bands more or less intense 163 

between about 900 and 1,100 cm
-1

, as well as around 1,641 cm
-1

, which are not normally present on 164 

poly(ethylene) spectra. These bands can be associated with the presence of fouling on the plastic. 165 

The "poly(ethylene) like" class was characterized by the presence of one or more additional bands 166 

compared to a poly(ethylene) spectrum. The presence of these additional bands casted some doubts 167 

on the precise identification of the spectrum. It was therefore decided not to associate them directly 168 

with the "poly(ethylene)" class. The “poly(propylene)” class was the second well represented class 169 

with 20.1% of microplastics. This class was very similar to that of "poly(propylene) like" since it 170 

included spectra with the same bands as those of “poly(propylene)”, but with supernumerary bands. 171 

The classes of "poly(styrene)", "cellulose acetate", "ethylene-propylene rubber", "poly(ethylene-vinyl 172 

acetate)", "poly(methyl methacrylate)", "poly(amide)" and "poly(urethane)" were composed with 173 

spectra of the corresponding polymers. It should be noted here that ethylene-propylene rubber is a 174 

copolymer which has a spectrum sharing similar characteristics to those of the poly(ethylene) and 175 
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poly(propylene). If the ethylene/propylene ratio is low or very high, the distinction between 176 

poly(ethylene) or poly(propylene) and this copolymer can be confusing. Two classes were named 177 

morphotype 1 and 2. A “morphotype” was defined in this context as a set of spectra, numbering ten 178 

or more, with strong similarities, but for which the identification of the precise chemical nature 179 

remained unclear. This choice was made to describe and name new spectra, despite a chemical 180 

nature that remains not clearly identified at the time of the study. The last class, called "cellulose 181 

like" grouped all spectra showing strong similarities with cellulose. These spectra could therefore 182 

correspond to poorly sorted plant debris or plastics with a largely colonized surface. 183 

2.5. Spectra pre-processing and machine learning process 184 

All the programming was done using the software R i386 3.1.2 which is a free and open source 185 

software (The R Core Team, 2019). The pre-processing procedure of the infrared spectra was classic 186 

(Renner et al., 2019; Wehrens, 2011). Firstly, the baseline of the spectra was corrected using function 187 

“baseline()” (library “baseline”) and more particularly with the 4S Peak Filling baseline estimation 188 

procedure (Liland, 2015). This procedure, based on an iterative spectrum suppression consisting of a 189 

moving window minimum replacement, was chosen due to the fact that it is particularly adapted for 190 

non-linear baseline. The suggested starting values of the four parameters necessary for the function 191 

were respected (Liland, 2015). The second derivative penalty for smoothing (lambda) was equal to 4 192 

(centered in noise band). The number of buckets for subsampling (int) was equal to 176 (about 1/10 193 

of the number of wavelengths). The initial half width of windows used for suppression (hwi) was 194 

equal to 25. The number of iteration for suppression (it) was equal to 10. Finally, after the baseline 195 

correction, spectra were normalized. 196 

To test the process, the machine learning database was randomly divided: two third for the learning 197 

process and one third to test the process. The sampling was performed using the package “base” 198 

version 3.1.2 and the “sample()”  function (Becker et al., 1988; Ripley and Wiley, 1987). The machine 199 

learning process was performed using k-nearest neighbor classification (Ripley, 1996; Venables et al., 200 
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2002) of the “knn()” function (library “class”). This technique is based on the calculation of the 201 

distances between objects (Wehrens, 2011). The number of neighbor (k=10) was determined by 202 

recurrence. If the entire k-nearest neighbor belongs to the same class, the spectrum is directly 203 

identified; else a majority of vote is performed. If there are less than 3 votes, the spectrum is 204 

classified in the "unknown" category. Then, the model inspection was made with a confusion matrix 205 

(“confusionMatrix()” function; library “caret). The number of spectra well categorized (true positive; 206 

TP) or placed by the model in the wrong class (false negative; FN) were counted, as well as the 207 

number of spectra misclassified (false positive; FP) and well-classified (true negative; TN) in the 208 

predicted category. The sensitivity and the specificity were then calculated (Fawcett, 2006): 209 

