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CONVERGENCE ANALYSIS OF A LASSERRE HIERARCHY OF
UPPER BOUNDS FOR POLYNOMIAL MINIMIZATION ON THE

SPHERE

Etienne de Klerk ∗ Monique Laurent †

April 19, 2019

ABSTRACT

We study the convergence rate of a hierarchy of upper bounds for polynomial minimization prob-
lems, proposed by Lasserre [SIAM J. Optim. 21(3) (2011), pp. 864 − 885], for the special case
when the feasible set is the unit (hyper)sphere. The upper bound at level r ∈ N of the hierarchy
is defined as the minimal expected value of the polynomial over all probability distributions on the
sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r
with respect to the surface measure.

We show that the exact rate of convergence is Θ(1/r2), and explore the implications for the related
rate of convergence for the generalized problem of moments on the sphere.

Keywords polynomial optimization on sphere · Lasserre hierarchy · semidefinite programming · generalized
eigenvalue problem

AMS subject classification 90C22; 90C26; 90C30

1 Introduction

We consider the problem of minimizing an n-variate polynomial f : Rn → R over a compact set K ⊆ Rn, i.e., the
problem of computing the parameter:

fmin,K := min
x∈K

f(x). (1)

In this paper we will focus on the case when K is the unit sphere: K = Sn−1 = {x ∈ Rn : ‖x‖ = 1}, in which case
we will omit the subscript K and simply write fmin = minx∈Sn−1 f(x).

Problem (1) is in general a computationally hard problem, already for simple sets K like the hypercube, the standard
simplex, and the unit ball or sphere. For instance, the problem of finding the maximum cardinality α(G) of a stable
set in a graph G = ([n], E) can be expressed as optimizing a quadratic polynomial over the standard simplex [19], or
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a degree 3 polynomial over the unit sphere [20]:

1

α(G)
= min

x∈Rn

{
xT (I +AG)x : x ≥ 0,

n∑
i=1

xi = 1
}

= min
y∈Sn−1

 ∑
i 6=j:{i,j}∈E

y2
i y

2
j +

∑
i∈[n]

y4
i

 ,

√
2

3
√

3

√
1− 1

α(G)
= max

(y,z)∈Sn+m−1

∑
ij∈E

yiyjzij ,

where AG is the adjacency matrix of G, E is the set of non-edges of G and m = |E|. Other applications of polyno-
mial optimization over the unit sphere include deciding whether homogeneous polynomials are positive semidefinite.
Indeed, a homogeneous polynomial f is defined as positive semidefinite precisely if

fmin = min
x∈Sn−1

f(x) ≥ 0,

and positive definite if the inequality is strict; see e.g. [23]. As special case, one may decide if a symmetric matrix
A = (aij) ∈ Rn×n is copositive, by deciding if the associated form f(x) =

∑
i,j∈[n] aijx

2
ix

2
j is positive semidefinite;

see, e.g. [21].

Another special case is to decide the convexity of a homogeneous polynomial f , by considering the parameter

min
(x,y)∈S2n−1

yT∇f(x)y,

which is nonnegative if and only if f is convex. This decision problem is known to be NP-hard, already for degree 4
forms [1].

As shown by Lasserre [16], the parameter (1) can be reformulated via the infinite dimensional program

fmin,K = inf
h∈Σ[x]

∫
K

h(x)f(x)dµ(x) s.t.
∫
K
h(x)dµ(x) = 1, (2)

where Σ[x] denotes the set of sums of squares of polynomials, and µ is a given Borel measure supported on K. Given
an integer r ∈ N, by bounding the degree of the polynomial h ∈ Σ[x] by 2r, Lasserre [16] defined the parameter:

f
(r)

K := min
h∈Σ[x]r

∫
K

h(x)f(x)dµ(x) s.t.
∫
K
h(x)dµ(x) = 1, (3)

where Σ[x]r consists of the polynomials in Σ[x] with degree at most 2r. Here we use the ‘overline’ symbol to indicate
that the parameters provide upper bounds for fmin,K , in contrast to the parameters f (r) in (9) below, which provide
lower bounds for it.

Since sums of squares of polynomials can be formulated using semidefinite programming, the parameter (3) can be
expressed via a semidefinite program. In fact, since this program has only one affine constraint, it even admits an
eigenvalue reformulation [16], which will be mentioned in (12) in Section 2.2 below. Of course, in order to be able
to compute the parameter (3) in practice, one needs to know explicitly (or via some computational procedure) the
moments of the reference measure µ on K. These moments are known for simple sets like the simplex, the box, the
sphere, the ball and some simple transforms of them (they can be found, e.g., in Table 1 in [10]).

