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Distributed asynchronous cooperative localization
with 1naccurate GNSS positions

Elwan Héry!, Philippe Xu' and Philippe Bonnifait!

Abstract— Localization remains a major issue for au-
tonomous vehicles. Accurate localization relative to the road
and other vehicles is essential for many navigation tasks.
When vehicles cooperate and exchange information through
wireless communications, they can improve mutually their
localization. This paper presents a distributed cooperative
localization method based on the exchange of Local Dynamic
Maps (LDMs). Every LDM contains dynamic information on
the pose and kinematic of all the cooperating agents. Different
sources of information such as dead-reckoning from the CAN
bus, inaccurate (i.e. biased) GNSS positions, LiDAR and road
border detections are merged using an asynchronous Kalman
filter strategy. The LDMs received from the other vehicles
are merged using a Covariance Intersection Filter to avoid
data incest. Experimental results are evaluated on platooning
scenarios. They show the importance of estimating GNSS
biases and having accurate relative measurements to improve
the absolute localization process. These results also illustrate
that the relative localization between vehicles is improved in
every LDMs even for vehicles not able to perceive surrounding
vehicles but which are instead perceived by others.

I. INTRODUCTION

Cooperative localization is a well-known issue in mobile
robotics. Many works describe this problem as a rigid
structure [1] where the different robots are the nodes and
the bearing [21] or range [20] measurements are the links.
This formulation can be used for robots in a swarm forma-
tion. Nevertheless, intelligent vehicles can also use range-
only measurements with some sensors like Ultra Wideband
technology [10]. These vehicles are often following each
other and do not always see other vehicles on their sides.
In this situation, few vehicles are visible and the cooperative
localization must be done with less observation than in a
swarm formation.

Different formulations exist to manage the fusion of the
localization information of the vehicles. A simple Extended
Kalman Filter (EKF) can be applied. However, this method
can generate data incest issues because of the redundant
use of the poses of the vehicles. Other formulations exist
to avoid this problem. Each vehicle may communicate the
raw measurements from sensors [14] instead of a fused pose.
Another solution is to use two EKF [13], [2], the first one
without the information from the other using only the sensors
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Fig. 1.
the innovation campus of UTC in Compiegne, France. The two vehicles
use GNSS localization from a Ublox 8 receiver. The direct Wifi 802.11p
communication (in yellow) is simulated in this work, as the carriageway
borders detections (in blue). A CAN bus gateway is used to get the dead-
reckoning information (in green). Finally, the follower is equipped with an
LDMRS LiDAR (in red).

Platooning of the two Renault Zoés on the test track Seville in

of the vehicle. This first filter estimates the pose of the
vehicle for the other, this pose can be communicated. The
second filter uses the sensor information of the vehicle and
the information of other vehicles to estimate the pose. This
pose is not communicated. Other data fusion filters exist to
avoid data incest. The covariance intersection filter (CIF) can
solve this problem [12]. The covariance matrix of the pose is
nevertheless often pessimist. The split covariance intersection
filter (SCIF) can give a better estimation of the covariance
matrix [11], [6], [19].

In this paper, we combine different sources of information
for localization. The most straightforward way is to use a
GNSS receiver to compute the vehicle position. However,
many low-cost GNSS receivers are inaccurate, that is they
suffer from non-centered errors that act as a bias. This bias
needs to be compensated in order to have a consistent pose
estimate [17]. On possible way to observe this bias is to
perceive geo-referenced features in a map such as using a
camera for lane markings detection [17]. Another commonly
used sensor is the LiDAR. It is often used to detect other
vehicles in the surrounding [22]. Cameras can also be
used for vehicle detection [18]. This relative measurement
between vehicles can also be used to improve the global lo-
calization of all the vehicles [16]. Adding also proprioceptive
information from the CAN bus and wireless communication
(see Fig. 1), we propose a real-time distributed asynchronous
cooperative localization with GNSS biases estimation.



Fig. 2. Pose of the ego vehicle ge (in blue), of the cooperative vehicle g,
(in green) and relative pose of the cooperative vehicle in the frame of the
ego vehicle ¢q. (in red). The signed distance to the center of the lane ne
is in light blue.

The main contribution of this work is to present experi-
mental results on how cooperative localization can improve
cooperative navigation by estimating accurate and consistent
relative localization between vehicles. This work also shows
that accurate localization can be propagated to improve
inaccurate vehicles pose estimates.

