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Pose and covariance matrix propagation issues in cooperative localization
with LiDAR perception

Elwan Héry1, Philippe Xu1 and Philippe Bonnifait1

Abstract— This work describes a cooperative pose estimation
solution where several vehicles can perceive each other and
share a geometrical model of their shape via wireless commu-
nication. We describe two formulations of the cooperation. In
one case, a vehicle estimates its global pose from the one of a
neighbor vehicle by localizing it in its body frame. In the other
case, a vehicle uses its own pose and its perception to help
localizing another one. An iterative minimization approach is
used to compute the relative pose between the two vehicles
by using a LiDAR-based perception method and a shared
polygonal geometric model of the vehicles. This study shows
how to obtain an observation of the pose of one vehicle given the
perception and the pose communicated by another one without
any filtering to properly characterize the cooperative problem
independently of any other sensor. Accuracy and consistency
of the proposed approaches are evaluated on real data from
on-road experiments. It is shown that this kind of strategy for
cooperative pose estimation can be accurate. We also analyze
the advantages and drawbacks of the two approaches on a
simple case study.

I. INTRODUCTION

Localization is a key feature for autonomous driving, in
particular when vehicles cooperate in complex situations
like lane merging on a motorway for instance [21]. The
cooperation between vehicles can improve localization and
this can be achieved through the use of new communication
standards such as CAM (Cooperative Awareness Message)
[8] to receive the pose of other vehicles and CPM (Cooper-
ative Perception Message) to share perception information.
Moreover, cooperative localization is a well-known issue in
mobile robotics [14], [16], [17], [12]. Perception is often
described as bearing and range, sometimes with relative ori-
entation. It is then essential to use multiple perceived robots
to localize one robot of the fleet. It has also been shown
that vehicles can improve their own pose estimates thanks
to perception information and pose estimates of neighboring
vehicles [11], [9]. However, these works often use simulated
data, the perception problem is then not always perfectly
represented.

A typical scenario of cooperative localization aided by
perception is cooperative navigation through a local GNSS
denied environment. For example, when a platoon of vehicles
goes under a bridge, the vehicles of the platoon lose their
GNSS signals one after the others, Fig. 1. The vehicles that
are not under the bridge are able to help the vehicles which
have lost their absolute position measurements.
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(a) First formulation. (b) Second formulation.

Fig. 1. Platoon of two vehicles losing the GNSS signals while driving
under a bridge.

In order for a vehicle to make use of the pose estimate
of another one, it needs to be able to estimate the relative
pose between them. Camera based vehicle detection has
been extensively studied in the literature in the past decades.
Recent deep learning based detectors reached relatively high
accuracy for relative pose estimation in the image space
[4]. However, monocular vision based methods often do
not provide accurate metric pose estimates. 3D point clouds
given by stereovision or LiDAR can be used to obtain metric
pose estimates. By fitting the points with a model, e.g., L-
shape fitting [22] or more general 3D model fitting [5], the
relative pose w.r.t. a detected vehicle can be estimated. To
compute this relative pose, the Iterative Closest Point (ICP)
method, often used for scan matching [3], can be applied
[10].

For multiple cooperative vehicles to make the most of
exchanged pose estimates within a data fusion framework,
each vehicle not only needs to be able to provide a pose
estimate but also needs to properly quantify the uncertainty
associated with it. When using a classical Gaussian assump-
tion, it is done through the estimation of the covariance
matrix. Therefore, the ability to have a consistent estimation
of the covariance matrix associated to the perception [1], [2],
[15] becomes of significant importance.

