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Coupled longitudinal/lateral controllers for
autonomous vehicles navigation, with experimental

validation
Alia Chebly, Reine Talj, Ali Charara

Abstract—In this work, the coupled control of the lateral and the
longitudinal dynamics of an autonomous vehicle is addressed.
As a first step, a multi-body modeling technique is used to develop
a four wheeled vehicle planar model. This technique considers the
vehicle as a robot consisting of articulated bodies. The geometric
description of the vehicle system is derived using the modified
Denavit Hartenberg parameterization and then the dynamic
model of the vehicle is computed by applying a recursive method
used in robotics, namely Euler-Lagrange based Algorithm. The
validation of the developed vehicle model was then conducted
using an automotive simulator, the Scaner-Studio simulator.
The developed vehicle model is then used to derive coupled
control laws for the lateral and the longitudinal vehicle dynamics.
Two coupled controllers are proposed: In the first controller,
the control is realized using Lyapunov control techniques while
in the second one an Immersion and Invariance with sliding
mode approach is used. Both of the controllers aim to ensure
a robust tracking of the reference trajectory and the desired
speed while taking into account the strong coupling between the
lateral and the longitudinal vehicle dynamics. In fact, the coupled
controller is a key step for the vehicle safety handling, especially
in coupled maneuvers such as lane-change maneuvers, obstacle
avoidance maneuvers and combined maneuvers in critical driving
situations.
The developed controllers were validated in simulation under
Matlab/Simulink using experimental data. Subsequently, an ex-
perimental validation of the proposed controllers was conducted
using a robotized vehicle (Renault-ZOE) present in the Heudiasyc
laboratory within the Equipex Robotex project.

Index Terms—Autonomous vehicles, coupled control, robotics
modeling, reference tracking, speed tracking.

I. INTRODUCTION

THE development of autonomous vehicles has received a
lot of attention during the last decades, not only in the

research field, but also in the industry, academic and military
fields. The motivation is to guarantee a reliable and secure
vehicle navigation even in critical driving situations. Indeed,
the vehicle autonomy can be accomplished by three main
steps: The perception and localization, the trajectory planning
and the vehicle control.
This work treats the vehicle control module and aims to
propose new solutions that can enhance the safety of an
autonomous vehicle. Indeed, several control techniques can be
found in the literature but most of these techniques address the
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lateral control ([1], [2], [3], [4], [5], [6]) and the longitudinal
control ([7], [8], [9], [10], [11], [12]) of the vehicle dynamics
separately.
Actually, the vehicle dynamics are strongly coupled, and
in order to control the vehicle and handle its safety and
stability, these dynamics coupling should be taken into account
when designing the vehicle controller. Recently, some research
groups are addressing the problem of controlling the lateral
and the longitudinal vehicle dynamics in a coupled way. In
[13], a coupled longitudinal and lateral control based on a
sliding mode technique is proposed. The idea is to calculate
the desired tire forces to obtain the steering angle by inverting
the tire model. Note that the analytical inversion of the tire
model is not possible, which makes the operation somehow
complex. Beside this, their solution requires an estimation
of the slip ratio and since this estimate is unavailable, only
the proposed lateral controller is experimentally tested. Re-
cently, a solution based on the flatness control theory has
been proposed in [14]. The proposed controller is validated
by simulations using noisy experimental data, which were
acquired by a laboratory vehicle with highly dynamic loads
and high lateral accelerations. Another solution based on
a backstepping synthesis is proposed in [4]. The proposed
controller validation is conducted by a simulation using data
from a real experimentation. In [15], a global guidance strategy
is proposed. The lateral guidance is accomplished using a
Nonlinear Model Predictive Control strategy. The proposed
solution is validated through simulations showing promising
results.
Indeed, the challenge is to design coupled controllers that are
at the same time simple, allowing their implementation on a
real vehicle and their execution in real-time, and robust, by
taking into account the strong coupling between the lateral
and the longitudinal vehicle dynamics.
In this work, this problem is also addressed and two new
solutions are proposed: The first coupled controller is
developed based on Lyapunov control techniques while
the second coupled controller is based on Immersion and
Invariance with sliding mode control technique.
These new solutions were validated by simulation under
Matlab/Simulink and experimentally on a robotized vehicle
within the Heudiasyc laboratory.

The controllers design makes use of a four wheeled vehicle
model that is developed using a multi-body formalism based
on Euler-Lagrange algorithm. Indeed, several methods were
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proposed in the literature to model the vehicle kinematics
and dynamics. The well-known models are the kinematic
bicycle model [16], [17], the dynamic bicycle model [18] and
the four wheels model [19]. These closed-form models are
developed using the fundamental principles of physics such
as Newton-laws and most of them are built on simplifying
kinematic constraints or neglecting some dynamic aspects.
Lately, some advanced models have been developed using
multi-body systems to model a complex system. The main
advantage of the multi-body modeling technique is its
accuracy with respect to the simplified closed-form models.
Multi-body models usually provide more information, which
are usually neglected when using a closed-form model.
In [20], R.S. Sharp provided a model for a two wheeled
vehicle (motorcycles) with the aim of developing new control
tools to improve the motorcycles stability. Also, Cossalter et
al [21] developed a model based on the Lagrange Formalism
that consists of interconnected rigid bodies together with
suspensions and sophisticated tire and engine models. In
[22], E. Sanjurjo uses an index-3 augmented Lagrangian
formulation with mass-orthogonal projections [23], [24] to
model the vehicle. Lately, in [25], S. Maakaroun used a
recursive formulation, namely the Euler-Lagrange method, to
model the vehicle. They proceed in a systematic geometrical
description in order to obtain the vehicle model directly with
a minimum number of numerical steps. This recursive method
was used to develop a two-wheeled and a four-wheeled
vehicle models in [26], and then a narrow tilted vehicle model
in [26]. In [27], this same formalism was used to identify
the vehicle parameters. G. Max [28] also used a recursive
formulation to model the vehicle, namely the Appell’s method
based on the Gibbs function (acceleration energy).

Actually, the recursive formalism used in [25] assimilates the
vehicle to a robot with multiple bodies related by joints and
interacting between them. This modeling technique leads to a
more accurate and complete model than the classical modeling
tools and that’s why it was chosen in this work.

Among the mutli-body modeling technique, we have chosen
to proceed with the recursive formulation developed in [25]
and based on the method of Luh, Walker and Paul [29], where
Euler-Lagrange dynamics are used to derive the dynamic
model of the vehicle. This formulation was adopted since it
allows to automatically calculate the symbolic expressions of
the dynamic model with a minimum number of numerical
steps. Moreover, the algorithm complexity does not increase
with the system’s complexity (large number of variables) and
the modification of the system’s assumptions can be taken
into account in a simple way (For example, the consideration
or not of some components of the system).

This paper is organized as follows: Section II presents the
vehicle modeling technique and the validation of the developed
model. In section III, we present the developed coupled
controllers while we present in section IV the controllers
validations by simulation and by experimentation. Finally,
Section V concludes the paper.

II. VEHICLE MODELING

A. Methodology

The system is modeled using the multi-body formalism used
in [25], [30]. This formalism considers the vehicle as a multi-
articulated system consisting of n bodies wherein the chassis is
the movable base and the wheels are the terminals. Each body
is connected to its antecedent by a joint which represents a
translational or a rotational degree of freedom. Some virtual
bodies are introduced to describe the joints with multiple
degrees of freedom or to introduce intermediate fixed frames
(see Fig. 1,2).
The geometrical description of the vehicle is based on the
modified Denavit-Hartenberg (DHM) notation. The vehicle
dynamic model is then computed using a mixed Euler-
Lagrange formalism. This formalism is named so, since the
chassis variables are represented using Euler variables (COG
positions: X,Y and Z, and Euler angles: roll, pitch and yaw),
while the other articulations are represented using Lagrangian
variables.
The dynamic model is then obtained using the method of Luh,
Walker and Paul [29]. This method consists of two recurrences,
where the Newton-Euler equations are computed as follows:
The forward recursive equations, from the mobile base to
the effectors, compute the total forces and moments (jFj
and jMoj) on each link (j) by calculating the angular and
the linear speeds and accelerations of each body (Cj); The
backward recurrence, from the effectors to the mobile base,
computes the forces and the moments (jfj and jmoj) applied
on each body by its antecedent taking into account the external
forces applied to the robot.
In order to compute the torque τj applied on the body Cj , we
project the vector of forces jfj or moments jmoj (according
to the type of the joint j) on the axle of movement.