In Sec. II, the distributed asynchronous data fusion is
presented and the evolution and the different observations
are described in detail. In Sec. III the experimental platform
is presented and the results are analyzed.

II. DISTRIBUTED ASYNCHRONOUS DATA FUSION

For navigation purpose, an autonomous vehicle needs to be
able to localize itself and the surrounding vehicles as shown
in Fig. 2. The knowledge of its own absolute localization is
important for autonomous driving, but can be inaccurate. To
be able to stay on the road and avoid obstacles, the perception
of the carriageway borders and obstacles is needed. The
proposed data fusion algorithm uses a Local Dynamical
Map (LDM) [5] to represent the other traffic participants in
interaction. This map contains its own state and the states of
the other agents. In this paper, the agents are only cars. The
proposed method uses a low cost GNSS receiver along with
lane markings and carriageway borders detection to improve
localization. Therefore, the pose (position and heading) of
each agent is described in a working frame by a state vector
with an associated covariance matrix. This working frame is
defined with its origin near the area of driving of the vehicles
and two axes oriented toward the east (z axes) and the north
(y axes). The relative poses between the agents with their
covariance matrices can be computed from the LDM.

~ ~ ~ \T
The estimated state X = (X1, o X N) of the LDM
contains the states of /N agents in cooperation. Each state
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X, = (@, b;, ﬂz) contains the pose of the agent ¢; =

“\T ~ " A N\T
(i 5, 8:) . the bias B = (bui, byi)  of the GNSS
receiver of this agent and the kinematic information u; =
(vs, @i)T. We use the longitudinal speed v; and the yaw rate
; to extrapolate the pose at any given time. Therefore, the
state X; is a 7 dimensional vector.
Fig. 3 shows the asynchronous data fusion algorithm. At
the center, the state of the LDM is represented in green.
When an observation (in yellow) is sent by a source of

Fig. 3. Asynchronous data fusion. The LDM X is shared between the
different processing modules and sent to the other agents in cooperation.

information (in orange) the state is updated by the module
in blue. The state is firstly extrapolated at the observation
time using the evolution model before using the observation
model. The evolution model represents the motion of the
vehicles and the observation function links the state to the
observation. As each observation update is implemented in a
thread, a mutex protects the state while it is processed. This
method is used to avoid the loss of an observation if multiple
updates are computed in parallel.

This algorithm is fully distributed: each vehicle executes
the same algorithm and uses communication to send and
receive LDMs. The cooperative localization is improved by
this information exchange.

A. Evolution stage

When a new information (sensor measurement or LDM)
is received, the state is extrapolated at the time of this new

information before doing a Kalman update.
The evolution model uses the kinematic information of
each agent ¢ of the LDM :

Xi[tlt—a] = Xi[t-a]t—1]
v [t-1]t—1] Atcos (0; [t_1]t— 1 | +wiltoalt-1] 4Y)
v [to1t—1] Atsin (0; [t—1]t—1] + wi [t-1]t-1] §F)
wl[ 1‘13 1]At
+ 0

0
0
0
M

where At = ¢t — t_; is the elapsed time between the
observation time t and the last estimated time ¢_; of the
LDM.

Let X [t|t_1] = evo(X [t_1|t_1],At) the evolution
model and 33,,,,4¢; the covariance matrix of the model noise.
We suppose that the covariance matrix of the model noise
contains the variance of the bias noise and the longitudinal
speed and yaw rate noise which are supposed to be constant.
The model on the pose is supposed to be very accurate.



The covariance matrix estimate of the state X [t|t_1] is
approximated by a first order Taylor expansion:

Yx [tto1] = JEx [to1lt-1] JT 4 Zrmoda A (2)

where J is the Jacobian matrix of the evolution model

devo
J=— 3
DX [t_1]t 1] )

B. LDM update with ego-measurements

Once the state is predicted at exactly the same time as
the observation, it can be updated. Two update methods are
used depending on whether the information comes from the
vehicle’s sensors or from other vehicles.

1) Extended Kalman Filter: A classical Extended Kalman
Filter update is used for internal information. The innovation
Y [t] is computed from the observation Z [t], the predicted
one using the observation function obs() and the state
X [t‘t,ﬂi

Y [t] = Z[t] — obs (X [t]t1]) @

The Jacobian matrix of the observation function is then

computed as
Oobs
H= —— 5
OX [t|t_1] )
The updated state with its covariance matrix is classically
computed as follows:

Sy [t] = HIx [t HT + 3 [t] (6)
K = Sx[tit]H'S,! 1] (7
X[tlt] = X[tft—a] + KY [t] ®)
Sx[tl] = (I-KH)Sx[tt) (- KH)" )
+EKY [t KT

All the observation functions required to implement the
update of the Kalman filter are presented in the following.