In the literature, cooperative localization problems using
data fusion often describe the state of one vehicle with the
pose and the velocity of this vehicle and of its neighbor and
use the relative measurements as observations. In this work,
we show how a vehicle can propagate the pose estimate and
the associated uncertainty of a neighboring vehicle by using
the LiDAR based perception approach combined with the
exchange of geometrical models of the vehicles proposed
in [10]. This relative localization method can be used even
when only the back of the vehicle is in the field of view of
the LiDAR. Other more classical methods such as L-shape
fitting need two sides of the vehicle. The contribution of
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Fig. 2. Two experimental vehicles equipped with GNSS receivers and
LiDAR sensors on a test road at Compiègne, France. The LiDAR points
are shown in red and the polygonal model is in blue. This figure shows the
relative pose eqc of the mobile frame Rc of the cooperating vehicle (white
car) in the frame Re of the ego-vehicle (gray car). R0 is a local working
frame in which the vehicles need to be localized for their navigation tasks.

this paper is to show the accuracy and consistency of the
cooperative pose estimation using real LiDAR perception,
without any filtering, to properly characterized this raw
observation computed from one epoch only without the use
of other sensors, e.g. GNSS or odometry observations. The
results of the proposed methods can be seen as observations
which can be used in the update of any filtering algorithm,
e.g., Extended Kalman Filter or covariance intersection filter.
This approach has the advantage of only requiring another
vehicle to estimate the position and the orientation. In the
case of multiple surrounding cars, each vehicle can be seen
as a different observation.

We consider two formulations of the cooperative local-
ization problem. In the first one, the ego-vehicle perceives a
cooperating vehicle and uses the pose estimate of the latter to
estimate its own pose. In the second formulation, we consider
that it is the ego-vehicle that is perceived by the cooperating
vehicle which can directly help estimate the pose of the ego-
vehicle. The relative pose between the vehicles is estimated
by minimizing the distances between LiDAR scans and a
polygonal model of the shape of the vehicles.

Both accuracy and consistency of the localization resulting
from the two formulations are evaluated and compared using
real data recorded from two communicating experimental
vehicles in the city of Compiègne, France (see Fig. 2).

The cooperative localization problem is first introduced in
section II, where we present the pose and the covariance
propagation. The relative localization process based on an
iterative minimization method is explained in section III.
Experimental results are studied and analyzed in section IV.
We finally analyze the advantages and drawbacks of the two
approaches on a simple case study.

II. PROBLEM STATEMENT

As stated in the previous section, the aim of this work is
to estimate the pose of a given vehicle from the localization
information of another communicating vehicle via perception

information. Throughout this work, we consider that the
vehicles are equipped with a LiDAR capable of detecting
surrounding vehicles. In order to be able to estimate an
accurate relative pose between two vehicles, in particular
relative orientation, we also suppose that they can exchange
a model of their geometrical shape as illustrated in Fig. (2).

Using a 2D formulation is often sufficient in vehicle
localization problems as many road environments are locally
planar. Therefore, the pose of a vehicle is defined by its
2D coordinates and its heading : q = [x y θ]T . The data
coming from the LiDAR sensor is considered as a set of two-
dimensional points P = {pi}i=1,...,N . We suppose that this
set of points corresponds to a detected vehicle. The detection
task itself is out of the scope of this paper, many LiDAR
clustering algorithms can be found in the literature [6]. The
shape of the vehicle is also given in 2D by a polygonal
model representing the outer hull from a bird’s-eye view. A
shape model is represented as a set of consecutive points
M = (m1, . . . ,mK).

The considered 2D geometrical shapes are typically de-
fined by the bumpers of the vehicles which are situated at
the most outer place. For safety reasons in case of collision,
the height of the bumpers is almost the same for the majority
of vehicles. Therefore, placing a LiDAR layer at this same
height provides a perception that is consistent with the
considered models. This assumption may not be respected
in some cases, e.g., for trucks or non-planar roads. In this
situation, a multi-layer 3D LiDAR may be used to enhance
the detection of the 2D hull of a detected vehicle. The method
proposed in this paper can be generalized to this 3D case.

Let us consider a first approach in which the ego-vehicle
aims at estimating its own pose qe using the pose qc of
a cooperating vehicle as a deported antenna with a lever
arm corresponding to their relative pose eqc (expressed in
the mobile frame of the ego-vehicle). This relative pose
is estimated using perception. Here, the goal is to find an
estimate q̂e in a fixed working frame along with its associated
covariance matrix Σ̂e using the estimates q̂c, Σ̂c, eq̂c and eΣ̂c.

