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Abstract. This paper is about the collaborative training of a far infrared and a visible spectrum human detector;
the idea is to use the strengths of one detector to fill the weaknesses of the other detector and vice versa. At first
infrared and visible human detectors are pre-trained using initial training datasets. Then, the detectors are used
to collect as many detections as possible. The validity of each detection is tested using a low-level criteria based
on an objectness measure. New training data are generated in a coupled way based on these detections and thus
reinforce both the infrared and the visible human detectors in the same time. In this paper, we showed that this
semi-supervised approach can significantly improve the performance of the detectors. This approach is a good
solution to generate infrared training data, this kind of data being rarely available in the community.

1 Introduction

Human detection is still a challenging problem despite the
recent advances in the field. There is still room for
improvement to make human detection more robust. The
classic approaches to enhance the detection often consist of
designing better features and/or choosing better classifica-
tion methods. However, in many cases the performance of a
detector can be simply improved by adding new data to the
training dataset. New training data can be generated by
crossing the detection results of different human detectors,
such as: a visible and a far-infrared spectrum human
detectors.

1.1 Human detection in the visible spectrum

The best performing human detectors use trained models.
At first, a model (or classifier) is trained with training
images, at run-time, the trained model is inferred to decide
whether or not there are detections. The Histogram of
Oriented Gradients (HOG) detector of Dalal and Triggs is
one of the first approach to reach significant human
detection performance using a trained model [1]. Since this
moment, researchers worldwide continued to improve the
speed and performance of human detectors. Algorithms
based on the Integral Channel Features (ICF) detector of
Dollar et al. [2] over-performed afterwards the HOG
detector in terms of speed and detection performance. With
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these detectors, integral images are used as features and a
Boosting soft-cascade model is used for classification. Soft-
cascade classifiers are fast, due to the use of a rejection
trace. Amongst these ICF-based detectors: the Fastest
Detector in the West (FPDW) [3] approximates the
features in the image pyramid so it is not needed to
compute a dense image pyramid (thus it is less time-
consuming), whilst the more recent and faster Aggregate
Channel Features (ACF) detector performs pixel look-ups
in aggregated image channels [3]. Researchers recently
considerably improved the accuracy of object detection
using deep-learning techniques: the faster-RCNN and the
Yolo detectors are very famous detector based on deep-
learning [4,5]. Because the proposed approach of this paper
is agnostic to the type of detector and because deep-
learning approaches require a lot of training data to work
well we chose, instead, to demonstrate our approach using
the ACF detector as a baseline.

1.2 Human detection in the infrared spectrum

Most of the infrared spectrum human detectors have a
design very similar to visible spectrum detectors. Indeed,
researchers previously compared different configurations of
human detectors for the task of detecting people in infrared
images and they suggested that there is no need to invent
and use radically different methods to perform well in this
modality [6]. Different kinds of discrete features have been
proposed by Olmeda et al. to get arobust infrared spectrum
descriptor: the histogram of phase congruency orientation
[7]. The sensitivity to changes of contrast is less important
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when using the phase congruency. Thus this performs well
on infrared images subject to abrupt changes of contrast [§].
But, it is extremely computationally intensive to compute
the phase congruency of an image. It is more convenient
and faster to use simpler and still very efficient descriptors
such as the features of the HOG detector or the ICF-based
detectors. In their work, Brehar et al. proposed to combine
a search space reduction technique with a modified ACF
detector to reach near real-time detection [9].

1.3 Collaborative training

The collaboration of the trainings of the infrared and the
visible spectrum human detectors can be done using a
co-training approach. Co-training was first proposed by
Blum and Mitchell as a semi-supervised approach to
improve the training of different classifiers [10]. The
classifiers must treat different but complementary “views”
of the scene. Levin et al. proposed a co-training approach
using two differently designed detectors associated to one
visible camera [11]. Having various “views” of the scene has
a bigger impact on the co-training. This can be achieved
by using different modalities (as is proposed in this paper)
or by having different physical points of view of the scene,
as Roth et al. proposed [12]. Roth et al. used several
cameras in order to obtain distinctly very different points
of view of the scene. To the best of our knowledge, co-
training has not yet been used with a far infrared human
detector before.