As a direct consequence of the formulation (2), the bounds f
(r)

K converge asymptotically to the global minimum fmin,K

when r → ∞. How fast the bounds converge to the global minimum in terms of the degree r has been investigated
in the papers [12, 7, 9], which show, respectively, a convergence rate in O(1/

√
r) for general compact K (satisfying

a minor geometric condition), a convergence rate in O(1/r) when K is a convex body, and a convergence rate in
O(1/r2) when K is the box [−1, 1]n. In these works the reference measure µ is the Lebesgue measure, except for the
box [−1, 1]n where more general measures are considered (see Theorem 3 below for details).
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In this paper we are interested in analyzing the worst-case convergence of the bounds (3) in the case of the unit sphere
K = Sn−1, when selecting as reference measure the surface (Haar) measure dσ(x) on Sn−1. We let σn−1 denote the
surface measure of Sn−1, so that dσ(x)/σn−1 is a probability measure on Sn−1, with

σn−1 :=

∫
Sn−1

dσ(x) =
2π

n
2

Γ
(
n
2

) . (4)

(See, e.g., [6, relation (2.2.3)].) To simplify notation we will throughout omit the subscript K = Sn−1 in the parame-
ters (1) and (3), which we simply denote as

fmin = min
x∈Sn−1

f(x), f
(r)

= inf
h∈Σ[x]r

{∫
Sn−1

h(x)f(x)dσ(x) :

∫
Sn−1

h(x)dσ(x) = 1
}
. (5)

Example 1. Consider the minimization of the Motzkin form

f(x1, x2, x3) = x6
3 + x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3

on S2. This form has 12 minimizers on the sphere, namely 1√
3
(±1,±1,±1) as well as (±1, 0, 0) and (0,±1, 0), and

one has fmin = 0.

In Table 1 we give the bounds f
(r)

for the Motzkin form for r ≤ 9. In Figure 1 we show a contour plot of the Motzkin

r 0 1 2 3 4 5 6 7 8 9
f

(r)
0.1714 0.0952 0.0519 0.0457 0.0287 0.0283 0.0193 0.0177 0.0139 0.0122

Table 1: Upper bounds for the Motzkin form

form on the sphere (top left), as well as a contour plot of the optimal density function for r = 3 (top right), r = 6
(bottom left), and r = 9 (bottom right). In the figure, the red end of the spectrum denotes higher function values.
Some local maximimizers of the Motzkin form are visible that correspond to |x3| = 1 (at the poles) and x3 = 0 (on
the equator).

When r = 3 and r = 6, the modes of the optimal density are at the global minimizers (±1, 0, 0) and (0,±1, 0) (one
may see the contours of two of these modes in one hemisphere). On the other hand, when r = 9, the mass of the
distribution is concentrated at the 8 global minimizers 1√

3
(±1,±1,±1) (one may see 4 of these in one hemisphere),

and there are no modes at the global minimizers (±1, 0, 0) and (0,±1, 0).

It is also illustrative to do the same plots using spherical coordinates:

x1 = sin θ sinφ

x2 = sin θ cosφ

x3 = cos θ

θ ∈ [0, π]

φ ∈ [0, 2π].

In Figure 2 we plot the Motzkin form in spherical coordinates (top left), as well as the optimal density function that
corresponds to r = 3 (top right), r = 6 (bottom left), and r = 9 (bottom right). For example, when r = 9 one can see
the 8 modes (peaks) of the density that correspond to the 8 global minimizers 1√

3
(±1,±1,±1). (Note that the peaks

at φ = 0 and φ = 2π correspond to the same mode of the density, due to periodicity.) Likewise when r = 3 and r = 6
one may see 4 modes corresponding to (±1, 0, 0) and (0,±1, 0).

The convergence rate of the bounds f
(r)

was investigated by Doherty and Wehner [4], who showed

f
(r) − fmin = O

(
1

r

)
(6)

when f is a homogeneous polynomial. As we will briefly recap in Section 2.1, their result follows in fact as a byproduct
of their analysis of another Lasserre hierarchy of bounds for fmin, namely the lower bounds (9) below.

Our main contribution in this paper is to show that the convergence rate of the bounds f
(r)

is O(1/r2) for any
polynomial f and, moreover, that this analysis is tight for any (nonzero) linear polynomial f . This is summarized in
the following theorem.

3
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Figure 1: Contour plots of the Motzkin form on the sphere (top left) and optimal density for r = 3 (top right), r = 6
(bottom left), and r = 9 (bottom right).