Let R(θ) be the rotation matrix defined as

R(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (1)

Suppose that the relative pose is estimated from the ego-
vehicle point of view. In this first formulation, the pose of
the ego-vehicle is computed with the following equation:

qe = qc −R (θe)
eqc

=

xc − exc · cos(θe) + eyc · sin(θe)
yc − exc · sin(θe)− eyc · cos(θe)

θc − eθc

 (2)

=

xc − exc · cos(θc −e θc) + eyc · sin(θc −e θc)
yc − exc · sin(θc −e θc)− eyc · cos(θc −e θc)

θc − eθc

 .
Since the relation qe = f1(qc,

e qc) is not linear, a first order
approximation is used to estimate Σe from Σc and eΣc, as



presented by [7], [18]:

Σe ≈
∂f1
∂qc

Σc
∂f1
∂qc

T

+
∂f1
∂eqc

eΣc
∂f1
∂eqc

T

, (3)

where the Jacobian matrices of f1, ∂f1
∂qc

and ∂f1
∂eqc

are defined
as follows:

∂f1
∂qc

=

1 0 excs1 + eycc1
0 1 −excc1 + eycs1
0 0 1

 , (4)

∂f1
∂eqc

=

−c1 s1 −excs1 − eycc1
−s1 −c1 excc1 − eycs1

0 0 −1

 , (5)

with s1 = sin (θc − eθc) and c1 = cos (θc − eθc).
Another possible solution is to have the relative pose

computed from the cooperating vehicle (cqe). The pose of
the ego-vehicle is then estimated as follows:

qe = qc +R (θc)
cqe (6)

=

xc + cxe · cos(θc) + cye · sin(θc)
yc + cxe · sin(θc)− cye · cos(θc)

θc + cθe

 .
Notice that using this formulation qe = f2(qc,

c qe), the posi-
tion coordinates (xe, ye) become independent of the relative
orientation cθe. This implies that the position estimation
becomes more robust to inaccurate estimation of the relative
orientation. Similarly to the previous case, the covariance
matrix is estimated using Jacobian matrices

Σe ≈
∂f2
∂qc

Σc
∂f2
∂qc

T

+
∂f2
∂cqe

cΣe
∂f2
∂cqe

T

, (7)

where
∂f2
∂qc

=

1 0 0
0 1 0
0 0 1

 , (8)

∂f2
∂cqe

=

c2 −s2 −cxes2 − cyec2
s2 c2

cxec2 − cyes2
0 0 1

 , (9)

with s2 = sin (θc) and c2 = cos (θc).

III. RELATIVE LOCALIZATION

A. LiDAR based perception

The Iterative Closest Point (ICP) algorithm is often used
to match two LiDAR scans in order to obtain the relative
pose between them. In our case, we aim at matching two
sets of points but with one that corresponds to a LiDAR
scan and another that represents the polygonal shape model
of a vehicle. However, these two sets do not come from the
same sensor as in classical ICP resulting in a disparity in
terms of the number of points. Therefore, we use a variant
of the ICP algorithm that uses line segments to represent
the model points, [10], [3], [13]. The principle of the ICP is
to have an iterative process that alternates a matching step
with a minimization one. This relative localization problem
using LiDAR measurements and a polygonal model has been

Fig. 3. Distances to minimize in orange between the LiDAR point in red
and the model in blue. The initial pose communicated by the cooperating
vehicle is shown in blue and the final pose is in green.

described and compared to other approaches in [10]. In
practice, only one cluster of points of the scan is matched
with the model. This clustering step and the matching of
the different clusters with the models of different vehicles
in the case of a multiple vehicles scenario is not studied in
this paper. A consistency test between the computed relative
pose using this algorithm and the initial relative pose can be
computed to check if the matching between the cluster and
the vehicle model is correct.