1.4 Content of the paper

In this work a far infrared and a visible human detector
work together at training; the training of the detectors is
improved in a co-training procedure using low-level
thermal information and detection results to extract new
training samples. The infrared and the visible information
are synchronized in order to extract pairs of multimodal
training samples. In this paper, the two detectors that we
are using are: the ACF detector of Dollar et al. [3] and the
adapted ACF detector of Brehar et al. [9]. For the purpose
of this research work, we built our own heterogeneous
stereoscopic system which is composed of a far-infrared
camera and a visible camera. In the Section 2 the design of
our stereoscopic system is described as well as the methods
that we used in order to synchronize the frames coming
from the two modalities together, in the Section 3 the ACF
detector of Dollar et al. is described in details. Section 4
describes our collaborative approach of training the two
models together and the Section 5 is about the tests and
results of our proposed approach.

2 Hardware

At first, it is required to align the visible and the far-
infrared images coming from our two cameras. We have
built for this purpose a stereoscopic system made of a Flir
tau 2 camera (far infrared spectrum camera) and a GoPro
camera (visible spectrum camera). These cameras are
placed one next to the other as illustrated in Figure 1.

R+T
I I
VIS e
| U1 T
1!
IRl Y1 . _é}m
Z2 U2 It
2%V ys I,
(a) (b)

Fig. 1. (a) The layout of our stereo acquisition system. VIS and
IR are respectively the visible and the infrared camera, []; and
I1> are the image planes of respectively camera VIS and IR.
R: rotation matrix from camera VIS to camera IR, T: translation
matrix from camera VIS to camera IR. (b) Picture of our
stereoscopic system.

Aligning spatially the images of the two cameras is not
enough. It is important to also align temporally the frames.
Indeed human patterns should be present at the same
places in our images — and — appear at the sames moments
in our video streams.

Two important steps are thus required:

(1) The temporal synchronization of the frames: there
might be a temporal shift between the visible and the far-
infrared video streams when grabbing the images from
them two cameras. The cause of this shift can be due to
the fact that the two cameras have different acquisition
frequencies. Besides, cameras often suffer from a slight
delay before starting to film. Different cameras might have
different delays.

In order to solve this issue one can usually consider two
approaches: (i) triggering the acquisition of the other
camera using the trigger output of the other camera, or
(ii) fix the shift afterwards with a reference top. But for this
work, we managed to obtain a near perfect temporal
synchronization using an identical acquisition pipeline for
the two cameras. The two cameras are converted from
analogical to digital signals using grabber devices having
the exact same specifications. We reached a maximum
temporal shift of one frame with this approach. This shift
was small enough not to have negative repercussions on our
experiments.

(2) The spatial synchronization of the frames: Krotosky
et al. proposed four different approaches for the spatial
synchronization of the frames of a parallel-axis stereoscopic
system such as the one used in our experiments [13].
These four synchronization approaches are: (i) the global
image registration, (ii) the stereo geometric registration,
(iil) the partial image registration (using ROIs) and (iv) the
infinite homography registration. (i) The synchronization
of the objects contained in the filmed scene can be done for
a specific depth of the scene, this is the global image
registration of the frames. Because this is a global approach
the synchronization might not be as accurate for the whole
image. (ii) With this approach we use a third and new
information: the depth cue. This cue can be used to
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Fig. 2. Examples of synchronized pairs of visible and far-infrared images using the infinite homography registration. People close to
the stereoscopic system are not well synchronized, people far from it are well synchronized.

geometrically register objects depending on where they are
in the depth of the scene, this is the stereo geometric
registration. Stereo registration is usually performed using
two identical cameras configured as a parallel-axis
stereoscopic system. (iii) With partial image ROI registra-
tion, only some areas (or ROISs) in the filmed scene are
registered and geometric transformations are used so that
the objects in the ROIs are synchronized. (iv) The last
approach use homography transformations so that objects
located at very long distance (“infinity”) are matched each
other with the assumption that, at infinity, the objects of
the filmed scene perfectly overlap in the two modalities.

We decided to choose the infinite homography
approach (Fig. 2). There are three reasons why this
approach is well suited for our experiments: (i) for human
detection applications this is not possible to make any
assumption about where will be the persons to detect in the
scene, (ii) we thought it was not a wise idea to add an extra
visible camera in our setting in order to benefit from the
depth cue and (iii) we wanted to avoid a computationally
intensive synchronization approach to get a fast co-training
of the two models.