Theorem 1. (i) For any polynomial f we have

f
(r) − fmin = O

(
1

r2

)
. (7)

(ii) For any (nonzero) linear polynomial f we have

f
(r) − fmin = Ω

(
1

r2

)
. (8)

Let us say a few words about the proof technique. For the first part (i), our analysis relies on the following two basic
steps: first, we observe that it suffices to consider the case when f is linear (which follows using Taylor’s theorem), and
then we show how to reduce to the case of minimizing a linear univariate polynomial over the interval [−1, 1], where
we can rely on the analysis completed in [9]. For the second part (ii), by exploiting a connection recently mentioned
in [18] between the bounds (3) and cubature rules, we can rely on known results for cubature rules on the unit sphere
to show tightness of the bounds.

Organization of the paper. In Section 2 we recall some previously known results that are most relevant to this
paper. First we give in Section 2.1 a brief recap of the approach of Doherty and Wehner [4] for analysing bounds for
polynomial optimization over the unit sphere. After that, we recall our earlier results about the quality of the bounds
(3) in the case of the interval K = [−1, 1]. Section 3 contains our main results about the convergence analysis of
the bounds (3) for the unit sphere: after showing in Section 3.1 that the convergence rate is in O(1/r2) we prove in
Section 3.2 that the analysis is tight for nonzero linear polynomials.
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Figure 2: Plots of the Motzkin form on the sphere (top left) and optimal density for r = 3 (top right), r = 6 (bottom
left), and r = 9 (bottom right), in spherical coordinates.

2 Preliminaries

2.1 The approach of Doherty & Wehner for the sphere

Here we briefly sketch the approach followed by Doherty and Wehner [4] for showing the convergence rate O(1/r)
mentioned above in (6). Their approach applies to the case when f is a homogeneous polynomial, which enables using
the tensor analysis framework. A first observation made in [4] is that we may restrict to the case when f has even
degree, because if f is homogeneous with odd degree d then we have

max
x∈Sn−1

f(x) =
dd/2

(d+ 1)(d+1)/2
max

(x,xn+1)∈Sn
xn+1f(x).

So we now assume that f is homogeneous with even degree d = 2a.

The approach in [4] in fact also permits to analyze the following hierarchy of lower bounds on fmin:

f (r) := sup
λ∈R

λ s.t. f(x)− λ ∈ Σ[x]r + (1− ‖x‖2)R[x], (9)

which are the usual sums-of-squares bounds for polynomial optimization (as introduced in [14, 22]). Here and through-
out, ‖x‖ denotes the Euclidean norm for real vectors. One can verify that (9) can be reformulated as

f (r) = sup
λ∈R

λ s.t. (f(x)− λ‖x‖2a)‖x‖2r−2a ∈ Σ[x]r + (1− ‖x‖2)R[x]

= sup
λ∈R

λ s.t. f(x)‖x‖2r−2a − λ‖x‖2r ∈ Σ[x]
(10)

5
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(see [11]). For any integer r ∈ N we have
f (r) ≤ fmin ≤ f

(r)
.

The following error estimate is shown on the range f
(r) − f (r) in [4].

Theorem 2. [4] Assume n ≥ 3 and f is a homogeneous polynomial of degree 2a. There exists a constant Cn,a
(depending only on n and a) such that, for any integer r ≥ a(2a2 + n− 2)− n/2, we have

f
(r) − f (r) ≤ Cn,a

r
(fmax − fmin),

where fmax is the maximum value of f taken over Sn−1.

The starting point in the approach in [4] is reformulating the problem in terms of tensors. For this we need the following
notion of ‘maximally symmetric matrix’. Given a real symmetric matrix M = (Mi,j) indexed by sequences i ∈ [n]a,
M is called maximally symmetric if it is invariant under action of the permutation group Sym(2a) after viewing M as
a 2a-tensor acting on Rn. This notion is the analogue of the ‘moment matrix’ property, when expressed in the tensor
setting. To see this, for a sequence i = (i1, . . . , ia) ∈ [n]a, define α(i) = (α1, . . . , αn) ∈ Nn by letting α` denote the
number of occurrences of ` within the multi-set {i1, . . . , ia} for each ` ∈ [n], so that a = |α| =

∑n
i=1 αi. Then, the

matrix M is maximally symmetric if and only if each entry Mi,j depends only on the n-tuple α(i) + α(j). Following
[4] we let MSym((Rn)⊗a) denote the set of maximally symmetric matrices acting on (Rn)⊗a.

It is not difficult to see that any degree 2a homogeneous polynomial f can be represented in a unique way as

f(x) = (x⊗a)TZfx
⊗a,

where the matrix Zf is maximally symmetric.