This method provides an estimate of the relative pose
which minimizes the distances between the LiDAR points,
in red, and the model, in blue in Fig. 3. These distances are
shown in orange in Fig. 3.

Once each LiDAR point is matched with one segment
of the polygonal model, the minimization problem can be
written as follows:

min
q
E (q;P,M) = min

q

N∑
i=1

d(q; pi,M)2, (10)

where d(q; pi,M) is the distance between the point pi and
the model M when the transformation associated to the pose
q is applied to the LiDAR scan P .

The authors of [13] showed that this minimization problem
can be simplified as a quadratic convex problem with the
following form:

E(∆q;P,M) = ‖A∆q − b‖2 . (11)

This problem can be solved using the pseudo-inverse of
the matrix A:

∆q̂ = pinv (A) b. (12)

Once the pose is found, the covariance matrix can be
computed, as described in [1]:

∆Σ̂ = 2
E (∆q̂)

N −D

(
∂2E

∂q2
(∆q̂)

)−1

=
E (∆q̂)

N −D
(
ATA

)−1
,

(13)
where D is the dimension of ∆q, i.e., D = 3.

It is then possible to estimate the relative pose eq̂c,k and
its associated covariance matrix for this iteration k using the
previous iteration eq̂c,k−1 and the pose ∆q̂k obtain with the
minimization:

eq̂c,k = eq̂c,k−1 −R (eθc,k−1) ∆q̂k, (14)



(a) C-shape. (b) L-shape.

Fig. 4. LiDAR detections in a straight line and a curved line.

eΣ̂c,k = R (eθc,k) ∆Σ̂kR (eθc,k)
T
, (15)

where R (eθc,k) is the rotation matrix with the angle eθc,k.
Once the ICP has converged, the pose eq̂c,k and the

covariance matrix eΣ̂c,k of the last iteration gives a good
estimate of the relative pose and of its covariance matrix.

B. Propagation accuracy and consistency

1) LiDAR detections: In real driving scenarios the LiDAR
perception does not always provide accurate relative local-
ization. When only the back of the vehicle is in the field
of view of the LiDAR a C-shape perception can be seen,
Fig. 4a. This shape creates a rotation invariance during the
execution of the ICP algorithm which leads to larger relative
heading and lateral errors. When the back and one side of
the vehicle are in the field of view of the LiDAR, an L-shape
is visible, Fig. 4b. The angle ambiguity disappears and the
relative orientation becomes accurate.

Moreover, the position obtained by the first formulation
depends on the relative orientation which is not the case
for the second formulation. This is visible when the relative
heading is badly estimated in Fig. 5b when a C-shape is
visible and when the first formulation is used. In Fig. 5d,
when a C-shape is detected and when the second formulation
is used, even if the relative heading is not accurate, the
obtained position is not impacted.

2) Non linearity issues during covariance matrix propa-
gation: The inconsistency of the first formulation is therefore
only due to the highly non-linear mathematical expressions
in Eq. (2). Fig. 6 illustrates through Monte Carlo simulations
the empirical distribution of the estimated pose of the ego-
vehicle when the communicated pose (in black) and the
relative pose have Gaussian distributions. One can see that
the results are actually following banana-shaped distributions
[20], [19] which are badly approximated by Gaussian distri-
butions when they are large. The first formulation (in blue)
gives a distribution less Gaussian than the second one (in
red) because of the dependency of the relative orientation
error, see Eq. (3). Both formulations are dependent on the
orientation error of the communicated pose, as shown by
Eq. (3) and (6). Therefore, both formulations give banana-
shaped distributions. The propagation of the uncertainty
through the non-linear transformation is an approximation.

With the second formulation, the cooperating vehicle
computes the pose of the ego-vehicle for it with a good un-

certainty estimate. Therefore, the ego-vehicle pose estimate is
entirely dependent on the cooperating vehicle. This is accept-
able if the cars are in a trustworthy network but it can lead to
trust issues in other real case scenarios. The first formulation
does not make this assumption. Indeed, the relative pose
is computed with the perception sensor of the ego-vehicle.
Misleading information sent by the cooperating vehicle such
as erroneous pose estimate or wrong mode can be detected
by using the error computed from the minimization step as
a trust indicator. Indeed, if the cooperating vehicle does not
send an accurate pose or model, it will not be coherent with
the estimated pose of the ego-vehicle. This can be detected
by its perception leading to a large value of the cost function.