����������� = 	
��

��
��
 (eq. 1) 210 

����������� = 	
��

��
��
 (eq. 2) 211 

In order to test the reliability of the proposed methodology, the automated learning was carried out 212 

1,000 times. Each time, a new set of training data was randomly drawn, each time leading to a 213 

slightly different training and therefore to results that may differ. The results presented are the 214 

averages with standard deviations calculated from these thousand tests. 215 

In order to highlight the origin of classification error, a representation of the confusion matrix was 216 

made using the “alluvial()” function (library “alluvial”) and a synthetic version was designed using 217 

Adobe Illustrator CS5. 218 

2.6. Identification of FTIR spectra with k-nearest neighbors classification and verification of the results 219 

At this stage, 3,095 FTIR spectra still needed to be analysed. For this purpose, the KNN method and 220 

the learning database were used.  221 

In order to test the accuracy of the final classification, a verification step was performed. This step 222 

was carried out for each of the identified classes in two sub-steps. First, a hierarchical cluster analysis 223 

was performed on all spectra of a same class (“hclust” function, centroid method). The number of 224 
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sub-clusters was estimated visually. A principal component analysis (PCA; “prcomp” function) was 225 

used to check whether or not the estimated number of sub-clusters was relevant. The objective here 226 

was to identify possible outliers. In a second step, the average spectrum of each subcluster 227 

generated was then calculated and verified. If the average spectra of a subcluster did not match the 228 

correct cluster, the spectrum or the spectra group was manually identified and possibly reallocated 229 

to another class. 230 

2.7. POSEIDON 231 

The computer programs developed on R software in this publication are integrated into a more 232 

global software called POSEIDON (Plastic pOllutionS ExtractIon, DetectiOn and aNalysis). POSEIDON is 233 

an under development (Beta version, 2018-2022) free and open source software (Supplementary 234 

material). It aims to integrate in a single tool functionalities developed on R software to help in the 235 

study of pollution by plastics.  236 

3. RESULTS AND DISCUSSION 237 

3.1. Test of the machine learning process 238 

The machine learning process test showed efficient learning (Fig. 3). Thus, based on the classification 239 

proposed by (Renner et al., 2019), nine classes were placed in the "working well" category (sensitivity 240 

greater than 75%). These included “poly(amide)”, “poly(propylene)”, “poly(styrene)” and “cellulose 241 

acetate” classes for which sensitivity and specificity were higher than 95%. For morphotypes 1 and 2, 242 

as well as for the “poly(ethylene)+fouling” class, the results were also very good with a sensitivity 243 

ranging between 87 and 90%. The results for the "ethylene-propylene rubber" class were slightly 244 

lower but the sensitivity remained on average above 75%. Four classes fell into the "working" 245 

category: “PEVA”, “poly(ethylene) like”, “cellulose like” and “poly(propylene) like”. Finally, the 246 

machine learning process did not work actually for four categories: “PMMA”, “poly(urethane)”, 247 

“poly(vinylchloride)” and “unknown”. 248 
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These results for “poly(ethylene)”, “poly(propylene)” and “polystyrene” were very similar to those 249 

obtained by Renner et al. (2017), with sensitivity values close to 100%. However, the KNN method 250 

showed higher results (100%) than Renner et al. (2017; 87.5%) and Primpke et al. (2018; 91%) for 251 

“polyamide” class. Nonetheless, the results of sensitivity for Renner et al. (2017; 50%), and especially 252 

for Primpke et al. (2018; 99%) were better for “poly(urethane)” class.  253 

These differences are mainly due to the difference in methodology and database. For example, in the 254 

particular case of "poly(urethane)", it is clearly a lack of spectra in the learning database that explain 255 

these poor results. The addition of poly(urethane) spectra collected at sea will quickly improve the 256 

results. However, this type of microplastic was relatively rare in the samples collected by Tara 257 

Expedition in the studied campaign. The contribution of other teams, that have already acquired this 258 

type of FTIR spectra, could be a solution to quickly improve the quality of the database.  259 

 260 

Fig. 3. Sensitivity (see eq. 1) as a function of 1-specificity (see eq. 2).   261 

3.2. Sources of errors 262 

The false negative (spectra placed in the wrong category) of the classes “poly(ethylene)+fouling”, 263 