Given an integer r ≥ a, define the polynomial fr(x) = f(x)‖x‖2r−2a, thus homogeneous with degree 2r. The
parameter (10) can now be reformulated as

f (r) = sup{〈Zfr ,M〉 : M ∈ MSym((Rn)⊗r), M � 0, Tr(M) = 1}. (11)

The approach in [4] can be sketched as follows. Let M be an optimal solution to the program (11) (which exists since
the feasible region is a compact set). Then the polynomialQM (x) := (x⊗r)TMx⊗r is a sum of squares sinceM � 0.
After scaling, we obtain the polynomial

h(x) = QM (x)/

∫
Sn−1

QM (x)dσ(x) ∈ Σ[x]r,

which defines a probability density function on Sn−1, i.e.,
∫
Sn−1 h(x)dσ(x) = 1. In this way h provides a feasible

solution for the program defining the upper bound f
(r)

. This thus implies the chain of inequalities

〈Zfr ,M〉 = f (r) ≤ fmin ≤ f
(r) ≤

∫
Sn−1

f(x)h(x)dσ(x).

The main contribution in [4] is their analysis for bounding the range between the two extreme values in the above
chain and showing Theorem 2, which is done by using, in particular, Fourier analysis on the unit sphere.

Using different techniques we will show below a rate of convergence in O(1/r2) for the upper bounds f
(r)

, thus
stronger than the rate O(1/r) in Theorem 2 above and applying to any polynomial (not necessarily homogeneous).
On the other hand, while the constant involved in Theorem 2 depends only on the degree of f and the dimension n,
the constant in our result depends also on other characteristics of f (its first and second order derivatives). A key
ingredient in our analysis will be to reduce to the univariate case, namely to the optimization of a linear polynomial
over the interval [−1, 1]. Thus we next recall the relevant known results that we will need in our treatment.

2.2 Convergence analysis for the interval [−1, 1]

We start with recalling the following eigenvalue reformulation for the bound (3), which holds for general K compact
and plays a key role in the analysis for the case K = [−1, 1]. For this consider the following inner product

(f, g) 7→
∫
K

f(x)g(x)dµ(x)

6
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on the space of polynomials onK and let {bα(x) : α ∈ Nn} denote a basis of this polynomial space that is orthonormal
with respect to the above inner product; that is,

∫
K
bα(x)bβ(x)dµ(x) = δα,β . Then the bound (2) can be equivalently

rewritten as

f
(r)

= λmin(Af ), where Af =

(∫
K

f(x)bα(x)bβ(x)dµ(x)

)
α,β∈Nn
|α|,|β|≤r

(12)

(see [16, 7]). Using this reformulation we could show in [7] that the bounds (3) have a convergence rate in O(1/r2)
for the case of the interval K = [−1, 1] (and as an application also for the n-dimensional box [−1, 1]n).

This result holds for a large class of measures on [−1, 1], namely those which admit a weight function w(x) =
(1− x)a(1 + x)b (with a, b > −1) with respect to the Lebesgue measure. The corresponding orthogonal polynomials
are known as the Jacobi polynomials P a,bd (x) where d ≥ 0 is their degree. The case a = b = −1/2 (resp., a = b = 0)
corresponds to the Chebychev polynomials (resp., the Legendre polynomials), and when a = b = λ − 1/2, the
corresponding polynomials are the Gegenbauer polynomials Cλd (x) where d is their degree. See, e.g., [6, Chapter 1]
for a general reference about orthogonal polynomials.

The key fact is that, in the case of the univariate polynomial f(x) = x, the matrix Af in (12) has a tri-diagonal
shape, which follows from the 3-term recurrence relationship satisfied by the orthogonal polynomials. In fact, Af
coincides with the so-called Jacobi matrix of the orthogonal polynomials in the theory of orthogonal polynomials and
its eigenvalues are given by the roots of the degree r + 1 orthogonal polynomial (see, e.g. [6, Chapter 1]). This fact is
key to the following result.

Theorem 3. [7] Consider the measure dµ(x) = (1 − x)a(1 + x)bdx on the interval [−1, 1], where a, b > −1. For

the univariate polynomial f(x) = x, the parameter f
(r)

is equal to the smallest root of the Jacobi polynomial P a,br+1

(with degree r + 1). In particular, f
(r)

= − cos
(

π
2r+2

)
when a = b = −1/2. For any a, b > −1 we have

f
(r) − fmin = f

(r)
+ 1 = Θ

( 1

r2

)
.

3 Convergence analysis for the unit sphere

In this section we analyze the quality of the bounds f
(r)

when minimizing a polynomial f over the unit sphere Sn−1.
In Section 3.1 we show that the range f

(r) − fmin is in O(1/r2) and in Section 3.2 we show that the analysis is tight
for linear polynomials.

3.1 The bound O(1/r2)

We first deal with the n-variate linear (coordinate) polynomial f(x) = x1 and after that we will indicate how the
general case can be reduced to this special case. The key idea is to get back to the analysis in Section 2.2, for the
interval [−1, 1] with an appropriate weight function. We begin with introducing some notation we need.