2) Dead-reckoning observation function: The observation
model of the dead-reckoning (DR) data is simply the identity
for the kinematic part of the state:

obscan (X [tlt_1]) = ue [t]t_1] (10)

In practice, the high frequency of the DR sensors (e.g.
50Hz) guarantees frequent updates of the LDM.

3) GNSS observation function: One can observe experi-
mentally the presence of a bias in the GNSS measurements.
Fig. 4 pictures the error distribution for two vehicles follow-
ing each other during a 10-minute test.

The GNSS observation function involves the bias on the
position and not on the heading:

obsanss (X [tt-1]) = qe [t]t—1] + ( be [tgf‘l] ) (11

This formulation with the bias b, [t|t—1] adds a degree
of freedom to the position. Therefore, this bias is estimated
from the difference between the position estimate and the
GNSS observation of this position.
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Fig. 4.
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GNSS errors of two vehicles driving in platoon. Biases are clearly

4) Camera observation function: As the GNSS measure-
ments are biased, an observation of the environment which
is compared to a high-definition (HD)map is needed to
observe the GNSS bias. The problem of changing coordinates
between the HD map and the current GNSS system must
be handled with great care to avoid introducing errors and
maintain centimeter accuracy.

We suppose that each vehicle is equipped with a camera
able to detect and localize the carriageway borders. This
kind of sensor gives the signed distance directly between
the vehicle and the center of the lane.

The observation model of this observation needs to map-
match the pose of the ego vehicle ¢, [t|¢t_1] included in the
state of the LDM with the known map M:

[pfreneta ?freneta ﬁfrenet} = map_matCh (qg [t|t—1] ) M)

12)

The map matching algorithm gives the closest Frenet
frame from the position

Te [t|t—1]
tlt_1] = .
peteil = ()
This frame is composed of its origin pfyenet, the unit tangent
t frenet and the unit normal o frenet to the center of the
lane.

To compute the signed lateral distance n [t|t_1], one can
project the position p [t|t_1] into the normal 7 frener:

ObSCAM (X [t‘t,ﬂ) = (pe [t|t71] _pfrenet)T : ﬁ>frenet
13)
5) Relative pose observation function: The relative pose
between agent ¢ and the ego vehicle e is computed from their
absolute poses ¢; and ¢.:

obspipar (X [t[t-1]) =
cos (O [t[t—1])  sin (0 [t|t—1])
—sin (0. [t[t—1]) cos (6 [t[t—1])

0
0 | Ag (14)
0 0 1

where Ag = ¢; [t[t—1] —qe [t|t—1]- More information is given
in [9].



C. LDM update with communicated information

When the LDM of another vehicle is received, the ego-
LDM is first extrapolated at the time instant of the received
one with the same evolution stage which aligns the LDM
timestamps and compensates for the communication latency.
Please note that a Kalman update cannot be applied. Indeed,
as the agents are exchanging their states, some information
cannot be considered as independent since they can be
used several times in the data fusion process. A covariance
intersection filter is used to avoid data-incest issues.

1) Covariance Intersection Filter: The application of
this algorithm is very similar to the EKF. The difference
is that Xx [t[t_1] and Xz [t] are weighted by 1/w and
1/ (1 — w), respectively. These weights are used to find
the new covariance matrix Yx ., .. [t[f] which gives the
smallest uncertainty ellipsoid including the intersection of the
uncertainty ellipsoid of the two data to be fused. This means
that even if the two uncertainty ellipsoids are correlated, the
estimate stays consistent as the intersection is not smaller.
For example, if the two uncertainty ellipsoids are the same,
the resulting uncertainty ellipsoid remains this ellipsoid and
not a smaller one as would give a Kalman filter update.

