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Static vs Two-stage robust optimization

Static model : fmm e
Decide x knowing only £ € Undertake decision x

t

!

|

|

| Actual outcome
Two-stage model : ! & revealed
! Decide recourse y(x, &)
: t

Decide x knowing only & €
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Mixed integer linear robust optimization with recourse

min ¢' x4 max min ﬁTQy
xeX £€= yeY(x,8)

LP (MIP) model [semi-infinite]

(@) - il olx ot x : first-stage decisions

st. xXEX @ t: cost of recourse
- = 3 decisions
t > q(€)y(€) VEez e y(&) : recourse
= 0q(§), T(&),W(&), h() :
TE)x+ W(E)y(&) < h(§) vEe= uncertainty revealed after
y(§) ey vEe= first-stage decisions are taken

Arslan and Detienne 5/31
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Literature review

© Exact approaches: Often based on dual information or using a facial description of
the recourse polyhedron:
(i) Constraint generation: Atamturk and Zeng (2007), Thiele et al. (2009), Bertsimas et
al. (2013), Jiang et al. (2014), Zhen et al. (2018)
(if) Constraint-and-Column generation: Ayoub and Poss (2016), Zhao and Zeng (2012),
Zeng and Zhao (2013)
(iii) Convexification-based : Kammerling and Kurtz (2019)
@ Approximate approaches:
(i) Decision rules: Recourse decisions are restricted to be functions of uncertainty:
Ben-Tal et al. (2004), Chen and Zhang (2009), Goh and Sim (2010), Kuhn et al.
(2011), Vayanos et al. (2011), Georghiou et al. (2015), Bertsimas and Dunning
(2016), Bertsimas and Georghiou (2015,2018), Gorissen et al. (2015), Postek and den
Hertog (2016)
(if) K-adaptability: K recourse decisions are selected at the first stage, optimization is
done over them in the second stage:
Hanasusanto et al. (2015), Subramanyam et al. (2017), Buchheim and Kurtz (2017)
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Our contribution

In this presentation:

@ We study a class of two-stage mixed binary robust optimization problems with
objective uncertainty

We present an exact solution method for these problems

Our method uses convexification and dualization as a tool for obtaining a
deterministic equivalent formulation

It uses branch-and-price algorithm to solve the resulting model

o We numerically compare our algorithm with the approximate K-adaptability
approach

Arslan and Detienne 7 /31
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Outline Introduction Theoretical development Application to robust capital budgeting Numerical results

Two-stage robust binary optimization problem with objective uncertainty

min ¢’ x 4+ max min ETQy
xXeX £€= yeY(x)

© Bounded mixed binary sets X C {0,1}™ x RY2, Y C {0,1}M x R}"
@ Bounded polyhedral set = C R?, affects only the objective function
Q V(x)={y e VHn <d—- Tx}

X *

Notation: x = <x1> and y = <§1> with x; € {0,1}",y1 € {0,1}%2.

Arslan and Detienne
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Reduction to a static robust problem

Problem (1) is equivalent to

. T -
Al c x+max & Q )
xEX,ycconv(Y(x)) £z g 'y ( )

For given x € X', and &€ € =,

0 T 0 T
min Qy = min Qy.
YEY(x) ¢ y€conv(Y(x)) ¢

Apply the minimax theorem on maxge= Minycconv(y(x)) £T Qy
@ £"Qy is convex in y
@ £ Qy is concave in &

@ sets = and conv(Y(x)) are convex by definition

N

Arslan and Detienne 10 / 31
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Enforcing y € conv(Y(x))

@ In general we don't have a compact description for conv()(x)).

o We can write the Dantzig-Wolfe reformulation for conv()(x)) for given x.

e o )

° e conv(Y(x))

[ /Q ,
conv()Y(x
iy (V(x9))

@ We can write a disjunctive formulation! But most probably numerically inconvenient.

Arslan and Detienne 11 /31
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Enforcing y € conv(Y(x))

@ In general we don't have a compact description for conv()(x)).

o We can write the Dantzig-Wolfe reformulation for conv()(x)) for given x.

e o )

° e conv(Y(x))

[ /Q ,
conv()Y(x
iy (V(x9))

Conclusion

@ We can write a disjunctive formulation! But most probably numerically inconvenient.