To simplify notation we set d = n − 1 (which also matches the notation customary in the theory of orthogonal
polynomials where d usually is the number of variables). We let Bd = {x ∈ Rd : ‖x‖ ≤ 1} denote the unit ball in Rd,
where ‖x‖2 =

∑d
i=1 x

2
i for x ∈ Rd. Given a scalar λ > −1/2, define the d-variate weight function

wd,λ(x) = (1− ‖x‖2)λ−1/2 (13)

(well-defined when ‖x‖ < 1) and set

Cd,λ :=

∫
Bd
wd,λ(x1, . . . , xd)dx1 · · · dxd =

πd/2Γ
(
λ+ 1

2

)
Γ
(
λ+ d+1

2

) (14)

so that C−1
d,λwd,λ(x1, . . . , xd)dx1 · · · dxd is a probability measure over the unit ball Bd. See, e.g., [6, Section 2.3.2] or

[2, Section 11].

We will use the following simple lemma, which indicates how to integrate the d-variate weight function wd,λ along
d− 1 variables.

7
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Lemma 1. Fix x1 ∈ [−1, 1] and let d ≥ 2. Then we have:∫
{(x2,...,xd):x2

2+...+x2
d≤1−x2

1}
wd,λ(x1, . . . , xd)dx2 · · · dxd = Cd−1,λ(1− x2

1)λ+ d−2
2 ,

which is thus equal to Cd−1,λw1,λ+(d−1)/2(x1).

Proof. Change variables and set uj = xj/
√

1− x2
1 for 2 ≤ j ≤ d. Then we have wd,λ(x) = (1 − x2

1 − x2
2 + . . . −

x2
d)
λ− 1

2 = (1− x2
1)λ−

1
2 (1− u2

2 − . . .− u2
d)
λ− 1

2 and dx2 · · · dxd = (1− x2
1)

d−1
2 du2 · · · dud. Putting things together

and using relation (14) we obtain the desired result.

We also need the following lemma, which relates integration over the unit sphere Sd ⊆ Rd+1 and integration over the
unit ball Bd ⊆ Rd and can be found, e.g., in [6, Lemma 3.8.1] and [2, Lemma 11.7.1].

Lemma 2. Let g be a (d+ 1)-variate integrable function defined on Sd and d ≥ 1. Then we have:∫
Sd
g(x)dσ(x) =

∫
Bd

(
g(x,

√
1− ‖x‖2) + g(x,−

√
1− ‖x‖2)

) dx1 · · · dxd√
1− ‖x‖2

.

By combining these two lemmas we obtain the following result.

Lemma 3. Let g(x1) be a univariate polynomial and d ≥ 1. Then we have:

σ−1
d

∫
Sd
g(x1)dσ(x1, . . . , xd+1) = C−1

1,ν

∫ 1

−1

g(x1)w1,ν(x1)dx1,

where we set ν = d−1
2 .

Proof. Applying Lemma 2 to the function x ∈ Rd+1 7→ g(x1) we get

σ−1
d

∫
Sd
g(x1)dσ(x1, . . . , xd+1) = 2σ−1

d

∫
Bd
g(x1)wd,0(x)dx1 · · · dxd. (15)

If d = 1 then ν = 0 and the right hand side term in (15) is equal to

2σ−1
1

∫ 1

−1

g(x1)w1,0(x1)dx1 = C−1
1,0

∫ 1

−1

g(x1)w1,0(x1)dx1,

as desired, since 2σ−1
1 C1,0 = 1 using σ1 = 2π and C1,0 = π (by (14) and Γ(1/2) =

√
π). Assume now d ≥ 2. Then

the right hand side in (15) is equal to

2σ−1
d

∫ 1

−1

g(x1)

(∫
x2
2+...+x2

d≤1−x2
1

wd,0(x1, . . . , xd)dx2 · · · dxd

)
dx1

= 2σ−1
d Cd−1,0

∫ 1

−1

g(x1)(1− x2
1)(d−2)/2dx1 = 2σ−1

d Cd−1,0

∫ 1

−1

g(x1)w1,ν(x1)dx1,

where we have used Lemma 1 for the first equality. Finally we verify that the constant 2σ−1
d Cd−1,0C1,ν is equal to 1:

2σ−1
d Cd−1,0C1,ν = 2

Γ
(
d+1

2

)
2π

d+1
2

π
d−1
2 Γ

(
1
2

)
Γ
(
d
2

) π
1
2 Γ
(
d
2

)
Γ
(
d+1

2

) = 1

(using relations (4) and (14)), and thus we arrive at the desired identity.

We can now complete the convergence analysis for the minimization of x1 on the unit sphere.

Lemma 4. For the minimization of the polynomial f(x) = x1 over Sd with d ≥ 1, the order r upper bound (3)
satisfies

f
(r)

= −1 +O

(
1

r2

)
.