τj = (σj
jfj + σ̄j

jmoj)
tjaj (1)

where jaj = [0 0 1]
t, σj = 1 if the joint j is translational,

σj = 0 if the joint j is rotational and σj = 2 if the frame is
fixed to a virtual body. The reader can refer to [25] and [30]
for more details.
The computation of the vector of the actuators torques τ
permits to express the inverse dynamic model of the vehicle
as follows:

τ = f(q, q̇, q̈, fe) = A(q)q̈ +H(q, q̇) + J(q)fe (2)

where q, q̇ and q̈ are the vectors of positions, speeds and
accelerations of all the joints including the variables of the
chassis. J is the jacobien matrix and Jfe is the vector of
generalized efforts representing the projection of external
forces (fe) on the joint axis. H is the vector of centrifugal,
coriolis and gravity terms, and A is the system’s inertial
matrix.

The direct dynamic model is then derived by calculating the
matrices A, H and J from (2) as follows:

• The column ca of the matrix A is computed by

A(:, ca) =
∂τ

∂q̈(ca)
, ca ∈ [1, l], (3)
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Fig. 1: Poly-articulated system with 21 bodies and 7 degrees
of freedom.

Fig. 2: Model topology with 21 bodies.

where l represents the number of degrees of freedom in
the system which is the dimension of the vector q.

• The matrix J is computed similarly by

J(:, cj) =
∂τ

∂fe(cj)
, cj ∈ [1, rf ], (4)

where rf represents the dimension of the vector fe.
• The matrix H is obtained using H(q, q̇) = τ when q̈ =
fe = 0. Then,

H = f(q, q̇, 0, 0) (5)

B. Four Wheels Vehicle Model

Some assumptions were made compared to a standard auto-
mobile model. These assumptions are listed below:

• The track and the wheelbase do not vary;
• The linkage efforts of the front and the rear axles of the

vehicle are not taken into account;
• The steering is due to the rotation of the steering wheel

and the dynamics of the steering column is not taken into
account.

• The pneumatic torsor is applied at the surface of contact
between the tire and the ground.

• The road is considered a horizontal plane.
The kinematic chain of the vehicle system has a tree structure.
Its base is the vehicle chassis and its terminals are the vehicle

wheels. In fact, the added virtual bodies (C7, C12, C17 and
C21), which role is explained below, are also considered as
terminals for the vehicle system. It results that the vehicle
is modeled by a robot of a tree structure with one basis and
eight terminals (four wheels and four virtual bodies) (Fig. 2).

Indeed, the developed model is composed of 21 bodies (Fig.
1,2) defined as follows:

• C1 represents the vehicle’s chassis
• C2, C3, C8, C13, C14 and C18 are virtual bodies intro-

duced as intermediate fixed frames
• C4 and C9 are the front right and the front left steering

columns respectively
• C5, C10, C15, C19 are virtual bodies fixed to the four

wheels by blocked joints
• C6, C11, C16 and C20 are the front right, front left, rear

right and rear left wheels respectively
• C7, C12, C17 and C21 are virtual bodies fixed to the four

wheels.

To explain the role of the virtual bodies related to the wheels,
let’s take for example the bodies related to the front right wheel
(C5, C6 and C7). The virtual bodies C5 and C7 are introduced
to indicate that the wheels are in rotation around their axes
while maintaining their contact with the ground. The contact
forces between the wheel and the ground are computed in the
frame of the virtual body C7, which is linked to the fixed
virtual body C5. This means that the frame representing the
contact Tire/road is not rotating with the wheel. The body C6

is related to the wheel and represents the wheel rotation in its
frame. The wheel equations of motion are then taken on the
fixed virtual body C5 in order to take into account the wheel
rotation and the forces generated in the contact zone between
the wheel and the ground. The same reasoning is applied to
the four wheels.
Seven degrees of freedom are considered,
q=[x y ψ θfl θfr θrl θrr]

t, where x and y are the longitudinal
and the lateral positions of the vehicle computed in the vehicle
frame R0, at the vehicle’s center of gravity (COG). ψ is the
vehicle’s yaw angle, θij is the angular position of the wheel
ij, where ij stands for front right (fr), front left (fl), rear
right (rr) and rear left (rl).
The most significant external forces applied to the vehicle
model are the contact forces between the ground and the tires.
These forces are modeled using Dugoff’s model ([31]) since
this model can be considered as a good compromise in terms
of simplicity and representativity. It takes into account the
coupling between the lateral and the longitudinal forces, the
friction coefficient, the wheels adhesion and stiffness, the slip
ratio and the vertical forces. We also take into consideration
the longitudinal aerodynamic force (Faero) since its effect
can’t be neglected for high vehicle speeds. This force is given
by:

Faero = 1/2 ρa cd s ẋ
2 (6)

where ρa is the mass density of air, s is the frontal area of
the vehicle, cd is the aerodynamic drag coefficient and ẋ is
the longitudinal vehicle speed.



4

The developed dynamic model is then given by:

q̈ = [A(q)]−1(τ −H(q, q̇)− J(q)fe). (7)

where the matrices A, H and J are as follows:

A =



m 0 0 0 0 0 0
0 m −L3 0 0 0 0
0 −L3 I3 0 0 0 0
0 0 0 Iw 0 0 0
0 0 0 0 Iw 0 0
0 0 0 0 0 Iw 0
0 0 0 0 0 0 Iw


, (8)

H =



−mψ̇ẏ + L3ψ̇
2

mψ̇ẋ

−L3ψ̇ẋ
0
0
0
0


, (9)

and J = [J1 J2], where J1 and J2 are given by:
J1 =

− cos(δfl) − cos(δfr) −1 −1

− sin(δfl) − sin(δfr) 0 0

−Lf sin(δfl)+E/2 cos(δfl) −Lf sin(δfr)−E/2 cos(δfr) E/2 −E/2
Reff 0 0 0
0 Reff 0 0
0 0 Reff 0
0 0 0 Reff

 ,

(10)
J2 =

sin(δfl) sin(δfr) 0 0 1

− cos(δfl) − cos(δfr) −1 −1 0

−Lf cos(δfl)−E/2 sin(δfl) −Lf cos(δfr)+E/2 sin(δfr) Lr Lr 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

(11)
The vectors τ and fe are given by:

τ t =
(
0 0 0 τwfl

τwfr
τwrl

τwrr

)
, (12)

f te = (Fxfl
Fxfr

Fxrl
Fxrr

Fyfl
Fyfr

FyrlFyrrFaero) (13)

The terms in L3 and I3 in (8) and (9) represent the intercon-
nection between the different bodies composing the vehicle.
Their presence makes the robotic approach more interesting,
since it permits to develop a complete model of the vehicle
showing the influence of each body on the other bodies. L3

and I3 are defined as

L3 =Lr(mrr +mrl)− Lf (mfl +mfr)

I3 =Iz + t2f (mrl +mrr +mfr +mfl)

+ L2
f (mfl +mfr) + L2

r(mrr +mrl)

(14)

The parameters m and Iz represent the vehicle mass and the
moment of inertia around the z axis while Lf and Lr are
the distances between the center of gravity and the front and
the rear axles respectively. Reff is the tire effective radius,
Iw is the rotational inertia of the wheel and E is the vehicle
track. Fxij

and Fyij are the longitudinal and the lateral forces
developed on the four wheels respectively, mij is the mass
of a wheel, δfl and δfr are the front left and the front right
steering wheel angles and τwij

is the driving/braking torque
applied to the wheel with index (ij).