We identify some conditions where the disjunctive formulation can be avoided, and

exploit this more convenient structure.

Arslan and Detienne
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A computationally attractive relaxation

e y/ for je £L=1{1,...,L}: extreme point solutions of conv())
e conv(Y) := {Z.eﬁyjaj‘a € AL} with Ab = {a € [o, 1]L’ZJ.L:10/ = 1}

J

o V(x) =conv(Y)N{Hy1 < d — Txi} for x € X
o conv(Y(x)) =conv({y € V| Hy1 <d — Tx1})

Arslan and Detienne

Conclusion

12 /31



Outline Introduction Theoretical development Application to robust capital budgeting Numerical results Conclusion

A computationally attractive relaxation

o y forje £ ={1,...,L}: extreme point solutions of conv())
e conv(Y) := {Z»el;)_’jaj’a € AL} with Al = {a € [o, 1]L’ZJ.L:10/ = 1}

]
o V(x) =conv(Y)N{Hy1 < d — Txi} for x € X
o conv(Y(x)) =conv({y € V| Hy1 <d — Tx1})

¢y

V(x)
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A computationally attractive relaxation

e y/ for je £L=1{1,...,L}: extreme point solutions of conv())
e conv(Y) := {Z.eﬁyjaj’a € AL} with Ab = {a € [o, 1]L’ZJ.L:10/ = 1}

J

o V(x) =conv(Y)N{Hy1 < d — Txi} for x € X
o conv(Y(x)) =conv({y € V| Hy1 <d — Tx1})

min ¢ x + max ET Qy
x€X,ycconv(Y(x)) Ee=
. T T
> min_ c x+max & Qy
x€EX,ycY(x) ge=
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A computationally attractive relaxation

e y/ for je £L=1{1,...,L}: extreme point solutions of conv())

e conv(Y) := {Zjeﬁyjaj‘a € AL} with Ab = {a € [o, 1]L’ZJ.L:10/ = 1}
o V(x) =conv(Y)N{Hy1 < d — Txi} for x € X

o conv(Y(x))=conv({y € Y| Hn < d— Txi})

min ¢ x + max ET Qy
x€EX,yEconv(Y(x)) ge=

> min_ ch—l-maz( £ Qy
x€EX,ycY(x) ge=

H T T j =j
= o
el € X S0 oY
JEL
s.t. HZO/}?{Sd—Txl

JjeL

@ Now the inner maximization problem can be dualized to obtain a deterministic
equivalent formulation.

@ We can solve this formulation by column generation.

Arslan and Detienne 12 /31
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A sufficient condition for equivalence conv(Y(x)) = V(x)

o V(x)={y€Y/Hn <d-— Tx} * Y
o V(x)={y €conv(Y) | Hy1 < d — Tx1} for x € X
™ Y(x)
Proposition ‘
If H=1, T =~/ and d = 0, then Y(x) = conv(Y(x)). conv(Y(x))

Possible variations:
o yi <xi,y1<1—x, y1 >x (robust knapsack problem with recourse)

@ 17y; < x1 (robust single machine scheduling - WIP)

Arslan and Detienne 13 /31



Outline Introduction Theoretical development Application to robust capital budgeting Numerical results Conclusion

What if conv(Y(x)) # V(x)?

@ Add combinatorial Benders' cuts
o We may add cuts that forbid certain columns based on the first-stage solution
o These cuts are non-robust cuts (they change col. gen. subproblem structure)
o Updating the pricing problem is necessary
o Seems numerically inefficient

@ Lift the recourse feasible region

o Create a copy of the first-stage decisions in the recourse problem
e Lets us fall back onto the previous column generation framework

Arslan and Detienne 14 / 31
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Lifting the recourse feasible region

@ Reformulate the recourse feasible region

V() ={yervze{o"

Hy <d— Tz,z§x1,22x1}

Let V' ={y €¥,z€{0,1}""|Hy < d — Tz}
(¥,2) for je £ ={1,...,L'}: extreme points of conv()”)