8
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Proof. Let h(x1) be an optimal univariate sum-of-squares polynomial of degree 2r for the order r upper bound corre-
sponding to the minimization of x1 over [−1, 1], when using as reference measure on [−1, 1] the measure with weight
function w1,ν(x1)C−1

1,ν and ν = (d − 1)/2 (thus ν > −1). Applying Lemma 3 to the univariate polynomials h(x1)

and x1h(x1), we obtain

σ−1
d

∫
Sd
h(x1)dσ(x) = C−1

1,ν

∫ 1

−1

h(x1)w1,ν(x1)dx1 = 1

and

f
(r) ≤ σ−1

d

∫
Sd
x1h(x1)dσ(x) = C−1

1,ν

∫ 1

−1

x1h(x1)w1,ν(x1)dx1.

Since the function x1 has the same global minimum −1 over [−1, 1] and over the sphere Sd, we can apply Theorem 3
to conclude that

f
(r)

+ 1 ≤ 1 + C−1
1,ν

∫ 1

−1

x1h(x1)w1,ν(x1)dx1 = O
( 1

r2

)
.

We now indicate how the analysis for an arbitrary polynomial f reduces to the case of the linear coordinate polynomial
x1. To see this, suppose a ∈ Sn−1 is a global minimizer of f over Sn−1. Then, using Taylor’s theorem, we can upper
estimate f as follows:

f(x) ≤ f(a) +∇f(a)T (x− a) + 1
2Cf‖x− a‖

2 ∀x ∈ Sn−1

= f(a) +∇f(a)T (x− a) + Cf (1− aTx) =: g(x) ∀x ∈ Sn−1,

setting Cf = maxx∈Sn−1 ‖∇2f(x)‖2. Note that the upper estimate g(x) is a linear polynomial, which has the same

minimum value as f(x) on Sn−1, namely f(a) = fmin = gmin. From this it follows that f
(r) − fmin ≤ g(r) − gmin

and thus we may restrict to analyzing the bounds for a linear polynomial.

Next, assume f is a linear polynomial, of the form f(x) = cTx with (up to scaling) ‖c‖ = 1. We can then apply a
change of variables to bring f(x) into the form x1. Namely, let U be an orthogonal n× n matrix such that Uc = e1.
Then the polynomial g(x) := f(UTx) = x1 has the desired form and it has the same minimum value −1 over Sn−1

as f(x). As the sphere is invariant under any orthogonal transformation it follows that f
(r)

= g(r) = −1 + O(1/r2)
(applying Lemma 4 to g(x) = x1). Summarizing, we have shown the following.
Theorem 4. For the minimization of any polynomial f(x) over Sn−1 with n ≥ 2, the order r upper bound (3) satisfies

f
(r) − fmin = O

(
1

r2

)
.

Note the difference to Theorem 2 where the constant depends only on the degree of f and the number n of variables;
here the constant in O(1/r2) does also depend on the polynomial f , namely it depends on the norm of ∇f(a) at a
global minimizer a of f in Sn−1 and on Cf = maxx∈Sn−1 ‖∇2f(x)‖2.

3.2 The analysis is tight for linear polynomials

In this section we show — through an example — that the convergence rate cannot be better than Ω
(
1/r2

)
. The

example is simply minimizing x1 over the sphere Sn−1. The key tool we use is a link between the bounds f
(r)

and
properties of some known cubature rules on the unit sphere. This connection, recently mentioned in [18], holds for
any compact set K. It goes as follows.

Suppose the points x(1), . . . , x(N) ∈ K and the weights w1, . . . , wN > 0 provide a (positive) cubature rule for K for
a given measure µ, which is exact up to degree d+ 2r, that is,∫

K

g(x)dµ(x) =

N∑
i=1

wig(x(i))

for all polynomials g with degree at most d+ 2r. Then, for any polynomial f with degree at most d, we have

f
(r) ≥

N
min
i=1

f(x(i)). (16)
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The argument is simple: if h ∈ Σ[x]r is an optimal sum-of-squares density for the parameter f
(r)

, then we have

1 =

∫
K

h(x)dµ(x) =

N∑
i=1

wih(x(i)),

f
(r)

=

∫
K

f(x)h(x)dµ(x) =

N∑
i=1

wif(x(i))h(x(i)) ≥ min
i
f(x(i)).

As a warm-up we consider the case n = 2, where we can use the cubature rule in Theorem 5 below for the unit
circle. We use spherical coordinates (x1, x2) = (cos θ, sin θ) to express a polynomial f in x1, x2 as a polynomial g in
cos θ, sin θ.
Theorem 5. [2, Proposition 6.5.1] For each d ∈ N, the cubature formula

1

2π

∫ 2π

0

g(θ)dθ =
1

d

d−1∑
j=0

g

(
2πj

d

)
is exact for all g ∈ span{1, cos θ, sin θ, . . . , cos(dθ), sin(dθ)}, i.e. for all polynomials of degree at most d, restricted
to the unit circle.