IV. EXPERIMENTAL RESULTS

A. Experimental platform
The dataset used for this experimentation was recorded

on a platooning scenario where two Renault Zoe cars were
driving on a test road composed of two roundabouts and a
straight lane between them, as pictured in Fig. 2. Nine laps
were completed in this test track for a total of 2.82 km in 10
minutes and 7,489 LiDAR scans. The inter-distance between
the poses of the two vehicles was between 6.2 m and 18.8 m.
This inter-distance was around 8 m in the roundabouts and
13 m in the straight lane. Each vehicle was equipped with a
Novatel’s SPAN-CPT, an IMU with a GNSS receiver using
RTK corrections for the ground truth. No tracking or data
fusion was implemented in this work. The frequency of the
ground truth being high compared to the speed of the vehicle,
the temporal error was supposed to be negligible compared
to the spatial error. The following vehicle was also equipped
with a four-layer SICK LDMRS LiDAR, but only one layer
was used to compute the relative pose. The 2D geometric
model of the Renault Zoe car has been manually built from
a blueprint. The ground truth having an uncertainty in the
order of one decimeter, its covariance matrix was used to
compute the consistency. Since the error of the ground truth
is not negligible compared to the LiDAR measurement, small
errors should be interpreted carefully.

To evaluate the consistency, we test the following condi-
tion:

(q̂e − qref )
T
(

Σ̂e + Σref

)−1

(q̂e − qref ) ≤ χ2
3;0.05, (16)

where χ2
3;0.05 = 7.815 is the quantile of a χ2 distribution

with 3 degrees of freedom and a confidence level of 95%.
qref and Σref are the pose and the covariance of the ground
truth. In practice, it means that Eq. (16) has to be verified
for at least for 95% of the samples.

Table I reports the results of the experiments. We decom-
posed the horizontal error eh into a longitudinal ex and lateral
ey components in the mobile frame of the ground truth for
a better analysis.

B. First formulation
The ego-vehicle computes its pose from its own percep-

tion sensor given the pose and the model received by the
cooperating vehicle (see Fig. 5 (a-b)).



(a) 1st formulation, L-shape. (b) 1st formulation, C-shape. (c) 2nd formulation, L-shape. (d) 2nd formulation, C-shape.

Fig. 5. Estimated pose of the ego-vehicle, in green, computed from the pose of the cooperating vehicle, in blue, and the LiDAR points of the cluster, in
red. This pose is compared to the ground truth in black. The gray polyline is the center of the road. For each pose, the model and the uncertainty ellipse
and the uncertainty cone are shown in the same color.

Fig. 6. Banana shape distribution of the estimated pose and its 95%
confidence ellipse approximation, with the first formulation in blue and with
the second formulation in red, from the communicated pose in black.

TABLE I
MEAN ERROR [ex ey eθ]

T IN THE FRAME OF THE GROUND TRUTH, MEAN

HORIZONTAL ERROR eh AND CONSISTENCY RATE C OF THE TWO

FORMULATIONS FOR THE COMPLETE SCENARIO, FOR THE L-SHAPE

PERCEPTIONS ONLY AND FOR THE C-SHAPE PERCEPTIONS ONLY.

1st formulation 2nd formulation
shape all C L all C L
ex (m) 0.27 0.35 0.13 0.11 0.11 0.09
ey (m) 1.16 1.72 0.22 0.36 0.41 0.27
eh (m) 1.24 1.82 0.27 0.39 0.44 0.29
eθ (°) 6.92 8.55 4.20 6.92 8.55 4.20
C (%) 91.5 86.9 99.2 98.0 97.2 99.3

This first formulation gives an accuracy of 1.24 m for the
position and 6.92° for the orientation. This is not accurate
enough for autonomous driving. The consistency rate is
91.5% and so the pose estimate is not consistent.