@ Deterministic equivalent formulation:

min ch+rQEa%< £TQZo/}7j

’
xEX,acAlL jec!

st =) o

jec’

Arslan and Detienne
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Two-stage robust capital budgeting (RCB) with loans

Variant of (RCB) introduced in Hanasusanto et al. (2015)

o Investment budget B, which can be extended with loans at first and second stages.

o Set of projects N = {1,..., N}.
@ Each project has an investment cost ¢; and nominal profit p;.
@ M risk factors, whose values are denoted by £ € =.
o Actual profit is 5;(€§) = (14 QT £/2)p: for i € N.
o First-stage decisions:
(i) take out loan (amount Ci) or not,
(if) choose a subset of projects.
@ Uncertainty: risks factors £ € = are known, revealing p;(£).
o After observing the risk factors, late investments are possible:

(i) take out loan (amount G) or not,
(if) choose more projects, which have a degraded profit f5;(£), with f € [0, 1).

Arslan and Detienne 17 / 31
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Mathematical formulation

Xo: the decision to take out an early loan

@ x;: the decision to invest in a project at first stage

@ yo: the decision to take out a late loan
@ y;: the decision to invest in a project at first or second stage
o fc==[-11M
e Fi(x,&,y): net return of project i given (x,&,y)
max min max Fi(x — Ao — A
(x,%0)EX £€= (y,%0)EV(x,x0) Z £.5) 0 pyo
where
0 if Xi =Yi = 0
Fi(x,&y)=4q pi(§) ifxi=y =1

fpi(¢§) ifxi=0andy =1

Note: F; can easily be linearized.

Arslan and Detienne
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Mathematical formulation

Xo: the decision to take out an early loan

@ x;: the decision to invest in a project at first stage

@ yo: the decision to take out a late loan
@ y;: the decision to invest in a project at first or second stage
e £c==[-1,1]"
o Fi(x,&,y): net return of project i given (x,&,y)
max min max Fi(x — AXo — A\Uyo
(x,x0)EX EE= (y,%0)EV(x,X0) Z & y H
where

X = {(x,xo) e {0, 1}“’“‘ ¢ x— Cxo < B}

V(x,x0) = { (y,y0) € {0, 1}M*

y,'ZX,' VieN

Arslan and Detienne
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Non-tight relaxation: J(x, x0) # conv(Y(x, x0))

2y1+ 2y, <3+ X0 }

y(X7X0):{ y {01y’ yi>x VYieN

y(07 07 O)
[ L y2
conv(Y(0,0,0)) y?
« y!

Consider x* = (0,0, 0):
o y' = (1,0) is feasible for x*
e y*> = (1,1) is not feasible for x*
o y*=1(y" +y%) € ¥(0,0,0) but y* ¢ conv()(0,0,0))

Conclusion

Second-stage fractional solution y* can only be made from the infeasible solution y?

Arslan and Detienne
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An alternative formulation through lifting

21+ 2y, <3+ 2
yl(x7X0): (y,Z)G{O, 1}3 Yi 2 Xi Vie N
Zy = Xo

Y'(0,0,0) = conv(Y") N {(y, 20)|z0°= 0}

/i

conv()'(0,0,0))

Consider x* = (0,0, 0):
o y' = (1,0, p) is feasible for x*
o y’=(1,1,1)c Y
o y¥=1(y'+y*) =(1,05,05+p/2) ¢ V'(x*)

=

Arslan and Detienne

Conclusion
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An alternative formulation through lifting

o Add a copy of xg to the recourse feasible region
c'y<B+Ga+ Gy
V'(x,x) =14 (¥,%,2) € {0,1}¥* yi>x VieN

Z0 = Xo

@ The constraint cTy < B+ Gizo + Gyp is now purely recourse.

Arslan and Detienne

Conclusion
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Column generation subproblem

Let us recall our deterministic equivalent formulation:

min ch—i-r?eaEx ﬁTQZajyj

xeX,aEAU jec
st =Y o
jec’
The pricing problem takes the form,
—Kk+  max — Ao + Eoz0 + Z Ciyi
(¥:y0,20) €Y’ Py

Conclusion

with )/ = {(y,yo,zo) c{0,1}"? | ¢y < B+ Cizo + C2yo} and ¢ the reduced costs,
which is a classical knapsack problem (by substituting jo =1 — yo and Zp = 1 — z).

