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Reinforcement-Learning Approach Guidelines for
Energy Management

Yohann Rioual, Johann Laurent, Jean-Philippe Diguet

Abstract– IoT and autonomous systems are in charge of an increasing number of sensing, processing and
communications tasks. These systems may be equipped with energy harvesting devices. Nevertheless, the
energy harvested is uncertain and variable, which makes it difficult to manage the energy in these systems.
Reinforcement learning algorithms can handle such uncertainties, however selecting the adapted algorithm is
a difficult problem. Many algorithms are available and each has its own advantages and drawbacks. In this
paper, we try to provide an overview of different approaches to help designer to determine the most
appropriate algorithm according to its application and system. We focus on Q-learning, a popular
reinforcement learning algorithm and several of these variants. The approach of Q-learning is based on the
use of look up table, however some algorithms use a neural network approach. We compare different
variants of Q-learning for the energy management of a sensor node. We show that depending on the desired
performance and the constraints inherent in the application of the node, the appropriate approach changes.

Keywords– Energy management, reinforcement learning, neural network, Q-learning



1 INTRODUCTION

Interest for diffuse and automatic observation of the complex physical and biological phenomena in var-
ious areas is on the rise. Thus, sensor nodes are becoming more complex in order to meet an increased need
for accurate environmental observations. These nodes include sensors, processing capabilities and commu-
nication unit. Nevertheless adding new sensors increase the processing and communication needs, which
results in an increase of energy consumption (Figure 1). However the battery’s technologies are not evolving
fast enough to meet the need of energy. So, these systems often include harvesting capabilities.

These harvesting capabilities rely on the energy the system can harvest in its environment. Different
technologies exist using human motion, heat or solar radiation, and the choice of a technology depends
mostly of the context, but also of the energy the node needs to harvest. The solar panel technology is the most
efficient way to harvest energy (up to 15 mW/cm2). The harvesting capability of a solar panel depends of
ageing of the components [1] and of the weather. Therefore, the harvested energy greatly varies over the day,
and increases the uncertainty of such systems. Reinforcement Learning (RL) can handle such uncertainty
and so is a promising candidate method to provide the sensor nodes with the ability to adapt according to the
available energy.

The interest in RL has arisen with the success in various domains such as Atari game, robotic control or
energy management. Nevertheless, there is a multitude of reinforcement algorithms and all of them are not
suitable for implementation on embedded systems such as sensor node. Challenges and hindrances to over-
come are numerous. Moreover, these algorithms may require a significant amount of computing capabilities
and memory. There are two main approaches used, one using a lot of memory which stores information in a
look up table and another one which trains a neural network with the information using a lot of processing.
The choice of the approach to select when designing an energy management for an application is not obvious.
Thus, in this paper, we provide a comparison of different RL approaches to help designers to choose the most
appropriate one for a specific application. This paper addresses the question of the algorithm choice for a
given but classical real case. We illustrate the comparison with the use case of a marine buoy equipped with
solar panels to complement its battery.

This paper compares several versions of a well-known reinforcement learning algorithm, which uses
either look up table or neural network. The rest of the paper is organized as follows : Section 2 provides
an overview of the background and state of the art works on the use of reinforcement learning algorithms
in the field of energy management, we also present our use case: the marine buoy. Section 3 presents the
different algorithms and the performances of each on energy management of our system. Section 4 presents
a comparison of the different algorithms. And finally, Section 5 concludes the paper by summarizing the
relevant features of this work.

2 OVERVIEW

Reinforcement Learning (RL) [2] is a framework to optimize the behaviour of an agent, or a controller
that interacts with its environment. First, this section presents the RL, then, related works from the state of the
art using RL algorithms to optimize the energy consumption of cyber-physical systems are presented. Finally,
our use case, a marine buoy, is presented.

2.1 Background on Reinforcement Learning

RL is a formal framework that models the problem of sequential decisions, in which an agent learns how
to take better decisions by interacting with its environment (Figure 2). When the agent performs an action, it
receives as a feedback the new state of its environment and a reward signal, encoding the information on the
quality of the transition. The agent’s objective is to maximize its long term reward.

RL algorithms can be used to solve optimization problems that can be formulated as Markov Decision
Process (MDP). An MDP is a 4-tuple 〈S,A, T ,R〉 where S is a state space, A is a set of actions, T :
S ×A× S → [0, 1[ are the probabilities of state transitions andR is a reward signal.



The agent follows a policy π : S ×A which determines the agent’s behaviour. An optimal policy π∗

maximize the long term reward, i.e. :

π∗ = argmax
π

J(π) = argmax
π

E

[ ∞∑
t=0

(
γt ×R(st, πt(st))

)]
(1)

where t represents a time step and 0 < γ < 1 is a discount factor. In the RL framework, the aim is to learn an
optimal policy when the model, T and the rewardR, is unknown.

The discount factor γ determines the importance of future rewards. A factor of 0 makes the agent myopic
by considering only current rewards, while a factor close to 1 implies more distant rewards. If the discount
factor is close to 1, without a terminal state, or if the agent never reaches one, all environment histories
become infinitely long, and Q-values with additive, undiscounted rewards generally become infinite.