C. Model Validation Results

The developed model is implemented under Matlab/Simulink.
The model inputs are the steering angle δ and the wheels
Driving/Braking torques τwij , while the model outputs
are the vehicle speeds in the longitudinal and the lateral
directions, the yaw rate and the wheels angular velocities
as well as the derivatives of these variables. To validate the
developed model, we make use of a simulation environment:
Scaner-Studio simulator [32].

Remark: It is suited that a validation of the proposed
model using both real-time simulation (Scaner-Studio) and
a real vehicle experiment’s data is necessary to indicate
the degree of confidence attributed to the validation using
Scaner-Studio Simulator. However, the experimental vehicles
present in the Heudiasyc laboratory are not equipped with a
sensor that can measure the Driving/Braking torques applied
to the wheels. And since this variable is one of the developed
model inputs, a validation using experimental data is not
executed.

Many simulations using the Scaner-Studio simulator were
executed. In this simulator, we have used the autonomous
driving mode. The reference trajectory was chosen among the
predefined trajectories in the simulator and a desired speed
profile was provided by the user.
The model inputs, δ and τwij

, are taken from the scenarios
conducted on Scaner-Studio. These inputs were applied to the
developed vehicle model under Matlab/Simulink. The obtained
model outputs, which are the vehicle dynamic variables such
as the speeds and the accelerations, are compared to the
outputs obtained by the simulator.
Several scenarios that validate the model were executed. In
[33], two scenarios validating the model are presented. The
first one validates the longitudinal dynamics of the vehicle
while the second validates the longitudinal and the lateral
dynamics at relatively low speed.

In this paper, we present another scenario that validates
the longitudinal and the lateral coupled vehicle dynamics at
a respectively high speed.
The vehicle parameters are:

mij = 20kg, m = 1744.6kg, ρa = 1.3kg/m3

s = 3m2, cd = 0.63, h = 0.501m, g = 9.8m/s2

Iz = 3015kg.m2, Lf = 1.207m, Lr = 1.543m

Iw = 1.062kg.m2, E = 1.492m

Reff = 0.35m, µ = 1.

(15)

The Dugoff’s model [34] parameters are provided by the
Scaner-Studio simulator as:

Cαf
= Cαfr

= Cαf l = 65292N/rad

Cαr
= Cαrr

= Cαrl = 67177N/rad

Cσf
= Cσfr

= Cσf l = 82738N/rad

Cσr
= Cσrr

= Cσrl = 85184N/rad

(16)
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where Cαij
and Cσij

represent the cornering and the longitu-
dinal stiffness of the wheel ij.
Note that, the vehicle inputs are reduced to one steering angle
on the front wheels, δ = δfr = δfl, a front torque, τf =
τwfl

+ τwfr
and a rear torque τr = τwrl

+ τwrr
.

The model inputs are shown in Fig. 3 while the model outputs
are given in Fig. 4. The vehicle speed varies between 15 and
25m/s2 (54 to 90 km/h) and the steering angle goes from −8

◦

to 2
◦
. Observing Fig. 4, we can remark that the model outputs

are very close to the outputs given by the Scaner-Studio model
and this validates our developed model even when executing
roundabouts with a high speed.
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Fig. 3: Model inputs: Steering angle and wheels torques.
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Fig. 4: Model outputs: Speeds, accelerations, yaw rate and
sideslip angle.

To conclude this section, we note that the developed model is
valid in a large marge of driving conditions and can be used
for control objectives.
The next section of this paper presents the coupled controllers
designed based on this model. The controller theory is ex-
plained in detail and we present, furthermore, the validation
results.

III. VEHICLE CONTROL

A. Vehicle Model Simplification

The developed model presented in the second section is used
here to accomplish the control objectives.

However, in order to simplify the controllers design task, the
developed model was simplified using some usual assumptions
:

• The estimation of the contact forces between the ground
and the tires is based on the linear model.

• The approximation of small angles is made.
• The front left and the front right wheel’s steering angles

are supposed to be equal (δfl = δfr = δ).
• The longitudinal slip ratio is considered approximately

null, that renders:

Reffwij = ẋ. (17)

where ωij = θ̇ij represent the angular speed of the wheel
ij. The dynamic equation of the wheel ij can be written
in the following form (from (7)) :

Iwẇij = τij −ReffFxij
. (18)

Using (17) and (18), we can find:

Fxij
=

τwij

Reff
− Iwẍ

R2
eff

. (19)

Integrating (19) in the first equation of (7), we obtain:

mẍ−mψ̇ẏ + L3ψ̇
2 + Faero −

τw
Reff

+ 4
Iwẍ

R2
eff

+ δ(Fyfl
+ Fyfr

) = 0.

(20)

where τw =
∑
τwij

is the total Driving/Braking torque
applied on the four wheels of the vehicle.

• Integrating (19) in the second equation of (7) and intro-
ducing the linear model to estimate the lateral forces at
the contact ground/tires, we have:

mÿ +mẋψ̇ + 2Cαf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2
+ 2Cαr

ẋ(ẏ − Lrψ̇)

ẋ2 − (tf ψ̇)2

− L3ψ̈ = (2Cαf
− 2

Iw
R2
eff

ẍ+
τwfl

+ τwfr

Reff
)δ,

(21)
We consider that the torque doesn’t influence the lat-
eral dynamics, and we neglect the term δ

τwfl
+τwfr

Reff
.

Indeed, the cornering stiffness of the front wheels is
much greater than the maximal admissible torque. We
saturate the torque to 1000 N.m on each wheel while the
cornering stiffness is Cαf

=65292 N/rad, hence 2Cαf
>>

τwfl
+τwfr

Reff
).

With all these assumptions, the vehicle model presented in (7)
can be rewritten as:
meẍ−mẏψ̇ + L3ψ̇

2 + Faero = g1,

mÿ +mẋψ̇ − L3ψ̈ + 2Cαf

ẋ(ẏ+Lf ψ̇)

ẋ2−(tf ψ̇)2
+ 2Cαr

ẋ(ẏ−Lrψ̇)

ẋ2−(tf ψ̇)2
= g2,

I3ψ̈ + 2LfCαf

ẋ(ẏ+Lf ψ̇)

ẋ2−(tf ψ̇)2
− 2LrCαr

ẋ(ẏ−Lrψ̇)

ẋ2−(tf ψ̇)2
= g3,

(22)
where me, g1, g2 and g3 are given by:

me = m+ 4 Iw
R2

eff
,

g1 = τw
Reff

− δ(2Cαf δ − 2Cαf

ẋ(ẏ+Lf ψ̇)

ẋ2−(tf ψ̇)2
)

g2 = (2Cαf − 2 Iw
R2

eff
ẍ)δ,

g3 = Lfg2 + (−tfCαf

2tf ψ̇(ẏ+Lf ψ̇)

ẋ2−(tf ψ̇)2
)δ + L3(ÿ + ẋψ̇).

(23)
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Cαf
and Cαr

are the cornering stiffness of the front and the
rear wheels.

B. Coupled Controllers design

1) Problem Formulation:

In this work, we aim to propose some vehicle controllers that
can handle its safety and stability, by taking into account the
strong coupling between the vehicle’s longitudinal and lateral
dynamics. Indeed, the objective of our controllers is to ensure
a robust tracking of the reference trajectory for any time
varying maneuver. This objective is reached by controlling
the longitudinal velocity and the lateral displacement of the
vehicle in order to track a desired longitudinal speed while
canceling the lateral displacement error with respect to a
given reference trajectory. The control inputs are the steering
wheel angle, δ, and the Driving/Braking wheels torque, τw
(see Fig. 5).

Fig. 5: Vehicle control layout.