The subproblem can be solved through a dynamic programming algorithm.

Arslan and Detienne
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Instance Generation

@ Instances inspired by those presented in Hanasusanto et al. (2015).

@ For given number of items N, and parameters R = 100 and H = 100,
h € {20, 40,60,80}
@ Costs ¢; for i € N: uniformly from the interval [1, R]
o Nominal profits: p = ¢/5
@ Investment budget: B = HLH Dier G
@ Postponed investments generate %80 of the profits, that is f = 0.8.
@ The loans Ci and G: %20 of the initial budget B
0.12

@ Interest values: A = == and u=1.2.

Arslan and Detienne 24 /31
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Experimental setting

Conclusion

We compare the performance of a branch-and-price algorithm solving our lifted-recourse
reformulation with solving 2- and 3-adaptability models with a commercial solver.

@ Generic Branch-and-Price algorithm implemented in C++ (BaPCod library)

Stabilization of column generation by smoothing of dual variables

Choice of first-stage variables to branch on with strong branching

Primal diving heuristic

Single-threaded

Column generation subproblems are solved by straightforward array-based
label-correcting algorithm

No other problem-specific development

o (MI)LP models are solved using IMB ILOG Cplex 12.9 through C++ Concert
Library with default settings (4 threads)

All tests are run on a 4-core Linux machine equipped with 20 GB RAM.
The time limit is 1 hour for each run.

Arslan and Detienne
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Solution time and scalability

Numerical results Conclusion

—— Branch-and-price
----- 2-Adaptability
- -- 3-Adaptability
300 +
el
(%
=2
2
w200
O
c -
= -
2 I
£ PR, }
$ 100 | R ’___:;- ____________ -
0 SN ‘ ‘

10

Time (seconds)

0.1

Number of instances solved by each method through time.
60 instances for each N € {10, 20, 30, 40, 50, 100}.
Our B&P is 2 to 4 orders of magnitude faster than MILP solver on 2-

Arslan and Detienne

and 3-adapt models
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Solution time and scalability

Number of instances solved to convergence by each method within one hour.

N=10 N=20 N=30 N=40 N=50 N =100
B&P 60 60 58 55 60 57
2-Adapt 60 60 21 15 7 0
3-Adapt 60 31 13 0 0 0

o K-adaptable models are hard to solve because of their poor linear relaxation

@ Our B&P scales well, but fails at solving some relatively small-size instances
Typical relative gap after a few minutes: 10~ 3 or less.
Probably suffers from many good infeasible solutions of the first-stage problem linear
relaxation (add cuts?).

Arslan and Detienne 27 /31
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Full adjustability VS K-adaptability

Numerical results Conclusion

Number of instances categorized by the number of active columns in the best primal
solution reported by the branch-and-price algorithm.

N=10 N=20 N=30 N=40 N=50 N=100
K=1 33 17 16 14 10 10
K=2 18 19 3 4 6 5
K=3 5 8 6 4 0 0
K=4 2 11 13 3 5 1

K=[5,9] 2 5 22 35 39 44

@ A number of instances admit robust static optimal solutions

@ For larger instances, 2- and 3-adaptable solutions are (most probably) not optimal

Arslan and Detienne
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Full adjustability VS K-adaptability

Only instances with at least 3 columns in optimal solutions are considered.

Gaps between the best primal solutions provided by the K-adaptability method and the
branch-and-price algorithm.

N=10 N=20 N=30 N=40 N=50 N =100
Avg 2-Adapt (%) | 1.01 0.27 0.38 0.44 0.32 0.12
Max 2-Adapt (%) | 6.29 1.36 1.50 2.01 1.20 0.50
Avg 3-Adapt (%) | 0.28 0.19 0.61 0.44 0.35 0.14
Max 3-Adapt (%) | 0.99 1.97 3.57 1.43 1.09 0.75

Best K-adapt solution — Best B&P solution

Gap =2
ap Best B&P solution + Best B&P solution

K-adaptable models turn out to be very good approximations of the fully adjustable
problem

Arslan and Detienne 29 /31
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Conclusions and future work

@ Conclusions:

o We study a special class of two-stage binary robust optimization problems with
objective uncertainty.
Single-stage relaxation that can be solved using column generation approaches.
Special case where the relaxation is tight, and a technique to reduce to this case.
Application to a version of the two-stage robust capital budgeting problem.
o Computational results that show the effectiveness of the column generation approach.