“ethylene-propylene rubber”, and “poly(ethylene vinyl acetate)” were essentially related to spectra 264 

placed by the model in the category "poly(ethylene)" (Fig. 4). This type of error was also observed 265 

between the “poly(ethyelene vinyl acetate)” and “poly(ethylene)+fouling classes”, as well as 266 
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between the “poly(ethylene) like” and “poly(ethyelene vinyl acetate)” classes. Thus, it was possible 267 

to observe that most of these errors corresponded to misclassified spectra of classes whose chemical 268 

nature is very marked by ethylene. The same observation could be made for propylene and vinyl. 269 

Thus, spectra of the “ethylene-propylene rubber” and “poly(propylene) like” classes tended to be 270 

placed by the model in the “poly(propylene)” class. Most of the spectra of the “poly(vinyl chloride)” 271 

class were classified by the model in the “poly(ethylene vinyl acetate)” class. Two reasons can explain 272 

this type of errors. First, it was possible that the spectra had too many similarities and so the model 273 

failed to distinguish them correctly. This was probably the case, for example, between the 274 

“poly(ethylene)+fouling” and “poly(ethylene)” classes, where the differences are only related to the 275 

intensity of the band at 1,015 cm
-1

. It was also the case for the classes of “poly(ethylene)”, 276 

“poly(propylene)” and “ethylene-propylene rubber”, for which there are no clear limits. The co-277 

polymer ethylene propylene rubber (EPR) is made from two different monomers (ethylene and 278 

propylene), which are also used in the manufacture of poly(ethylene) (PE) and poly(propylene) (PP). 279 

Therefore, EPR being a mixture of monomers of ethylene and propylene, it has a transition spectrum 280 

between its two "pure" chemical poles, PE and PP. Depending on the desired properties, the 281 

proportions between ethylene and propylene are adjusted during manufacture. There are therefore 282 

EPRs containing high levels of propylene and others of low levels. These levels will give spectra 283 

similar to those of a poly(propylene) if the propylene content in the EPR is high. On the contrary, if it 284 

is low, the spectrum is close to that of a PE. When the mixture is balanced, the EPR spectrum has 285 

clearly identifiable characteristic bands of ethylene, as well as propylene. It is thus possible to 286 

gradually move from the "pure" PE pole to the "pure" PP pole by a set of transition spectra 287 

corresponding to different mixtures of PE and PP and where only the intensity of certain bands 288 

varied.  289 

In some cases, spectra could belong to both classes at the same time. However, it was still necessary 290 

to place it, when creating the learning database, in a class rather than in the two. If the model in the 291 

machine learning test makes a different choice, it will automatically be counted as an error, but from 292 
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the expert's point of view it is not. Thus, the sensitivity of the classes “poly(propylene) like” (51%), 293 

“poly(ethylene) like” (69%) or “ethylene-propylene rubber” (76%) was probably reduced by 20 to 294 

30% because of transfers of these transition spectra. Thus, 35.4% of the spectra of the 295 

“poly(propylene) like” class was transferred to the “poly(propylene) class”.  296 

A FTIR spectra of a weathered microplastic is composed by three types of bands. The first one is the 297 

bands characteristic of the polymer, the second one is linked to the aging of the polymer, and the last 298 

one to the presence of fouling. Thus, microplastic spectra may have the same bands related to the 299 

presence of organisms on their surface or related to relatively similar aging process. This is probably 300 

the case, for example, of certain bands (between 1,650 and 1,700 cm
-1

) observed in some 301 

poly(ethylene) and which could be linked to the presence of proteins on their surface (Maquelin et 302 

al., 2002). The impact of biofouling on the spectra of plastics should be better studied. On the one 303 

hand, it may be possible to obtain information about living organisms from the surface of 304 

microplastics and on the other hand, it is important to better control the risks in terms of 305 

misinterpretation that these additional bands can generate. The bands between 1,700 and 1,760 cm
-

306 

1
 are another example. These bands, linked to the formation of carbonyl bonds, appear classically 307 

when the polymer ages (Andrady, 2011). The aging of the polymer may vary according to its 308 

environment and it is possible that the spectra may not be exactly the same as a function of the 309 

history of the microplastic. These small potential variations would be worth studying on large 310 

databases. 311 

Another source of error was the number of spectra in the database. For some classes, the database 312 

did not have enough spectra to allow an effective learning by the model. This was the case for the 313 

classes “poly(methyl methacrylate)”, “poly(urethane)”, “poly(vinyl chloride)” and “unknown”, which 314 

do not currently have enough spectra to allow learning by the model. In these cases, the progressive 315 

enrichment of the database should make it possible to achieve learning outcomes close to those of 316 