For a given weight w, compute (using the Joseph’s form
to improve the numerical stability):

Yyolt] = H (izx [t|t_1]> HT + ﬁzz [t] (15)
K, = ézx [tlt_1] HT S5, [t] (16)
Sxoldl = (- K, (Sexblea]) (0 - KoA)
+Kwﬁ22 [t] KX 17)

Find w which minimizes a given norm of the covariance
matrix Xx , [t]t], often done using the determinant or the
trace:

arg min (norm (X, [t|t]))
we(0,1] ’

(18)

Wmin =
The updated state with its covariance matrix is given as
follows:
X [tlt-1] + K.,
S X wmin [H]t]

Y [i] (19)

min

2) Communication observation function: Let us suppose
for simplification that the agents are organized in the same
order in the different LDMs. The observation model in this
case is simply given by the identity function:

ObSCOM (X [t‘tfl]) =X [tltfl] . (20)

This update with this observation function and the co-
variance intersection filter is the key stage for cooperative
localization. In an experiment in which two vehicles were
driving in a platoon, we have observed that the biases of the
two vehicles were close to each other but did not result to the
same value (see Fig. 4). Estimating the correlation between

the two biases is complex. In [4], the biases are supposed to
be the same for all the vehicles. In this work, we choose to
model the bias of each agent as an independent bias on its
own state and estimate it during the filtering. In practice it is
not necessary to include the bias in the state exchange, as we
have assumed the biases as uncorrelated. For simplification
we exchange the whole state in our experiment.

III. EXPERIMENTAL RESULTS
A. Experimental platform

Two experimental Renault Zoe cars drove in a platoon on
a test road composed of two roundabouts linked by a straight
lane. The two vehicles run nine laps of this test track and
data were recorded. Both vehicles were equipped with a low
cost, multi-constellation (GPS, GLONASS) GNSS receiver
Ublox 8. The pose of the vehicle was provided by the Ublox
receiver using its internal automotive model. Only loose
coupling is presented in this work. The ground truth of the
poses of both vehicles were obtained by an RTK GNSS
receiver / IMU Novatel Span CPT. The dead-reckoning
information (longitudinal speed and yaw rate) was retrieved
from the CAN bus. These observations were measured by
the encoders and the gyrometer of the vehicles. The follower
was equipped with a SICK LD-MRS LiDAR. One horizontal
layer of this sensor was used to estimate the relative pose of
the leader vehicle using the algorithm described in [8], [15].
Finally, the carriageway borders detections were simulated
from the observation model applied on the ground truth
poses. A Gaussian noise with a standard deviation of 20 cm
was added to the signed lateral distance. For map matching,
we used the Lanelet projection described in [3], [7].

The data fusion was implemented with the LiDAR percep-
tion and the map-matching in python using the ROS (Robot
Operating System) framework. These algorithms run with the
dataset replay at the original speed. The proposed solution
is fast enough for real-time applications on a classical
computer.

B. Metrics

In this work, both vehicles have their own LDM in which
the leader vehicle pose ¢; and the follower vehicle pose gy
are represented. From these two absolute poses, the relative
pose of the ego vehicle in the frame of the other can be
computed using Eq. 14. In our case, the pose of the leader
in the frame of the follower /¢; for the LDM of the follower
and the pose of the follower in the frame of the leader ‘q f
for the LDM of the leader (¢, = (zk, Yk, Qk)T is the pose
of the vehicle at sample k and ¢;; denotes the ground truth).

e, is the mean of the position error for the K samples:

e — ii JCZ . Tk
P K &~ Ui Y

eg is the mean of the absolute heading error for the K

samples:
5
€p = — ‘0;: — Gk\
K k=1

@n

(22)
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Fig. 5. GNSS errors with bias estimates (in bold) for the follower on =
(in blue) and y (in black) and for the leader on x (in magenta) and y (in
red).

Finally, the consistency is computed for a probability error
of 5% with a x2 test. The consistency C corresponds to:

C=Pr {(qié — )" (Sg +50) (@ - @) < X%;0.0E)}

(23)
where x3.0 05 = 7.815 corresponds to the quantile of a x?
distribution with 3 degrees of freedom and a confidence of
95%. ¥4 is the covariance matrix of the ground truth of gy
as this ground truth is not certain even with RTK correction.
This uncertainty is not negligible when accurate LiDAR
measurements are used and must be taken into account.
In practice, C' is measured as the percentage of samples
verifying this test.

C. Biases estimation

When carriageway borders are detected and map-matched
with a high-definition map, the GNSS bias can be estimated.
Fig. 5 shows the GNSS errors and the biases estimated in
the LDM of the follower for the follower for the blue and
black curves and in the LDM of the leader for the leader for
the magenta and red curves. One can see that the biases are
well estimated and stay close to the averages of the errors
like low-pass filter. Even if some correlation can be seen
between the GNSS errors of the two Ublox receivers, the
biases are not the same. These estimated biases are different
between the vehicles and change also during the 10 min
of the experiment. One can see that the filters are able to
estimate quite accurately the biases in real-time.