@ Future Work:
o Extend the computational results to different problems.

Done: Similar computational results on a two-stage robust knapsack problem.
o Develop other techniques for non-tight relaxation.

© Room for problem-specific improvements:
o Master program/First-stage formulation reinforcement (KSP cover cuts,
dominances. . .)
o Efficient solver for column generation pricing problems. ..
o Generate batches of columns instead of a single one. ..
Available on Optimization Online:
“"Decomposition-based approaches for a class of two-stage robust binary optimization problems”

Arslan and Detienne 31/31



Disjunctive MIP reformulation

o x' fori€ K =1{1,...,K}: extreme point solutions of Projg 1ym X
o yiforje L= {1,..., L}: extreme point solutions of

o Li={jeL|Hy <d-Tx}fori=1,...,K.

o A" = {a € [0,1]" ZJ’.'ZI of = 1}, for n € N: n-dimensional simplex

Proposition

conv(Y(x")) = {Ejez:,- oziyj‘a € A'ﬁf‘} fori € K.

min ¢’ x+ max {TQZ Z o/,)?’
e ieEK jeL;
st. Y ol <I; Viek
JEL|
PP
ieEK jeL;
I,=1ex=x Viek

Li€{0,1} VieK,a;€[0,1] VvieK,xex

Arslan and Detienne 1/4



A sufficient condition for equivalence conv(Y(x)) = V(x)

o Y(x) ={y € Y|Hy1 < d — Tx1, Ay < b}
o Y(x) =conv(¥)N{y|Hy1 < d — Txi} for x € X

Proposition

V(%)

If H=1, T = —/ and d = 0, then J(x) = conv(Y(x)).

Proof.

conv(Y(x))

Under the given assumptions, Y(x) = {y € Y|y1 < x1, Ay < b}.
We already have that conv(Y(x)) C Y(x).

Assume y =3, ; ¥l € Y(x) and y ¢ conv(Y(x)).

Then 7. ;o =1, and Zj\y{gxl o <1

So there is a linking constraint i and k € J such that y* > x; and ax > 0.
Since x; € {0,1} and 7* € {0,1}, x; = 0 and y/ = 1. This implies

Y=Y Jlod > agi=a>0=x
JjeT

That contradicts y € J(x) — Y(x) C conv(Y(x)).

Arslan and Detienne
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Reformulation through enumeration

@ X0 set of first-stage feasible solutions with cardinality |X°|

r

J . .
° [y] € Y(x'): set of second-stage feasible solutions corresponding to x' for i =1, ..

min max 6
X ge=

st. 0<c x+q&)7 mj [y]j € Y(x)

r

st. 0 <c x +q(e)T Hj mj € Y(x)

r r
¢ge=
max ©
st. @<0 vi=1,...,|X°
) . . j j _
0'<c'x +q@)" m m € Y(x)
gez vi=1,...,|X°
° cTx = > kez(fc — P)x;,

] J . ) _
o a¢)" [1] = Suextdisi il - decie]

Arslan and Detienne
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An instructive example

@ Consider the static robust optimization problem

min max_ (—=3+2.58)y1 + (1 —48)y2 + (—4 +6&)ys3
x€{0,1},y€{0,1}3 £€[0,1]

st. yi+y2+y3s<x

@ Optimal solution is x = y; =1, y» = y3 = 0, with objective value —0.5.

Arslan and Detienne 4/4



An instructive example

@ Adjustable robust optimization problem: Consider y to be wait-and-see decisions.

in  (=3+25 1—4€)y + (—4+6
S ey oy (3280 (a0 +( &

st. yity2+ys <x

25

@ Optimal solution is x = 1 with value -1.46, convex combination of y; =1 and y» = 1.

Arslan and Detienne 4/4
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