“poly(ethylene)” or “poly(amide)”. 317 
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 318 

Fig. 4. Percentage of false negatives (greater than 5%) of the different classes in the learning 319 

database. The arrows indicate in which class the spectra have been placed by the model. 320 

3.3. Analysis of the full spectra database and verification 321 

After validation of the KNN method, this method was then applied to the remaining 3,095 spectra to 322 

be identified. Spectra were classified into 13 classes, 171 sub-clusters whose average spectra, 323 

verified during the verification step, were then created. Thus, 9.5% of the average spectra differ in 324 

terms of interpretation between the model and the human expert. These differences were explained 325 
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by the presence of a significant number of poly(ethylene) spectra in “morphotype 1” class. This error, 326 

which was very easily identified by the expert, corresponded to 45% of the errors made by the 327 

model. The addition of spectra in the “morphotype 1” class, in future versions of the database, 328 

should enable to reduce this kind of error. The second main error done by the model was the 329 

attribution to the “poly(propylene)” class of many spectra belonging rather to the “poly(propylene) 330 

like” class. This error was more complex to determine by the expert, because it involved spectra that 331 

varied subtly to few wavelengths. It represented about 30% of the errors made by the model. The 332 

addition of spectra in the “poly(propylene) like” class could be a small improvement in the learning. 333 

However, it can be assumed that this class will always be at the origin of more or less significant 334 

variation in interpretation between human expertise and the KNN model. In fact, the presence in this 335 

class of transition spectra and the significant disparity in the variations observed in the spectra of this 336 

class make the machine learning more difficult. This will probably also be the case for ethylene based 337 

materials classes. Errors made, related to spectra exchange between these different classes, 338 

represented about 11% of the differences in interpretation between the model and the expert. 339 

Finally, all other errors represented about 15% of the differences in interpretation. 340 

With a success rate of 90.5%, the automated learning method proposed in this study is slightly 341 

inferior to the method proposed by Renner et al. (2017; 96.1%). However, our method has been 342 

tested on 3,000 microplastic spectra compared to 300 microplastics previously and by adding a step 343 

of rapid visualization and validation of the results proposed by the model. A user can then quickly 344 

correct the most obvious model errors and increase the effects results rate to nearly 97%. 345 

After verification and validation of the data, the 4,064 microplastics collected and analyzed by IR 346 

spectrophotometry consisted mainly of poly(ethylene) (65.5%), 10.6% of which showed traces of 347 

significant fouling and poly(propylene) (21.2%) (Fig. 5). The low represented classes where 348 

polystryrene (3%), ethylene-propylene rubber (2.3%) and PEVA (1.5%). Therefore, these results do 349 

not stand as the real microplastics type distribution observed in the Mediterranean Sea. The 350 
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application of the statistical method previously developed (Falcou-Préfol et al., 2018; Kedzierski et 351 

al., 2019) to these data will enable to refine the obtained results and determine the percentages of 352 

the various polymers in the North-West Mediterranean basin, as well as manta by manta. 353 

 354 

 355 

Fig. 5. Distribution of the different classes constituting the database of 4,064 spectra (learning 356 

database and undetermined spectra). 357 

3.4. Strengths and areas for improvement 358 

POSEIDON has several advantages over the previously developed tools. First of all, it is a 359 

collaborative tool written with R software. The code can therefore be consulted and modified.  New 360 

R programs facilitating the analysis of microplastic can be integrated into POSEIDON. POSEIDON is 361 

therefore a tool designed to evolve over the long term. 362 
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In the particular case of modules developed for the automated determination of microplastic 363 

spectra, several strengths appear. First of all, the tool allows to process and determine a large 364 

number of spectra at once (up to 50,000 currently) which is a real advantage compared to the 365 

spectrum-by spectrum determination offered by many specialized software. The work carried out in 366 

the study is based on the analysis of 4,064 different particles, which is one of the largest databases 367 

on FTIR spectra of microplastics available to date. The learning process is carried out on microplastic 368 

spectra collected at sea, which is more realistic than methods based on spectra of virgin sample. 369 