2) Lyapunov Based Controller:

As mentioned above, the controller role is to guarantee
a robust tracking of the reference trajectory for any time
varying maneuver. Thus, the controller computes the
Driving/Braking torque (τw) necessary to drive at a given
desired speed, and, the steering wheel angle that will cancel
the lateral displacement error with respect to a given reference
trajectory.
To accomplish the control objective, we define two error
signals as:

s1 = ėyf + λyeyf , λy > 0 (24)

s2 = evx + λx

∫
evx, λx > 0 (25)

where s1 is a function of the lateral displacement error
(eyf ) and its derivative, and s2 is a function of the vehicle
longitudinal speed error evx = ẋ − ẋ∗ and its integral. The
vectors with superscript (∗) represent desired outputs.
The lateral displacement error eyf is computed at a look-
ahead distance Ls from the center of gravity of the vehicle
(see Figure 6), in order to take into account the delay of the
controllers/actuators. This parameter should be adapted to the
vehicle speed and the trajectory curvature as follows: When

the vehicle speed increases, Ls should increase. And when the
trajectory curvature increases, Ls should decrease.
eyf is then given by:

eyf = ey + Lseψ. (26)

where ey is the lateral displacement error computed at the
vehicle’s center of gravity and eψ is the yaw angle error with
respect to the reference trajectory.

Fig. 6: Lateral displacement error computed at a distance Ls
in front of the vehicle

Assuming that the desired lateral acceleration of the vehicle
on the reference trajectory can be written as [16]:

a∗y = ẋ2ρref , (27)

where ρref is the reference trajectory curvature, and given that
the lateral acceleration in a fixed frame is ay = ÿ + ẋψ̇, we
have:

ëy = ay − a∗y = ÿ + ẋψ̇ − ẋ2ρref (28)

The trajectory tracking is then guaranteed if and only if s1
and s2 converge to zero.

In this first controller, we make use of the Lyapunov control
concept to deduce the suitable control laws. Indeed, the control
strategy proposed in this work provides an algorithm to design
in one step a nonlinear controller dealing with both the
longitudinal and the lateral dynamics of the vehicle.
We define then a Lyapunov function as:

V =
1

2
s21 +

1

2
γs22, γ > 0 (29)

To ensure an exponentiel convergence of s1 and s2, which
guarantees the convergence of ey , ėy and evx, we impose a
negative variation of V as:

V̇ =s1ṡ1 + γs2ṡ2

=−Klyys
2
1 − γKlyxs

2
2

(30)

where Klyx and Klyy represent the positive gains of the
controller.
The condition (30) can be satisfied by taking:

s1ṡ1 = −Klyys
2
1 =⇒ ṡ1 = −Klyys1. (31)

s2ṡ2 = −Klyxs
2
2 =⇒ ṡ2 = −Klyxs2. (32)

Integrating (24) and (25) into (31) and (32), we obtain:
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ëyf = −(Klyy + λy)ėyf −Klyyλyeyf . (33)

ẍ = ẍ∗ − (Klyx + λx)evx −Klyxλx

∫
evx. (34)

From (28), (26) and (33), we have:

ÿ = ẋ2ρref−ẋψ̇−(Klyy+λy)ėyf−Klyyλyeyf−Lsëψ. (35)

By replacing (34) and (35) in the reduced system (22), we can
deduce the longitudinal and the lateral controls as follows:

τw =Reff [meẍ
∗ −me(Klyx + λx)evx −meKlyxλx

∫
evx

−mẏψ̇ + L3ψ̇
2 + δ(2Cαf

δ − 2Cαf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (E2 ψ̇)2
) + Faero]

(36)

δ =
1

(2Cαf
− 2 Iw

R2
eff

ẍ)
[mẋ2ρref −mLsëψ − L3ψ̈

−mKlyyλyeyf + 2Cαf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (E2 ψ̇)2

−m(Klyy + λy)ėyf + 2Cαr

ẋ(ẏ − Lrψ̇)

ẋ2 − (E2 ψ̇)2
],

(37)

3) I&I Based Controller:
The immersion and invariance approach is a relatively recent
method for designing nonlinear and adaptive controllers [35].
This method uses the notions of immersion and invariance
to ensure the objective of the command. Indeed, the idea of
this method consists in immersing the dynamics of the system
in a target dynamic that ensures the desired behavior. This
is done by finding a manifold in the state space that can be
made invariant and attractive - with an internal dynamic which
reflects the dynamics of the closed loop system (see Fig. 7).
In other words, the Immersion and Invariance (I & I) theory
consists of defining a target dynamics and to design a control
law that makes the target dynamic attractive and invariant. The
advantage of such an approach is to reduce the problem of the
controller design into a sub-problem that could be more easily
solved.

Fig. 7: Principle of the Immersion and Invariance control [35].

Using the fact that the lateral dynamics converge faster than
the longitudinal dynamics of the vehicle, we define the mani-
fold as the equilibrium surface of the lateral dynamics, that is
s1 = ėyf + λyeyf = 0 (see Fig.8).
In order to reach this manifold, the objective is to converge
the “off-the-manifold” variable s1 to zero. A sliding mode
control (SMC) approach [36] is then used to control the
“off-the-manifold” variable. The objective is then to define
a suitable steering wheel angle that can guide the vehicle
to the defined manifold. Once the manifold is reached, the
stabilisation of the longitudinal dynamics is considered inside
the manifold corresponding to s1 = 0. This means that, at
this level, the lateral dynamic variables have converged to
their equilibrium states. A Lyapunov controller is then used,
at this level, in order to reach the desired longitudinal speed.

Fig. 8: Principle of the I&I vehicle controller.

Indeed, the SMC approach has been developed since the 1950s
and is recognized as one of the most promising techniques for
robust control. The idea is to define a sliding surface that
represents the desired dynamic state of the system and then
constrain the system in order to reach the sliding surface in a
finite time and remain on it (see Fig. 9).
Using the sliding mode control , only the measurement of the
sliding variable in real time is required to deduce a robust
control law. However, the discontinuities in the control law
can cause a phenomenon of chatter, called, “chattering”. This
is characterized by strong oscillations of the trajectories of the
system around the sliding surface. Many methods can be used
to reduce the chattering impact. In this work, we choose to
proceed with a higher order sliding mode (second order) based
on the super-twisting algorithm. This algorithm is developed to
control systems with a relative degree 1, and to ensure robust
stability while reducing chattering.
Consider a system of the form:

Ẋ = f(t,X) + g(t,X)u(t) (38)

where u is the control input, X ∈ Rn is the state vector, and,
f and g are continuous functions.

We define a sliding variable s of relative degree 1, whose
derivative can be expressed as follows:

ṡ(t, s) = φ(t, s) + ϕ(t, s)u(t) (39)
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Fig. 9: Sliding mode principle [37].

The controller aims to ensure the system convergence to the
sliding surface defined by s = 0.
It is assumed that there exist positive constants s0, bmin, bmax
and C0 such that ∀x ∈ Rn and |s(t, x)| < s0, the system
satisfies the following conditions:

|u(t)| ≤ Umax
0 < bmin ≤ ϕ(t, s) ≤ bmax
|φ(t, s)| < C0

(40)

The super-twisting sliding mode control input is then given
by:

u(t) = u1 + u2

{
u1 = −α|s|τsign(s), τ ∈]0, 0.5]

u̇2 = −βsign(s)
(41)

with α and β positive constants.
The finite time convergence to the sliding surface is guaranteed
by the following conditions:

β >
C0

bmin

α ≥

√
4C0(bmaxβ + C0)

b2min(bminβ − C0)

(42)

For more details of the convergence and robustness of the
super-twisting algorithm, see [38], [39].

To apply this control technique to the vehicle lateral dynamic
system, we define the sliding surface by the off-the-manifold
variable s1 given by (24) as:

s1 = ėyf + λyeyf , λy > 0 (43)

Note that the lateral dynamics of the vehicle given by the
second equation of (22) can be written in the form of (38)
where:

X =ẏ

u(t) =δ

f(t,X) =− ẋψ̇ +
L3

m
ψ̈ − 2

Cαf

m

ẋ(ẏ + Lf ψ̇)

ẋ2 − (tf ψ̇)2

− 2
Cαr

m

ẋ(ẏ − Lrψ̇)

ẋ2 − (tf ψ̇)2

g(t,X) =
1

m
(2Cαf

− 2
Iw
R2
eff

ẍ)

(44)

Using (28), (24), (26) and (22), we can find:

ṡ1 =
1

m
(L3ψ̈ − 2Cαf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (E2 ψ̇)2
− 2Cαr

ẋ(ẏ − Lrψ̇)

ẋ2 − (E2 ψ̇)2

+ (2Cαf
− 2

Iw
R2
eff

ẍ)δ)− ẋ2ρref + Lsëψ + λy ėyf .