Using this cubature rule on S1 we can lower bound the parameters f
(r)

for the minimization of f(x) = x1 over S1.
Namely, by setting x1 = cos θ, we derive directly from the above theorem combined with relation (16) that

f
(r) ≥ min

0≤j≤2r
cos
( 2πj

2r + 1

)
= cos

( 2πr

2r + 1

)
= −1 + Ω

( 1

r2

)
.

This reasoning extends to any dimension n ≥ 2, by using product-type cubature formulas on the sphere Sn−1. In
particular we will use the cubature rule described in [2, Theorem 6.2.3], see Theorem 7 below.

We will need the generalized spherical coordinates given by

x1 = r sin θn−1 · · · sin θ3 sin θ2 sin θ1

x2 = r sin θn−1 · · · sin θ3 sin θ2 cos θ1

x3 = r sin θn−1 · · · sin θ3 cos θ2

...
xn = r cos θn−1,

 (17)

where r ≥ 0 (r = 1 on Sn−1), 0 ≤ θ1 ≤ 2π, and 0 ≤ θi ≤ π (i = 2, . . . , n− 1).

To define the nodes of the cubature rule on Sn−1 we need the Gegenbauer polynomials Cλd (x), where λ > −1/2.
Recall that these are the orthogonal polynomials with respect to the weight function

w1,λ(x) = (1− x2)λ−1/2 x ∈ (−1, 1)

on [−1, 1]. We will not need the explicit expressions for the polynomials Cλd (x), we only need the following informa-
tion about their extremal roots, shown in [7] (for general Jacobi polynomials, using results of [3, 5]). It is well known
that each Cλd (x) has d distinct roots, lying in (−1, 1).

Theorem 6. Denote the roots of the polynomial Cλd (x) by t(λ)
1,d < . . . < t

(λ)
d,d . Then, t(λ)

1,d + 1 = Θ(1/d2).

The cubature rule we will use may now be stated.
Theorem 7. [2, Theorem 6.2.3] Let f : Sn−1 → R be a polynomial of degree at most 2d− 1, and let

g(θ1, . . . , θn−1) := f(x1, . . . , xn),

be the expression of f in the generalized spherical coordinates (17). Then∫
Sn−1

f(x)dσ(x) =
π

d

2d−1∑
k=0

d∑
j2=1

· · ·
d∑

jn−1=1

n−1∏
i=2

µ
((i−1)/2)
i,d g

(
πk

d
, θ

(1/2)
j2,d

, . . . , θ
((n−2)/2)
jn−1,d

)
, (18)

where cos
(
θ

(λ)
j,d

)
:= t

(λ)
j,d and the parameters µ((i−1)/2)

i,d are positive scalars as in relation (6.2.3) of [2].
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We can now show the tightness of the convergence rate Ω(1/r2) for the minimization of a coordinate polynomial on
Sn−1.
Theorem 8. Consider the problem of minimizing the coordinate polynomial xn on the unit sphere Sn−1 with n ≥ 2.
The convergence rate for the parameters (3) satisfies

f
(d) − fmin = f

(d)
+ 1 = Ω

(
1

d2

)
.

Proof. We have f(x1, . . . , xn) = xn, so that g(θ1, . . . , θn−1) = cos θn−1. Using (16) we obtain that

f
(r) ≥ min

1≤j≤d
cos θ

((n−2)/2)
j,d = min

1≤j≤d
t
((n−2)/2)
j,d = t

((n−2)/2)
1,d = −1 + Ω

( 1

d2

)
,

where we use the fact that t(λ)
1,d + 1 = Θ(1/d2) (Theorem 6).

4 Implications for the generalized problem of moments

In this section, we describe the implications of our results for the generalized problem of moments (GPM), defined as
follows for a compact set K ⊂ Rn.

val := inf
ν∈M(K)+

{∫
K

f0(x)dν(x) :

∫
K

fi(x)dν(x) = bi ∀i ∈ [m]

}
, (19)

where

• the functions fi (i = 0, . . . ,m) are continuous on K;
• M(K)+ denotes the convex cone of probability measures supported on the set K;
• the scalars bi ∈ R (i ∈ [m]) are given.