Working from the spectra of plastics aged at sea makes it possible to better take into account the 370 

fouling and aging of plastics. Finally, through the process proposed in this work, which combines 371 

hierarchical clustering and PCA, the user can easily identify if, in the interpretation, there are outliers. 372 

This identification is quick and allows the user to judge the interpretations made by the machine. The 373 

KNN method applied to IR spectra could also be applied to data obtained using automated methods 374 

such as focal plane array (FPA) detector combined with BaF2 window or, with another learning 375 

database, to data from Raman spectrometry (Cabernard et al., 2018; Hufnagl et al., 2019; Primpke et 376 

al., 2019). Raman spectrometry is indeed often used for the analysis of microplastics and is likely to 377 

provide additional information (Frère et al., 2017; Hahn et al., 1997; Hiejima et al., 2018; Zhao et al., 378 

2017). In addition, it has recently been shown that Raman spectrometry can identify microplastics 379 

slightly more efficiently than with FTIR analysis (Cabernard et al., 2018). 380 

However, there is some evolution that could improve the program over the time. First of all, the 381 

program cannot identify plastics that it does not know or does not know well. This is the case here, 382 

for example, of poly(urethane) or PVC. However, it will be possible to identify in the interpretation 383 

results an outlier corresponding to a new spectrum and therefore misinterpreted by POSEIDON.  To 384 

improve learning, it will therefore be necessary to improve the learning database with new spectra. 385 

The user can also do this himself if he has additional spectra by adding them in the file 386 

"D4_4_publication.csv" (Poseidon_files_V0.1.1.1\Data\IR_References). However, the characteristics 387 

of the new spectra must be the same as those of the reference spectra. Another solution may be to 388 
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send them to authors with associated metadata, so that they can be added to other reference 389 

spectra and distributed to the community. The improvement of the learning database is one of the 390 

main research approaches to improve the results. Nevertheless, the addition of new spectra will slow 391 

down the learning process as the KNN method, although very efficient, is very computationally 392 

intensive. The identification and removal of the least informative spectrum’s areas could be a way to 393 

compensate in the future the slowdown associated with the addition of new spectra. This research 394 

approach has already been explored and seems to yield promising results (Hufnagl et al., 2019; 395 

Renner et al., 2019, 2017). Another limitation is the use of a programming language that is not 396 

necessarily mastered by the user. This first version of POSEIDON attempts to facilitate its use by 397 

limiting the use of computer code by the user. A fully interfaced version of POSEIDON could be 398 

developed. It would make it easier to process data and share results in connection with the study of 399 

pollution by microplastics without any particular knowledge of a programming language. To this end, 400 

adequate resources must be made available to develop and maintain this future version of 401 

POSEIDON. 402 

4. CONCLUSION 403 

Sampling microplastics at sea sometimes involves collecting a very large number of particles that are 404 

then analysed with spectrophotometry methods. In the case of the Tara Mediterranean Sea 405 

campaign, more than 4,000 FTIR spectra have been made. The analysis of these spectra is time 406 

consuming and skill dependent. To solve this problem, an automated learning method based on the 407 

KNN method has been implemented. The method test showed a high efficiency of this method on 408 

certain polymers (e.g. poly(ethylene), poly(propylene), poly(amide)). For others, however, such as 409 

poly(vinyl chloride), the learning database lacked spectra for the machine learning to be effective. 410 

Additional spectra need to be added to the learning database in the near future to strengthen the 411 

results. In view of the FTIR analyses carried out on microplastics by other studies, other FTIR 412 

spectrum databases exist. Sharing them would make it possible to quickly and significantly increase 413 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 

 

the current database. Nevertheless, the application of this method on more than 4,000 spectra 414 

confirmed its high efficiency. The synthetic verification step, based on different clustering methods, 415 

further improves the good results ratio. 416 

Another research approach would be to integrate the various programs developed during this study, 417 

as well as those previously developed (Kedzierski et al., 2019, 2018, 2017), into the POSEIDON 418 

software. Thus, POSEIDON would allow people working on microplastics to use a set of digital tools 419 

to facilitate their work. 420 
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