(45)
Note that the relative degree (δ → s1) is one. By identification
with (39), we have:
ṡ1(t, s1) = φ(t, s1) + ϕ(t, s1)δ, with:

φ(t, s1) =
1

m
(−2Cαf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (E2 ψ̇)2
− 2Cαr

ẋ(ẏ − Lrψ̇)

ẋ2 − (E2 ψ̇)2
)

+
L3

m
ψ̈ − ẋ2ρref + λy ėyf + Lsëψ

ϕ(t, s1) =
1

m
(2Cαf

− 2
Iw
R2
eff

ẍ)

Applying the super-twisting theorem, the control input can be
defined as follows:

u(t) = u1 + u2

{
u1 = −α|s1|0.5sign(s1)

u̇2 = −βsign(s1)
(46)

Finally, an equivalent command δeqvl, corresponding to the
steering wheels angle when ṡ1 = 0, is added as a feed forward
that approaches the system to the sliding surface. This term is
given by (45):

δeqvl =
1

(2Cαf
− 2 Iw

R2
eff

ẍ)
(−L3ψ̈ + 2Cαf

ẋ(ẏ + Lf ψ̇)

ẋ2 − (E2 ψ̇)2

+ 2Cαr

ẋ(ẏ − Lrψ̇)

ẋ2 − (E2 ψ̇)2
+mẋ2ρref −mλy ėyf −mLsëψ).

(47)
Hence, the steering angle representing the control input of the
system is defined as follows:

δ = u1 + u2 + δeqvl (48)

Once the manifold is reached, we proceed to stabilize the
longitudinal dynamics inside the manifold corresponding to
s1 = 0. At this level, we consider that the lateral dynamic
variables have converged to their equilibrium states. In other
words, ẏ = ẏeq , ψ̇ = ψ̇eq and δ = δeq , where:

ψ̇eq ,ρref ẋ

ẏeq ,Lrψ̇eq −
mLf + L3

2(Lf + Lr)Cαf

ψ̇eqẋ
2

δeq ,
1

2LfCαf
ẋ

[(2LfCαf
− 2LrCαr

)ẏeq + 2L2
fCαf

ψ̇eq

+ 2L2
rCαr ψ̇eq − L3ẋ

2ψ̇eq]
(49)

The convergence of the longitudinal dynamics inside the
manifold is then assured by the use of a Lyapunov function
defined as follows:

V =
1

2
s22. (50)

In order to ensure the convergence of the longitudinal speed,
we impose a negative variation of the function V, as follows:
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V̇ =s2ṡ2

=−Kimxs
2
2

(51)

where Kimx is a positive constant.
This yields:

ṡ2 = −Kimxs2

ėvx + λxevx = −Kimx(evx + λx

∫
evx)

(52)

Replacing evx by ẋ− ẋ∗, we obtain:

ẍ = ẍ∗ − (Kimx + λx)evx −Kimxλx

∫
evx (53)

Using (53) and (22) and replacing the lateral variables by
their equilibrium states, we deduce the Driving/Braking wheels
torque as:

τw = Reff [meẍ
∗ −me(Kimx + λx)evx −meKimxλx

∫
evx

−mẏeqψ̇eq + δeq(2Cαf
δeq − 2Cαf

ẋ(ẏeq + Lf ψ̇eq)

ẋ2 − (E2 ψ̇eq)
2

)

+ L3ψ̇
2
eq + Faero]

(54)

IV. CONTROLLERS VALIDATION

The coupled vehicle controllers were validated firstly by
simulation under Matlab/Simulink and then experimentally
using a robotized vehicle. We present in this section some
validation results.

Remark: The autonomous navigation requires three main
steps: the perception, the trajectory planning and the vehicle
control. We consider in this work, treating the vehicle control
problem, that the desired trajectory and the desired speed are
generated in the trajectory planning level. Thus, it is the duty
of this higher level to provide the vehicle controller with a
safe trajectory that can be tracked in the limits of stability of
the vehicle. The reader can refer to our work on the trajectory
planning in [40] and [41].
In our work, we just check if the speed profile can be safely
executed according to the curvature of the given trajectory,
using the definition presented in [15]:

Vmax =

√
gµ

ρr
(55)

where Vmax is the maximum longitudinal safe speed consider-
ing the road curvature; g, µ and ρr are respectively the gravity,
the friction coefficient and the road curvature.

A. Controllers Validation by Simulation

To validate our control laws by simulation, we make use of
the real experimental data collected by performing several
tests on the vehicle DYNA (Peugeot 308 sw) present in the
Heudiasyc laboratory. The tests were conducted on the track
CERAM (”Centre d’Essais et de Recherche Automobile de
Mortefontaine”).

Fig. 10: Experimental vehicle DYNA and the track CERAM

The experimental vehicle and the track CERAM are shown in
Fig. 10.

Remark: The validation of the controllers shown in this
paragraph is done under Matlab/Simulink using real exper-
imental data. We note that, a co-simulation between Mat-
lab/Simulink and Scaner-Studio was very suited, since the sim-
ulator presents the possibility of testing different scenarios in
different driving conditions and this permits to test the robust-
ness of the controllers while executing lane-change maneuvers,
obstacle avoidance maneuvers and combined maneuvers in
critical driving situations. This objective wasn’t achieved since
the control inputs computed by the developed controllers
are the steering wheel angle and the Driving/Braking wheels
torques while the control inputs of the Scaner-Studio vehicle
model are the steering wheel angle and the force that should
be applied on the accelerator pedal. This means that a new
level transforming the wheels torques into the accelerator
force is needed. And since the transmission chain between the
accelerator pedals and the wheels is not given under Scaner-
Studio, we couldn’t configure this level.

The validation of the coupled controllers is schematized in
Fig. 11. The vehicle speed profiles executed in these tests
are considered as the desired speed in the simulation. The
reference trajectory curvature is used to calculate the lateral
displacement error as in (28). The desired speed and the lateral
displacement error are then used to compute the control inputs,
the Driving/Braking torque and the steering wheel angle, using
a selected controller among the developed controllers. The
control inputs are then transmitted to the vehicle model that
computes the vehicle dynamic variables. We compare finally
these variables, namely the lateral acceleration and the yaw
rate, to their corresponding experimental values. The steering
wheel angle computed by the controllers is also compared to
the experimental variable in order to evaluate the compatibility
of the controllers.
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Fig. 11: Coupled Controllers validation schema.

The vehicle and the aerodynamic parameters are as follows:

mij = 12.2kg, m = 1719kg, ρa = 1.3kg/m3

s = 2.31m2, cd = 0.314, g = 9.8m/s2

Iz = 3300kg.m2, Lf = 1.195m, Lr = 1.513m

Cαr
= 68922N/rad,Cαf

= 85275N/rad, E = 1.4m

Reff = 0.316m, Iw = 1.02kg.m2.

(56)

For a further evaluation of the proposed controllers, a com-
parison with a classical PD/PI controller is made. The PD/PI
control inputs are as follows:

δ = −Kdy ėyf −Kpyeyf (57)

τw = −Kpxevx −Kix

∫
evx, (58)

where Kdy , Kpy , Kpx and Kix are positive constants.
Several tests were done to evaluate the controllers perfor-
mances during normal and critical driving conditions. The con-
trollers robustness was also studied by considering the vehicle
parameters uncertainties. In the following, some validation
results and some conclusions are presented.
For the control laws, we used the following gains:
Klyx = 1, Klyy = 8, Kimx = 1, α = 0.2, β = 0.0001,
λx = 0.001, λy = 8, Kpx = 436, Kix = 0.45, Kdy = 0.7,
Kpy = 1.