Using the estimated biases, the GNSS errors can be
corrected. Fig. 6 presents these unbiased errors with esti-
mated 95% confidence intervals. The horizontal uncertainty
provided by the Ublox 8 is assimilated as the standard
deviation which leads to the same confidence intervals on
x and y directions. One can see on Fig. 6 that the error
bounds are quite pessimistic as the 5864 samples of the
dataset are all in the 95% confidence intervals. One can also
see in this figure, the periodicity of the confidence intervals.
Some trees and buildings are near the test track and therefore
the visibility of the satellites is not the same everywhere in
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Fig. 6. GNSS errors with biases correction. The 95% confidence intervals
have been computed using the uncertainty provided by the Ublox receiver,
the uncertainty of the Span CPT and the estimated standard deviation of
the biases. z is in blue and y in black for the follower and x is in magenta
and y in red for the leader.
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Fig. 7. Stanford diagrams of the relatives position errors from the relative
poses q; and !q + using a CIF with (in green) and without (in red) LiDAR
measurements.

this road. Nevertheless this visibility is similar for the two
vehicles but with a small offset as the vehicles are following
each other. The nine laps are clearly visible in this pattern.
Tab. I shows the position and heading errors and the
consistency when carriageway borders are not available for
both vehicles and therefore biases cannot be estimated. The
position error drops when the bias can be estimated and
the consistency becomes also pessimistic instead of being
inconsistent. This consistency is similar as the one of the
GNSS error when biases are compensated (see Fig. 6).

D. Cooperative localization accuracy and consistency

Without LiDAR observation both vehicles poses can be
considered as uncorrelated. Even if it seems that the state
does not improve much when LiDAR measurements are
used (see Tab. II), the relative poses computed from this
state are much more accurate. The relative position error
decreases from 0.54m and 0.66m to 0.15m and 0.43m and
the relative heading error from 3.45° and 4.02° to 1.83°
and 2.17°. This result is illustrated by (simplified) Stanford
diagrams in Fig. 7 where one can see the confidence bound in
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TABLE I

WITHOUT LIDAR MEASUREMENTS.

MEASUREMENTS AND WHEN THE FIELD OF VIEW OF THE LIDAR 1S TIGHT.

Without bias estimation ‘With bias estimation
LDM of f LDM of [ LDM of f LDM of [
g | a [7al a a1yl o] e [7al a ]a ] ey
ep (m) 2,117 1.99] 0.63| 1.99| 2.11| 0.59(| 0.22| 0.24| 0.55| 0.23| 0.22| 0.73
eg (°) 1.67] 1.36] 1.93| 1.37| 1.67| 1.95|| 2.20| 3.37| 4.04| 3.66| 2.10| 4.27
C (%) 37.1| 77.3] 100 | 75.4| 37.8] 100 || 98.4] 99.7] 100 | 99.8| 98.8| 99.6
TABLE 11

With LiDAR Without LiDAR Tight field of view
LDM of F LDM of LDM of F DM of { DM of f DM of [
g lal’al a g vl el alag l'avllag ]l al’al alag | e
ey, (m) || 0.20] 0.26] 0.15] 0.25] 0.20] 0.42]] 0.21| 0.23| 0.54] 0.23| 0.21] 0.66|| 0.21| 0.21] 0.36] 0.21] 0.21] 0.55
eo () || 123| 2.38| 1.83| 2.47] 1.15| 2.17|| 2.04] 2.65| 3.45| 3.47| 1.74| 4.02|| 1.57] 2.40| 2.85] 2.85| 1.40| 3.21
C (%) || 96.8] 95.5| 99.4] 94.9] 97.2| 984 99.4| 99.7| 100 | 99.7| 99.3| 100 || 99.6] 99.7] 99.9] 99.6| 99.7] 99.5

function of the relative position error. The confidence bound
was computed with a confidence of 95% using a Rayleigh
distribution as an approximation of the norm of the error.
The use of the LiDAR detection (in green) improves greatly
the accuracy while staying consistent as the dots are above
the black lines for more than 95% of the samples (the green
cloud is much more compact, closer to the vertical axis and
the confidence bounds are much smaller). One can see that
the relative poses computed from the state of the leader are
improved, even if this vehicle is not equipped with a LIDAR
and, therefore, not able to localize itself relatively to the
other vehicle. The communication improves the states of the
LDM of every agent if each agent is linked to others by one
relative pose only. Therefore, bidirectional perceptions are
not essential in this distributed data fusion scheme even if the
vehicle with the perception sensor, the follower in this case,
can compute a more accurate relative pose, as illustrated in
Fig. 7.