As mentioned above we make the assumption that the
persons we want to detect are located at a long distance
from the parallel-axis stereoscopic system with the infinite
homography registration approach. In order to make valid
this assumption we simply have to make sure that the
baseline between the two cameras is very small when
compared to the distance from the cameras to the persons
we want to detect in the filmed scene [13]. In our case we
have to make sure the cameras are close enough to each
other and the persons to detect are several meters away.
We need several parameters to compute the infinite
homography transformation. We need: a rotation matrix

R describing the rotation transformation from the VIS
referential to the IR camera referential, and the matrices of
intrinsic parameters K for the camera VIS and K, for the
camera IR.
With these three parameters we can compute the
infinite homography matrix as follows:
Ho=Ky; x R x K*. (1)
The pixels of the VIS camera can be projected onto the
image plane of IR camera with this mathematical formula:

U2 Uy
(%) = Hoo X U1 . (2)
wo 1

The matrices of intrinsic parameters K; and K5 as well as
the rotation matrix R have been obtained using the Bouguet’s
Matlab toolbox [14]. This toolbox requires a large number of
image pairs filming the same referential. Using the toolbox the
same corner points must be selected for both the images. We
chose as a referential a checkerboard made of black and white
squares. We heat up this checkerboard in order to better
perceive and select the same corners points but in infrared
images. We collected numerous pairs of visible and infrared
images to perform the estimation of the intrinsic parameters
and the rotation matrix.

3 The basis detector: the aggregate channel
features detector

The ACF detector of Dollar et al. [3] extracts features on
ten different image channels from a previously filtered
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image. These channels are: the three components of the
LUV color space, a normalized magnitude channel and six
other channels corresponding to six orientation bins of the
HOG descriptor used with the HOG detector. For each
channel the image is divided into 4 x 4 adjacent pixel
blocks. The pixel blocks are then aggregated giving an
aggregated version of each image channel. The aggregated
channels are filtered again [3]. Visual features are obtained
just by pixel lookups inside these 10 now filtered
aggregated channels. This transformation is performed
at training and at during the detection.

An infrared version of the ACF detector has been
proposed by Brehar et al. [9]. With this version, only
8 channels are used. The three channels of the LUV color
space are just replaced by one grayscale channel. This
detector will be named the IR-ACF detector is the rest of
the article. In this article we do not use the proposed
search space reduction used conjointly with the IR-ACF
detector [9].

Both the ACF detector of Dollar et al. and the IR-ACF
detector of Brehar et al. use a Boosting soft-cascade model.

Training dataset 1 [Training dataset 2}

l Initial training l Initial training

New data New data
from — Detector 1 Detector 2 < from
view 1 view 2

Classification l lCIassiﬁcation

New training data\

Fig. 3. Co-training’s principle.

New training data)

Training

In their work, this model is a serial combination of 2048
depth-2 decision tree weak-classifiers. During the training,
and for each of these week-classifiers, we just look for the
pixels in the filtered aggregated channels that best separate
the training positive samples (images of persons) from the
negative training samples (image of everything except
persons) [3]|. After having trained one weak-classifier, the
training samples get different weights in order to influence
the training and thus optimize the separation between the
positive and negative classes. During the detection all the
weak-classifiers are inferred one after the other (as long as
the accumulated score is still above the rejection trace [2]).
If all weak-classifiers are passed we consider that there has
been a detection, otherwise we consider there has been no
detection.

4 Collaborative training

A mutual and semi-supervised improvement of the training
of the detectors is made possible thanks to co-training. The
idea behind co-training is quite straightforward: two (or
more) classifiers reinforce each other by learning from the
results of each other (Fig. 3). Two assumptions are
required: the conditional independence of the classifiers
and the existence of initial weak classification rules [10].
Note that it helps us acquiring new training data that could
be difficult to find otherwise (to form a competitive infrared
training dataset).

Our co-training procedure is based on two steps: (1)
candidate pairs of regions of interest (ROIs) are selected
based on their thermal objectness scores, and (2) the
updated training datasets are filtered using a boosted noise
filter to eliminate eventual mislabeled samples [15] (see
Fig. 4). The procedure can be repeated n times. Note that
new negative samples are randomly resampled after each
addition of positive samples in order to ensure a good
balance between the positive and the negative samples in
the datasets.