Note that the choice of the controllers gains is done as follows:
The range of the controller gains is set due to the vehicle
dynamics analyses. We proceed then to tune these gains by
simulation under Matlab/Simulink.
The parameter Ls introduced to compensate the lateral con-
trollers/actuators delay is fixed to 3m. In fact, the delay
between sending the steering wheel angle value computed by
the controller and the execution of this angle is experimentally
estimated by 80ms. In the simulations, the steering actuator
is modeled by a first order low pass filter with a cut-off
frequency of 10 Hz. This modeling induces a delay of 100ms
that represents approximately the real steering actuator delay.

1) Normal Driving Conditions:
A normal driving scenario used to validate our controllers
is presented in Fig. 12, Fig. 13 and 14. In this test, the
longitudinal desired speed is almost 13m/s except on the
roundabout, where the driver decelerates to reach near 7m/s.
The lateral acceleration varies between −4m/s2 and 4m/s2

almost. Fig. 13b and Fig. 12 shows that the vehicle navigates
with the desired speed while tracking the reference trajectory
either with the I&I or the Lyapunov or the PD/PI based
controllers. The comparison of the lateral acceleration, the
yaw rate and the steering angle with the experimental data
(Fig. 14b, Fig. 14d and Fig. 14c) shows that the controllers
execute the desired trajectory profile in a similar way to the
vehicle driver. The control inputs computed by the controllers
are shown in Fig. 14c and Fig. 14a. However, in this normal
driving scenario, the Lyapunov and the I&I based controllers
present a lateral and a longitudinal error smaller than that
provided by the PD/PI based one (Fig. 13d and Fig. 13b). Note
that the error presented by the PD/PI controller is not risky
in this scenario but it could be in different driving scenarios
as it will be shown in the Controllers Experimental Validation
section.
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]
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I&I

Fig. 12: Scenario 1: Reference and vehicle trajectory

The comparison between the Lyapunov based controller, the
Immersion and Invariance controller and the PD/PI controller
was done using several scenarios. The performances of these
three controllers are similar to what is shown in this paragraph.
The results suggest that the proposed coupled controllers
(Lyapunov and I & I) are more performant in normal driving
conditions than a classical PD/PI controller.
Note that the assumption of linear contact forces between the
ground and the tires, considered in the controllers design, is not
violated in this scenario. Fig. 15 shows that the lateral forces
computed by the Linear model are approximately the same
when computed with a non-linear model such as Dugoff’s
model.

2) Strongly Nonlinear Maneuvers:
The test presented in Fig. 16, Fig. 17 and Fig. 18 shows a
highly nonlinear maneuver. It consists of increasing progres-
sively the vehicle speed while executing a J-turn having a
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Fig. 13: Normal driving conditions, Scenario 1: Longitudinal
speed and trajectory tracking
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(a) Driving/Braking torque
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(b) Lateral acceleration
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(c) Steering angle
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Fig. 14: Normal driving conditions, Scenario 1: Control laws
and lateral dynamics.

radius of about 50m. The desired speed profile and the road
curvature are presented in Fig. 17a and Fig. 17c. The reference
trajectory tracking is shown in Fig. 16. The lateral acceleration
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Fig. 15: Scenario 1: Lateral contact forces computed by Linear
vs Dugoff’s Tire forces model.

and the longitudinal speed are increasing remarkably (the
speed is increasing with a rate of 1m/s2 and the lateral accel-
eration reaches 7.5m/s2). This type of test is used to evaluate
the stability and the robustness of the controllers against strong
nonlinear dynamics. Fig. 17b shows the speed profile tracking
while Fig. 17d shows the lateral error displacement of the three
controllers, the Lyapunov based controller, the I&I controller
and the PD/PI controller.
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Fig. 16: Strongly nonlinear maneuver, Scenario 2: Reference
and vehicle trajectories

In Figure 18b and Fig. 18d, the dynamic variables are com-
pared to those measured on the vehicle (curves in red). Fig. 18c
shows the steering wheel angle computed by the controllers
with respect to that executed by the driver, while Fig. 18a
shows the Driving/Braking wheels torque.
The PD/PI and the I&I controllers present almost the same
behavior they have presented in normal driving conditions.
The lateral error produced by the I&I controller is always
very small and smaller than the lateral error produced by the
PD/PI controller. However, the Lyapunov based controller
performance is decreasing since the lateral error it produced
is higher than that produced in normal driving conditions,
even if it remains acceptable. By consequence, the I&I
and the Lyapunov performances are better than that of the
PD/PI based controller in critical driving scenarios where
the vehicle approaches the limits of stability. However, the
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Lyapunov based controller performance decreases at the limit
of stability. This performance lost can be explained by the
simplifications of the vehicle model (see III-A). Since the
Lyapunov based controller depends on the vehicle model
even to regulate the lateral dynamics and the longitudinal
dynamics, the vehicle model used to derive its control laws
must be very accurate, especially in critical driving situations.
However, using a complete vehicle model to derive the
control laws of the Lyapunov based controller increases the
problem complexity. For example, the assumption of small
angles doesn’t hold when executing big roundabouts. This
assumption violation was tested in scenario 1 but with normal
driving conditions. When violating this assumption with high
speed, the performance of the controller will be affected.
Besides, in order to design our Lyapunov controller, we
have modeled the contact forces between the wheels and the
ground by a linear model. This model is not valid in critical
driving scenarios. We can observe a clear difference between
the lateral forces computed by the linear model and those
computed by Dugoff’s non-linear model in Fig. 19. Thus,
the linear model should be replaced by a nonlinear model,
such as Dugoff’s model, piece-wise linear tire model and
others. However, the use of a nonlinear tire model renders
the derivation of the control laws more complex when using
Lyapunov based control.

Time [s]
0 2 4 6 8 10 12 14 16 18

[k
m

/h
]

25

30

35

40

45

50

55

60

65

70
Desired longitudinal speed

(a) Desired speed

Time [s]
0 2 4 6 8 10 12 14 16 18

[k
m

/h
]

0

10

20

30

40

50

60

70
Longitudinal speed

Desired speed
Lyapunov
PD/PI
I&I

(b) Speed tracking

Time [s]
0 2 4 6 8 10 12 14 16 18

[m
-1

]

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
Road Curvature

(c) Road curvature

Time [s]
0 2 4 6 8 10 12 14 16 18

[m
]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Lyapunov
PD/PI
I&I

(d) Lateral error

Fig. 17: Strongly nonlinear maneuver, Scenario 2: Longitudi-
nal speed and trajectory tracking.

To conclude, we can claim that the developed controllers have
good performances in normal and critical driving situations. In
normal driving scenarios as in critical driving scenarios, the
coupled controllers, the Lyapunov and the I&I based ones,
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(a) Dirving/Braking torque
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(b) Lateral acceleration

Time [s]
0 2 4 6 8 10 12 14 16 18

[°
]

-5

-4

-3

-2

-1

0

1
Control Law: Steering angle

Lyapunov
PD/PI
I&I

(c) Steering angle
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Fig. 18: Strongly nonlinear maneuver, Scenario 2: Control
laws and lateral dynamics.

present better performances than a classical PD/PI controller.
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Fig. 19: Scenario 2: Lateral contact forces computed by Linear
vs Dugoff’s Tire forces model.

3) Robustness to Parameters Uncertainties: The robustness
of the controllers is evaluated over the vehicle parameters
uncertainty, especially the vehicle mass and the cornering
stiffness. Indeed, it is difficult to estimate accurately the
stiffness of the tire since it is related to the road coefficient
of friction, the type of the road, the vertical load, etc. Also,
the vehicle mass could be poorly estimated or variable since
it is dependent on the passengers and the amount of fuel. The
controllers robustness was evaluated for different parameters
values. We present in Fig. 20, using Scenario 1 (presented in
Fig. 12), the lateral displacement error and the longitudinal
speed regulated by the I&I based controller, the Lyapunov
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based controller and the PD/PI controller for different values
of the vehicle mass (±30%).
Fig. 21 shows the variation of the lateral error and the speed
in the presence of cornering stiffness uncertainties (±30%)
using the developed controllers and the PD/PI controller.
Regarding the longitudinal speed (Fig. 20b and Fig. 21b),
we cannot extract important differences in the behavior of
the controllers. In fact, only the transitory stade of the speed
regulation is affected by the mass uncertainties (Fig. 20b)
but the three controllers present almost the same behavior.
Moreover, the cornering stiffness uncertainties don’t affect the
longitudinal speed, regardless of the used controller (Fig. 21b).
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Fig. 20: Controllers robustness against uncertainties on the
vehicle mass (±30%).