Two different perceptions of the cooperating vehicle exist
in this platooning scenario: an L-shape, when the back and
one side of the vehicle are in the field of view of the LiDAR
and a C-shape, when only the back is in the field of view.

1) L-shape: L-shape can be seen by the LiDAR when
both vehicles are driving on the roundabout, Fig. 5-a. This
perception gives a good accuracy, 0.27 m for the position
and 4.20° for the orientation. The covariance also becomes
a bit pessimistic with a 99.2% consistency rate.

2) C-shape: C-shape can be seen by the LiDAR when
both vehicles are driving on the straight lane, Fig. 5-b. The
back of the car being curved, a rotation invariance appears.
The LiDAR points are free to move along the back of the
model without changing the error. From Eq. (2), one can see
that the estimated position of the ego-vehicle is dependent
on the relative orientation. We obtain an accuracy of 1.82 m
for the position and 8.55° for the orientation. The covariance
is less consistent for this kind of perception (86.9%).

As one might expect, the lateral error, in the frame of the
ground truth, is the largest part of the error, as shown by
the uncertainty ellipse in Fig. 5b. This error is of 1.72 m
compared to 0.35 m for the longitudinal error.

C. Second formulation

The cooperating vehicle computes the pose of the ego-
vehicle with its pose and its perception sensor, Fig. 5 (c-
d). This second formulation of the cooperative localization
problem gives a better accuracy, with 0.39 m for the position
and 6.92° for the orientation. It also has a very good
consistency rate of 98.0%. Indeed from Eq. (6), one can see
that the estimated position of the ego-vehicle does not depend
on the relative orientation anymore. One can also see that the
orientation error does not change from one formulation to the
other.

1) L-shape: As for the first formulation, the pose found
for this perception is very accurate with a mean error of
0.29 m for the position and 4.20° for the orientation and
also a bit too pessimistic (consistency rate of 99.3%).

2) C-shape: This perception is much more accurate and
provides consistent information for this formulation. Indeed,
the position is independent of the relative orientation. The
mean error is 0.44 m for the position and 8.55° for the
orientation and the consistency is 97.2% which is excellent.

D. Analysis

Based on these results, we can conclude that it is more
accurate and more consistent to use the perception of the
vehicle sending its pose than computing the pose of the
ego-vehicle from its own perception. The accuracy of the



second formulation is better because the position estimation
is independent of the relative orientation uncertainty. The
inconsistency of the global estimate possibly comes from an
underestimation of the covariance matrix of the relative pose
eΣ̂c. However, as the second formulation is consistent, it is
reasonable to assume that eΣ̂c is actually consistent.

In conclusion, if two cooperative vehicles are driving
together the vehicle with the most accurate localization
should drive behind the other. Nevertheless, even if the
second formulation gives better results, both formulations
can be necessary in some scenarios, for example when only
one vehicle is able to perceive the other.

V. CONCLUSION

This work has presented two formulations of a cooperative
localization problem using the pose and shape of another
vehicle. To compute the relative pose from the LiDAR points,
an iterative minimization problem has been applied with
points to lines matching. This led to a relatively consistent
estimation of the relative pose. Two formulations have been
tested experimentally and the accuracy and consistency have
been evaluated in different situations. On curved roads where
L-shapes can be perceived, both formulations gave good
results with an accuracy that is of the order of magnitude
of the decimeter. However, on straight lanes where the
perception leads to C-shapes, the second formulation is more
consistent and more accurate.

In future work, this cooperative localization method will be
used with data fusion to improve the accuracy while keeping
a good integrity. Different challenging scenarios will be
tested, e.g., multiple vehicles in long tunnels or having only
one vehicle accurately localized in a platoon. The cooperative
method proposed in this paper can also be extended when
two vehicles are perceiving a same feature of the environ-
ment. One vehicle can communicate its observation and the
other one can localize itself using this shared observation.
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