For cach pair m of syncromzed visible and far infrared images of co-traming dataset »n

Extract pair of ROls
from the p-th detection
(IR or visible)

Far IR and Visible

—-
detectors at step

Yes

.....-.......l...-.......-

Retrain detectors
with new data and
bootstrapping

Boosted noise
Filtering

Add the pair to the
training datasets

n=n+1

Fig. 4. Diagram of our co-training procedure. For the m-th image pair, an infrared/visible pair of regions of interest (ROIs) is
extracted for each detection p. A score of thermal objectness is computed on the infrared ROL. If it is bigger than a threshold, the pair is
injected in the training datasets as two new positive samples. If it is lower than a threshold, the pair is rejected. The new training
datasets are filtered to eliminate eventual mislabeled samples. Finally, the detectors are retrained with the new data. It can be repeated

n times for iterative improvements.
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Fig. 5. Examples of detections obtained on visible images and far-infrared images. We can see that the strengths and weaknesses

of the far-infrared and the visible detectors are different.

4.1 Measure of the thermal objectness

The first step comnsists of selecting candidate pairs of
training samples in the detections using a measure of
thermal objectness (examples of detections are given in
Fig. 5). The score proposed in this paper for measuring
the thermal objectness is based on the Edge Box (EB)
score of Zitnickal [16]. It has been observed that
performing an edge-based analysis in the far infrared
spectrum is more convenient than in the visible spectrum.
In the visible spectrum, there are more ownership contour
ambiguities between the different objects of the scene
and/or the surrounding. Indeed, contours in the far
infrared spectrum correspond to thermal separations
between warm and cooler objects of the scene. (1) The
original EB score: the EB score based on the observation
that the number of fully contained contours is indicative
of the likelihood of the box to contain an object [16]. It is
computed as follows: at first the edge map is computed
and contours are formed by grouping edge pixels of
similar orientation values with small edge pixel groups
(or contours) being merged to make bigger ones. An
affinity measure is computed for each pair of contours:
the affinity between two contours sk and sk0 is high if the
angle between the groups’ means (0;;/) is similar to the
groups’ orientations (6 and 6y) (Eq. (3)). y is the affinity
sensitivity, it is generally set to 2. The affinity is equal
to zero if the contours are separated by more than
2 pixels.

(3)

a(sg, sy) = |cos(Or — O )cos(0y — Opy)| .

There are three sets of contours: the set of external
contours, the set of traversing contours (5;) and the set of
internal contours (.S;) (see the above part of Fig. 6).
External and traversing contours have a null contribution

£ A

i
il

U

(a) (c)

(e) ®

Fig. 6. Above: contours used for the EB score. In green: inter-
nal contours, in blue: intersecting contours and in red: external
contours. From (a) to (d): the EB score decreases (the number of
internal contours decreases and the number of traversing
contours increases). Below: the additional contours used for
the CAO score. In pink: affiliated external contours. In (e) and
(f): as the number of affiliated external contours increases the
CAO score decreases.

to the final score. For each contour s; a weight w; € [0, 1] is
computed: w,=1 for a pure internal contour and
wk decreases if s; is connected to a traversing contour
(Eq. (4)). T is an ordered path group beginning for some
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t, € S; and ending for t7= s, € S,

(4)

w(sy) = 1.0 — I a(ty, t50).

The final score H is defined by equation (5) my, is the
sum of the magnitudes of the contour s;, and b,, and by, are,
respectively, the width and the height of the original box.
(2) Our Centered and Anti-overflow Objectness (CAO) in
infrared images: the EB score may be relatively high for a
non-centered object or an object overflowing the box. This
could lead to a detection being considered as an exploitable
positive training sample due to its high score, whereas the
low-level information does not match a true positive
detection (human being detection). Centered and Anti-
overflow Objectness (CAO) avoids this drawback. Indeed,
CAO scores computed on infrared images are high for
centered, warm objects of the scene.

card(S;)
w(sg)mg
Hg=_k=0 5
card(Se)
Z w(sg)mg
H=H--"" (6)
2(b1u + bh)K

The CAO score is computed as follows: two concentric
areas of analysis are considered (see the below part of
Fig. 6). S; is now the set of the traversing contours of the
inner box and S, is the set of the internal contours of the
inner box. S, is the set of the affiliated external contours:
contours contained between the outer box’s border and the
inner box’s border and having a non-null affinity path to
one of the traversing contours. The final score Hy (Eq. (6))
is simply the EB score obtained for the internal contours
minus the EB score of the affiliated external contours.