Errors stay consistent in the different scenarios. A good
estimate of the uncertainty is very important in this coop-
erative localization process, not only for reliability but also
to obtain accurate estimates of the poses. Indeed, the bias
gives a degree of freedom to the filter. If the uncertainty is
badly estimated, the bias can have difficulties to properly
converge. The communication update has been also tested
using EKF instead of CIF. We have noticed that the data
incest issues increase the rigidity of the bias which cannot
converge properly. The results are in this case inaccurate and
inconsistent.

A tight field of view is simulated for the LiDAR. In this
scenario, the relative pose is not available in the curved
parts of the road. One can see that in this case, when the
LiDAR is able to detect other vehicles only on the straight
lane, the relative pose is less accurate. Indeed, the perception
algorithm gives better results on curved roads when the back
and one side of the vehicle are in the field of view of the
LiDAR (“L-shape”) instead of only the back (in this case,
the heading of the other vehicle is difficult to estimate).

This configuration gives more accurate relative poses. One
can also see that the poses are more consistent when the
relative pose is not available on the curved roads. Indeed,
the lateral part of this pose becomes very accurate and can
become sometimes in conflict with the carriageway borders
detections. In these two configurations, it can be noticed that
the use of the perception presents the advantage to be used
with only two vehicles minimum. In many other works using
only ranges or bearings [21], [20] more vehicles are needed
to be able to build the rigid structure [1] from these relative
constraints.

E. Unavailability of carriageway borders

Two other scenarios are presented to test the robustness of
this cooperative localization when perception of carriageway
borders is not available.

One can see in Tab. III that even if one vehicle cannot
detect the carriageway borders (and therefore estimate by
itself its own GNSS bias), this bias can be estimated using the
pose of the other vehicle and the relative pose between the
two vehicles. The consistencies given when the carriageway
borders are not available for the follower are less consistent
than for the leader. Indeed the transformation from the
leader frame to the follower frame presents more non-
linearity issues than from the follower frame to the leader
frame. Nevertheless, the relative poses stay consistent in both
scenarios.

IV. CONCLUSION

This work has presented a cooperative localization archi-
tecture by state exchange of traffic participants. It is based on
EKF and CIF to manage the correlation between the state of
the different vehicles. The state of each vehicle is included in
the LDM which is essential for its own navigation tasks. In
this process, multiple sources of information are fused: dead-
reckoning from the CAN bus, GNSS pose, relative poses
between vehicles computed from LiDAR scans, carriageway



TABLE III
POSITION e, AND HEADING ey ERROR AND CONSISTENCY C' WHEN CARRIAGEWAY BORDERS ARE NOT AVAILABLE FOR THE FOLLOWER OR FOR THE

LEADER.
Carriageway borders available Carriageway borders not available Carriageway borders not available
for both vehicles for the follower for the leader

LDM of f LDM of [ LDM of f LDM of [ LDM of f LDM of [
g | o [Ta ] a ar | Yar o | o [Ta ] a T o | o [Ta ]l a | a [y
ep (M) 020 | 026 | 0.15] 0.25| 020 | 042 || 0.23 | 028 | 0.15] 026 | 0.24 | 043 || 0.20 | 0.39 | 0.15 | 0.39 | 0.21 | 0.32
ey (°) 123 1 238 | 1.83 | 247 | 1.15| 217 || 1.35| 247 | 1.82 | 255 | 1.26 | 254 || 1.54 | 258 | 1.79 | 2.26 | 1.47 | 1.66
C (%) 96.8 | 955 | 994 | 949 | 97.2| 984 || 904 | 93.7| 993 | 93.2 | 90.6 | 97.9 || 96.4 | 94.0 | 99.5 | 93.5 | 96.7 | 98.5

borders measured by a camera and finally the LDMs of
other vehicles received by the communication. Experimental
results have shown that the use of a LiDAR to link the
poses of the different vehicles improves the relative poses
computed from the states of the LMDs. Therefore, platoon
navigation is more accurate and safer. We have also shown
in this work than, even if the carriageway borders are not
available for one of the vehicles, the cooperation gives it
the capacity to estimate its GNSS bias and improve its own
localization.

In future works, this cooperative localization will be tested
with more than two vehicles.
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