Regarding the lateral displacement error in Fig. 20a and Fig.
21a, some conclusions can be made: The lateral displacement
error, produced when using the Lyapunov based control,
increases with a non-null parameters uncertainty but remains
acceptable even with a parameter uncertainty of ±30%. The
I&I controller is slightly affected by the parameters uncer-
tainties. And the PD/PI controller is almost not affected by
the parameters variations, because it does not depend on the
parameters. However, it is clearly less performant than both
other controllers.
In conclusion, both of the developed controllers and the
classical PD/PI controller are able to follow the path and the
desired speed with acceptable errors despite the parameters
variations. However, the Lyapunov based controller is more
sensitive to the parameters uncertainties than the I&I and the
PD/PI controllers.

B. Controllers Experimental Validation
1) Presentation of the Experimental Environment:
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Fig. 21: Controllers robustness against uncertainties on the
cornering stiffness (±30%).

a) Automated vehicle description:
The experimental vehicle used to validate the controller is an
autonomous vehicle (APACHE) based on ZOE cars from the
equipment of the ROBOTEX project (see Fig. 22).
The APACHE car design presents several navigation modes
[42]: A manual mode where the driver is in charge of the
navigation, a cooperative mode that allows the driver to control
at least one subsystem of the vehicle (acceleration/braking
or steering) while the rest is done autonomously, and an
autonomous navigation mode where the system manages both
longitudinal and lateral controls of the vehicle. For safety
reasons, any intervention from the driver in the autonomous
mode automatically switches the vehicle to the manual mode.
Moreover, the vehicle is limited to a maximum speed of
50 km/h while driving autonomously. The automated control
of the vehicle is done through a dSpace MicroAutoBox
prototyping hardware. It is designed to send controls such
as the Driving/Braking motor torque and the steering wheel
angle through the vehicle CAN bus. The autonomous vehicle
is equipped with several sensors, meanwhile, to validate the
developed controller, we make use of a Novatel’s SPAN-
CPT in order to have centimeter accuracy localization data.
This system combines a Global Navigation Satellite System
(GNSS) and an Inertial Navigation System (INS). In addition
to Real Time Kinematic (RTK) corrections, the combined
GNSS/INS solution can provide both absolute accuracy and
continuity for localization. The SPAN is used with the higher
frequency of the Inertial Measurement Unit (IMU), which
corresponds to 50 Hz. The system provides information on
localization (latitude, longitude, height), velocity (w.r.t. east,
north, up directions), acceleration (lateral, longitudinal, verti-
cal), rotation (roll, pitch, azimuth) and rotation rate (roll rate,
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pitch rate, yaw rates). It also provides the standard deviations
of the previously mentioned quantities.

Fig. 22: Experimental vehicle: ZOE.

b) Vehicle parameters:
To find the parameters of our vehicle ZOE, we have used the
Scaner-Studio simulator. Many vehicles are modeled in this
simulator which enables to create different driving scenarios,
record necessary data, study the vehicles behavior and many
other applications useful for an engineer or a researcher. From
the given resources, a vehicle representing the vehicle ZOE is
used. The extracted parameters given in the SI units are the
following:

m = 1456.4kg, Iz = 2400kg.m2, mij = 15kg

Reff = 0.30678m, s = 2.22m2, Iw = 1.83kg.m2

Cαf
= 77349N/rad, Cαr

= 77349N/rad

Lf = 1.0847m, Lr = 1.5553m, E = 1.546m, cd = 0.333.
(59)

c) Sending Controls to the ZOE:
As mentioned above, the autonomous vehicle ZOE can be
controlled via the Driving/Braking motor torque and the
steering wheel angle. Contrariwise, our controller sends the
Driving/Braking wheels torque and the steering angle that
corresponds to the angle between the front tires and the vehicle
longitudinal axis.
To do so, we estimated the relation between the motor torque
(τm) and the torque transmitted to the wheels (τw) by measur-
ing these two variables and comparing them. The established
relation is as follows:

τw = 9.3τm − 46.5 (60)

Remark: The low level architecture of the vehicle’s driveline
provides a non null wheels torque (of 46.5 N.m) when the
motor torque is null. This torque, which we call ramping
torque, aims to avoid a backward vehicle navigation when the
motor torque is null, and the vehicle navigates on an inclined
road segment. That’s why, (60) shows that when the vehicle
is stopped and the motor torque is null, the wheels torque is
negative (-46.5N.m). In fact, this negative torque compensates
the ramping torque and as result the wheels torque are also
null when the vehicle is stopped.

Concerning the relation between the angle of the steering

wheel (δsw) and the real steering angle on the tires with
respect to the vehicle direction (δ), we assume that there is
a linear relation between these two angles. Referring to the
documentation, a ratio of 14.04 exists between these two
angles, so as:

δsw = 14.04 δ. (61)

d) Experimental tracks: The track used to validate the con-
trollers is called Seville and is located near the Heudiasyc
laboratory. It consists of two J-turns related by a straight road
segment (see Fig. 23). The track curvature is computed using
a map of trajectory coordinates (X,Y) provided in the ENU
frame.

Fig. 23: Experimental test track: Seville.

Fig. 24 shows the computed curvature of the test track Seville.
The curvature reaches 0.13m−1 in the J-turn A and 0.1m−1 in
the J-turn B. Then, when leaving the J-turn A, a curve having
a curvature of almost 0.08m−1 must be tracked; note that the
curvature variates rapidly on this road segment.
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Fig. 24: Seville track curvature.

e) Control inputs tested experimentally: Many assumptions
were made in order to simplify the task and to deal with the
experimental limitations:

• In the Lyapunov based controller, the terms in ẍ and ψ̈
in (37) were neglected based on the simulations analysis
using the track Seville conditions and different speed
profiles.

• Also in the Lyapunov based controller, the lateral speed
in the vehicle frame (ẏ) and the vehicle yaw rate (ψ̇) are
estimated by their computed values at the equilibrium on
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the desired trajectory given in (49), since their measured
values were very noisy
In fact, when replacing ẏ and ψ̇ by ẏeq and ψ̇eq , the
equation (31) becomes:

ṡ1 =−Klyys1 +
1

m
[(F ∗

yfl
+ F ∗

yfr
− F ∗

yrl
− F ∗

yrr )

− (Fyfl
+ Fyfr

− Fyrl − Fyrr )],
(62)

where Fyij are the lateral forces and F ∗
yij are the equiv-

alent of the lateral forces at the equilibrium point on the
desired trajectory.
At this point, two hypotheses were made:

– The lateral stability is not lost, which means that
F ∗
yij − Fyij is small.

– we assume that F ∗
yij−Fyij is bounded and converges

to zero when the trajectory is reached.
By assuming that, the behavior of s1 in a neighborhood
of the equilibrium can be assimilated to:

ṡ1 ' −Klyys1, (63)

and this guaranties the convergence of s1 and by conse-
quence the convergence of ey and ėy to zero.

• After many experiments on the track Seville, we found
that the term in δ in the control input τw, computed by
both of the coupled controllers, prevents the convergence
of the longitudinal speed towards its desired value. In
fact, the term in δ consists in an estimation of the sideslip
angle. This estimation is very bad when the desired speed
is not sufficiently high. Since the scenarios we executed
on the experimental track were at low speed, we neglected
the term in δ from the computation of the control law τw,
knowing that its effect can be neglected.

• The integral term in τw was omitted in the tests executed
for the moment.