4.2 Boosted noise filtering

A second step is often required to filter mislabeled training
samples. The low-level thermal objectness step can indeed
sometimes fail to reject false positives. The boosted noise
filter has the ability to identify mislabeled training data
[15]. Boosting is very sensitive to mislabeled data and this
property is used to identify the mislabeled data [15]. Each
training sample has an associated noise counter with
training samples having a high noise count likely being
mislabeled cases.

5 Results
5.1 Mislabeled samples

This part is about testing the filtering ability of the boosted
noise filter and thus its relevance in the pipeline. The
filtering ability has been tested on the INRIA dataset [1] for
different percentages of mislabeled samples (Fig. 7); we

100

80 \
60
40

20

% of retrieved mislabled samples

5 10 15 20 25
% of mislabled samples

Fig. 7. Impact of the percentage of mislabeled samples on the
boosting noise filtering (INRIA dataset).

arbitrary chose the visible detector for this test. The
percentage was increased with a step of 2.5%. Each time we
filtered the samples with the worst scores [15] and we
removed a number of samples equal to the number of
mislabeled samples present in the dataset. For each step,
we took the average filtering results obtained for 10 different
randomly produced batches of mislabeled samples. We can
see in Figure 7 that the percentage of retrieved mislabeled
samples is about 90%, from 0% to 20% of mislabeled samples.
The filtering becomes very inefficient from 20% and upwards
of mislabeled samples. Figure 8 shows some filtered
mislabeled cases we have got during the co-training of our
detectors.

The impact of the percentage of mislabeled positive
samples in the INRIA dataset on the detection performance
showed in Figure 9. We can see that the performance
degrades slowly from a percentage of positive samples of
0%-10%. The performance starts degrading considerably
from 10% and upwards. Note that, no more than 5% of
mislabeled samples (non-centered persons, or real misla-
beled samples) were noticed in the new generated training
samples.

5.2 Collaborative training

We tested the ability of our approach to improve the
detectors by comparing the performance of the detectors
after 3 iterations (Figs. 11 and 12).

For each iteration (n iterations in Fig. 4), 743 new
co-training pairs of images were used (Fig. 5a). For
iteration 1, we used pairs from the CTAVIS-11 dataset,
for iteration 2, pairs from the CTAVIS-21 dataset and for
iteration 3, pairs from the CTAVIS-31 dataset. The AVIS1
testing dataset (used for testing the performance) contains
316 other synchronized pairs of images (similar in resolution
to the co-training images shown in Fig. 10). The AVIS
dataset contains more challenging synchronized cases than
the well known OTCBVS dataset. The initial training of
the visible detector has been done using the ATV 1 dataset,
and the initial training of the infrared detector has been
done using the ATI1 dataset. It was noticed that each
iteration generated about 300 pairs of new training samples
(Fig. 13).
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Fig. 8. Examples of visible and far infrared cases filtered by the boosting filter algorithm.
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False Positives Per Image (FPPI)
Fig. 9. Impact of the percentage of mislabeled samples on the performance of the ACF detector (trained with INRIA dataset).

Fig. 10. Examples of pairs of visible and infrared images used for the co-training.
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Fig. 11. Detection performance of the ACF detector after 1, 2
and 3 co-training iterations.

Miss Rate (MR)

basis ir-acf ——
1x cotrained ir-acf ——
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0.1 3x cotrained ir-acf —=—

"0.01 0.1 1
False Positives Per Image (FFPI)

Fig. 12. Detection performance of the IR-ACF detector after 1, 2
and 3 co-training iterations.

Fig. 13. Examples of coupled training data generated using our co-training approach.

As can be seen in Figures 11 and 12, the performance
are improved after each iteration. This co-training
procedure is an interesting alternative to fully supervised
approaches.

6 Conclusion

In this paper, a collaborative training approach for
improving human detection was proposed. We showed
that the training of a far infrared and a visible human
detector can be mutually improved in a semi-supervised
manner with the help of a two step procedure which
consists of the computation of a thermal objectness score
and a step of boosted noise filtering. Our co-training
approach is a convenient solution to generate infrared
training data that are often not publicly available.
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