As before, we are interested in the special case where K = Sn−1. This special case is already of independent interest,
since it contains the problem of finding cubature schemes for numerical integration on the sphere, see e.g. [10] and
the references therein. Our main result in Theorem 4 has the following implication for the GPM on the sphere, as a
corollary of the following result in [13] (which applies to any compact K, see also [10] for a sketch of the proof in the
setting described here).
Theorem 9 (De Klerk-Postek-Kuhn [13]). Assume that f0, . . . , fm are polynomials, K is compact, µ is a Borel
measure supported on K, and the GPM (19) has an optimal solution. Given r ∈ N, define the parameter

∆(r) = min
h∈Σr

max
i∈{0,1,...,m}

∣∣ ∫
K

fi(x)h(x)dµ(x)− bi
∣∣,

setting b0 = val. If, for any polynomial f , we have

f
(r)

K − fmin = O(ε(r)),

where limr→∞ ε(r) = 0, then the parameters ∆(r) satisfy: ∆(r) = O(
√
ε(r)).

As a consequence of our main result in Theorem 4, combined with Theorem 10, we immediately obtain the following
corollary.
Corollary 1. Assume that f0, . . . , fm are polynomials, K = Sn−1, and the GPM (19) has an optimal solution. Then,
for any integer r ∈ N, there is an hr ∈ Σr such that∣∣∣∣∫

Sn−1

f0(x)hr(x)dσ(x)− val
∣∣∣∣ = O(1/r),

∣∣∣∣∫
Sn−1

fi(x)hr(x)dσ(x)− bi
∣∣∣∣ = O(1/r) ∀i ∈ [m].

Minimization of a rational function onK is a special case of the GPM where we may prove a better rate of convergence.
In particular, we now consider the global optimization problem:

val = min
x∈K

p(x)

q(x)
, (20)

11
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where p, q are polynomials such that q(x) > 0 ∀ x ∈ K, and K ⊆ Rn is compact.

It is well-known that one may reformulate this problem as the GPM with m = 1 and f0 = p, f1 = q, and b1 = 1, i.e.:

val = min
ν∈M(K)+

{∫
K

p(x)dν(x) :

∫
K

q(x)dν(x) = 1

}
.

Analogously to (3), we now define the hierarchy of upper bounds on val as follows:

p/q
(r)

K := min
h∈Σ[x]r

∫
K

p(x)h(x)dµ(x) s.t.
∫
K
q(x)h(x)dµ(x) = 1, (21)

where µ is a Borel measure supported on K.
Theorem 10. Consider the rational optimization problem (20). If, for any polynomial f , it holds that

f
(r)

K − fmin = O(ε(r))

where limr→∞ ε(r) = 0, then one also has p/q
(r)

K − val = O(ε(r)). In particular, if K = Sn−1, then p/q
(r)

K − val =
O(1/r2).

Proof. Consider the polynomial
f(x) = p(x)− val · q(x).

Then f(x) ≥ 0 for all x ∈ K, and fmin,K = 0, with global minimizer given by the minimizer of problem (20).

Now, for given r ∈ N, let h ∈ Σr be such that f
(r)

K =
∫
K
f(x)h(x)dµ(x), and

∫
K
h(x)dµ(x) = 1, where µ is the

reference measure for K. Setting

h∗ =
1∫

K
h(x)q(x)dµ(x)

h,

one has h∗ ∈ Σr and
∫
K
h∗(x)q(x)dµ(x) = 1. Thus h∗ is feasible for problem (21). Moreover, by construction,∫

K

p(x)h∗(x)dµ(x)− val =
f

(r)

K∫
K
h(x)q(x)dµ(x)

≤ f
(r)

K

minx∈K q(x)
= O(ε(r)).

The final result for the special case K = Sn−1 and µ = σ (surface measure) now follows from our main result in
Theorem 4.

5 Concluding remarks

In this paper we have improved on theO(1/r) convergence result of Doherty and Wehner [4] for the Lasserre hierarchy
of upper bounds (3) for (homogeneous) polynomial optimization on the sphere. Having said that, Doherty and Wehner
also showed that the hierarchy of lower bounds (9) of Lasserre satisfies the same rate of convergence, due to Theorem 2.
In view of the fact that we could show the improved O(1/r2) rate for the upper bounds, and the fact that the lower
bounds hierarchy empirically converges much faster in practice, one would expect that the lower bounds (9) also
converge at a rate no worse than O(1/r2). However, our analysis does not allow us to analyse the convergence of the
lower bound hierarchy, and this remains an interesting open problem.

Another open problem is the exact rate of convergence of the bounds in Theorem 10 for the generalized problem of
moments (GPM). In our analysis of the GPM on the sphere in Corollary 1, we could only obtain O(1/r) convergence,
which is a square root worse than the special cases for polynomial and rational function minimization. We do not
know at the moment if this is a weakness of the analysis or inherent to the GPM.

Note that if we pick another reference measure dµ(x) = q(x)dσ(x), where q is strictly positive on the sphere, then
the convergences rates with respect to both measures σ and µ have the same behaviour (up to multiplicative constant).
It would be interesting to understand the convergence rate for more general reference measures.
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