As a result, the control inputs of the Lyapunov based controller
used to control the experimental vehicle are as follows:

τw = Reff [meẍ
∗ −me(Klyx + λx)evx −mẏeqψ̇eq

+ L3ψ̇
2
eq + Faero]

(64)

δ =
1

2Cαf

[−mLsëψ −m(Klyy + λy)ėyf −mKlyyλyeyf

+mẋ2ρref + 2Cαf

ẋ(ẏeq + Lf ψ̇eq)

ẋ2 − (E2 ψ̇eq)
2

+ 2Cαr

ẋ(ẏeq − Lrψ̇eq)
ẋ2 − (E2 ψ̇eq)

2
],

(65)

where the aerodynamic force is defined as in (6) by :

Faero = 1/2 ρa cd s ẋ
2,

where ρa is the mass density of air, s is the frontal area of
the vehicle, cd is the aerodynamic drag coefficient and ẋ
is the longitudinal vehicle speed. s is taken from the ZOE
model under Scaner-Sutio simulator.

The control inputs tested experimentally for the I&I
controller are given by:

τw = Reff [meẍ
∗ −me(Kimx + λx)evx −mẏeqψ̇eq

+ L3ψ̇
2
eq + Faero]

(66)

δ = u1 + u2 + δeqvl (67)

where u1, u2 and δeqvl are given by (46) and (47).
The developed Lyapunov based controller and the I&I based
controller were compared to a classical PD/P controller (the
integral action was omitted in the PD/PI and in the coupled
controllers as well). The control inputs of the PD/P controller
are given in (57) and (58), where Kix is set to zero.

2) Validation Results: The controllers were validated using
many scenarios. We present in the following a test that was
done on the track Seville with a desired speed of 15km/h.
In this test, the gains of the controllers and the parameter Ls
are set as follows:

Klyx = 1, Klyy = 5, α0 = 0.2, β0 = 0.0001

Kimx = 1, Kdy = 0.7, Kpy = 4, Kpx = 436

λy = 3.5, Ls = 3m.

(68)

The speed tracking with the different controllers is shown in
Fig. 25 while the Driving/Braking wheels torque generated by
the different controllers are shown in Fig. 26. The Lyapunov
and the I&I based controllers behave the same way since they
are using the same control law for the longitudinal dynamics.
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Fig. 25: Test on Seville, controllers comparison: Desired
longitudinal speed tracking.

Fig. 27 shows the reference trajectory and the trajectory exe-
cuted by the vehicle when using each of the three controllers.
The lateral displacement errors at the COG are given in Fig.
28 and the steering angle on tires provided by each of the
three controllers are shown in Fig. 29. We can observe that
all the controllers succeed in tracking the reference trajectory
with acceptable errors.
However, some differences can be noticed when leaving the
J-turn A (see Fig. 27). Indeed, this part of the track is the
most critical part since the road curvature changes fast and
reaches high values for a few seconds (Fig. 24: point 75 to
91). When using the PD/P controller, the vehicle oscillates
around the reference trajectory and the vehicle safety has
been threatened (This test was repeated many times, and the
driver was sometimes forced to decelerate in this driving
zone). Contrariwise, the Lyapunov based controller and the
I&I based one leave the J-turn A with almost the same
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Fig. 26: Test on Seville, controllers comparison: Front wheels
torque.

way (a smooth navigation) although the lateral error given
by the Lyapunov based controller is smaller than that given
by the I&I controller at this point. The behavior of the three
controllers on the rest of the track Seville is almost the same.
The oscillations caused by the PD/P controller when leaving
the J-turn A could be explained by the delay presented in the
controller reaction to the given driving situation. This delay
was clearly felt during the experimental tests and can be seen
in Fig. 29. For example, in this test, when leaving the J-turn
A, at t = 27.7s the coupled controllers are commanding
a steering angle of about −35◦ while the PD/P controller
is commanding a steering wheel angle of about −12◦. This
explains the oscillations of the vehicle trajectory provided by
the PD/P controller. The reason for this delay is that both
of the coupled controllers include an adaptive part in their
control inputs and another part of the regulation while the
PD/P controller includes only a regulation of the output. The
presence of these adaptive parts of the coupled controllers
allows the controller to anticipate the situation since they
permit to approach to the desired value of the output, and the
regulation is then done in a domain near the desired output
value.
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Fig. 27: Test on Seville, controllers comparison: Reference
trajectory tracking.

Note that, even though the track Seville presents a critical
driving zone (the road curvature changes fast and reaches high
values for a few seconds at the exit of J-turn A), the test
presented in this paper can’t be considered an agressive non-
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Fig. 28: Test on Seville, controllers comparison: Lateral dis-
placement error.
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Fig. 29: Test on Seville, controllers comparison: Steering angle
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linear test. Indeed, the experimental test is executed at 15km/h,
since the experimental track Seville does not allow to execute
high speeds maneuvers. The lateral acceleration reaches its
maximum at 2.59m/s2. This means that the executed test is
not a highly non-linear driving scenario as in the simulation
shown in Fig. 17, where the lateral acceleration reaches
−7.5m/s2.
Based on the experimental tests conducted for the moment,
and taking into account the assumptions that were made, we
suggest that the optimal longitudinal tracking is performed by
the linear PD/P controller while the optimal lateral tracking is
performed by a nonlinear controller (in these conditions, both
of the non-linear controllers present very close performances).

V. CONCLUSION

This work deals with the autonomous vehicles navigation
topic, mainly the trajectory tracking problem.
As a first step, a four wheeled planar vehicle model is
developed using a multi-body formalism based on Euler-
Lagrange algorithm. This model was then validated under
Matlab/Simulink using data from the simulator Scaner-Studio.
The validation showed good results validating thus the
developed model in a wide margin of navigation.
Based on this vehicle model, two coupled controllers are
proposed. The first controller makes use of Lyapunov control
technique while the second one is based on the Immersion
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and Invariance with sliding mode approach. Beside ensuring
a robust tracking of the reference trajectory and the desired
speed profile, we aim to enhance the vehicle safety by taking
into account the strong coupling between the lateral and
the longitudinal vehicle dynamics, usually neglected when
designing vehicle controllers.
The developed controllers are then validated by simulation
under Matlab/Simulink and experimentally on a robotized
vehicle ZOE in the Heudiasyc laboratory. The controllers
behaviors were also compared between them and with a
classical PD/PI controller. The preliminary results show a
better performance of the coupled controllers compared to the
PD/PI controller, especially in the critical driving conditions.
However, the I&I controller shows to be more performant
than the Lyapunov controller. This result can be explained by
the fact that the Lyapunov based controller depends on the
vehicle model much more than the I&I controller. And, since
using a complete vehicle model to derive the control laws
increases the problem complexity, the vehicle model used in
this work was simplified by using some usual assumptions
and a Linear model for the contact forces between the tires
and the ground. This simplification affects the performance
of the Lyapunov based controller and reduces its robustness.
In order to ameliorates the controllers performances, we
aim, as a perspective to this work, to use a more accurate
tire model that takes into account the non-linearity of
the Tire/Ground contact forces such as Dugoff’s model,
piece-wise linear model and others. Another important point
that we believe can improve the controller’s performances
is the use of an adaptive formulation for the parameter Ls,
that serves to compensate the lateral controllers/actuators
delay, with respect to the vehicle speed and the reference
trajectory curvature. In fact, the simulations have shown a
very small sensibility towards the parameter Ls. However,
the experimental tests have shown that the tuning of this
parameter is not at all a simple task. When this parameter is
over-tuned (its value is greater than necessary), the vehicle
starts oscillating strongly; and when this parameter is under-
tuned the reference trajectory tracking could fail. Also among
the perspectives of this work, we look forward to study the
impact of all the assumptions that had been made to simplify
the controllers and to respond to the experimental limitations.
In addition, the robustness of the coupled controllers should
be compared experimentally with more scenarios, with higher
speeds and stronger non-linearity conditions in order to be
able to conclude about the controllers robustness at the limits
of stability of the vehicle.
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urbain innovant en utilisant le formalisme de la robotique,” Ph.D.
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