2.1.1 ε-greedy Policy

A major issue in RL is the dilemma between exploration and exploitation. Exploration chooses an action
randomly in the system to find out the utility of that action. Whereas exploitation deals with the actions
which have been chosen based on the previously learned utility of this action. We encourage the algorithm
to explore more during the beginning of the training period, and then slowly decrease the exploration to
exploit the learned informations. With sufficient training, the algorithm should converge to its optimal policy.
However, acting greedily before convergence may lead to sub-optimal policies because the agent would not
have had the opportunity to sample state-actions pairs that might have led to higher returns. In order to avoid
this, we follow an ε-greedy policy. This means that the actions are chosen greedily most of the time, but with
probability ε, a random exploratory action is selected.

A heuristic used to calculate the probability of exploration at any point of time is given in [3] :

ε = min(εmax, εmin + k × (Smax − S)/Smax) (2)

where εmax and εmin denote upper and lower boundaries for the exploration factor, respectively. Smax rep-
resents the maximum number of states and S represents the current number of states already known. At each
time step, the system calculates ε and generates a random number in the interval [0, 1]. If the selected random
number is less than or equal to ε, the system chooses a uniformly random task (exploration), otherwise it
chooses the best task using Q-values (exploitation).

2.2 Related work

Reinforcement learning approach has been applied in a variety of schemes such as routing, resource
management or dynamic channel selection in wireless networks. Indeed RL allows systems to observe,
learn and respond to its complex and dynamic operating environment in an efficient manner. According
to the problem, different algorithms are used : Q-learning, TD(λ), SARSA(λ), Deep Q-learning, temporal
difference algorithm.

The most popular RL algorithm in the literature is the Q-learning. It has been applied successfully in
various applications. In the context of radio optimization [4] proposes an adaptive media access control
(MAC) protocol. In this case, it adapts the communication of a sensor node depending on the number of
data to be transmitted and the energy available. [5] proposes on-line power management technique with Q-
learning for peripheral devices and microprocessor. The idea is to adapt the energy consumption according
to the workload with no prior information since devices have different operating behaviours and performance
evaluation. Their techniques adjust on the fly the energy consumption and take into account uncertainties
that emanate from hardware and application characteristics. The use of Q-learning algorithm does not limit
to the optimization of the energy consumption. [6] presents a prediction algorithm for the energy generation
from harvesters. Since embedded systems have limited-energy source. However, inevitable energy depletion
will eventually disturb the system’s operation. Solar energy is the most effective environmental energy for
energy harvesting because of its high energy intensity, nevertheless it comes from a non-controllable source,



the sun. The proposed method predicts the system’s energy that will harvest to adjust the energy consumption
accordingly.

The algorithm can also be distributed among several agents to allow them to cooperate, to compete or
something in between. [7] proposes a distributed Q-learning to deal with the problem of aggregation of inter-
ference generated by multiple cognitive radio at the passive digital TV primary receivers. The authors tested
this approach with a look up table to store the expected reward for each possible action or a neural network
version which compute the expected reward. The comparison shows that according the application, a designer
might prefer using more memory with a look up table or do more computation with a neural network.

When an agent performs an action with Q-learning, it receives a reward that evaluates the efficiency of
the action. However an agent may receive a reward only after performing a sequence of actions, assigning
credit to the appropriate state-action pairs becomes an issue. To resolve this, different algorithms introduce
a memory variable for each state-action pair called the eligibility trace. During each epoch, the eligibility
trace for all state-action pairs decays by γλ where λ, 0 < λ < 1, is a parameter that allows to specify the
strength with which Q-values of early state-action pairs are updated as a consequence of the final reward.
The authors of [8] use this approach to propose on-line power management technique for peripheral devices
and microprocessor. The idea is to adapt the energy consumption according to the workload with no prior
information. Indeed devices have different operating behaviours and performance evaluation. Their technique
adjusts on the fly the energy consumption and takes into account uncertainties that emanate from hardware
and application characteristics. Moreover, the authors add a workload prediction based on on-line Bayes
network to improve the performance of their algorithm. In order to maximize a node’s lifetime, the node
is equipped with one or more energy harvesting devices, enabling the nodes to be entirely powered by the
energy harvested in their environments.

Energy Neutral Operation (ENO) is a mode of operation where the energy consumption of the node is
always at most the energy than the energy harvested from the environment. In order to achieve energy neutral
operation, energy optimisation methods need to fulfil the energy neutrality constraints while maximising
performance. In [9], the author uses an other RL algorithm, SARSA(λ), to achieve a ENO power management
of a sensor node in a monitoring application. It uses the previously harvested energy, which is stored in the
energy buffer (battery, capacitor, . . . ) and the weather prediction to determine the different possible actions in
order to achieve a ENO. It achieves less than 6% root mean square deviation from ENO as compared to more
than 23% deviation that occurs when using other approaches, and a reduction by almost 4 of the difference
between the energy collected and the energy consumed.

Some different approaches use neural networks to reduce the energy consumption. For instance, [10]
presents a method to reduce the energy consumption of the front-end radio using neural networks. It proposes
a real-time channel-adaptive system which is able to change its power consumption according to the desired
level of Quality of Service. The key objective of learning based adaptation is to determine the optimum
tuning knob combinations for the front-end for every channel’s state on-the-fly. The experiments show up to
2.5 times savings in energy consumption compared to a worst-case design method. And [11] uses the Deep Q-
learning, a neural version of the popular Q-learning to take routing decision for packets in underwater acoustic
sensor network (UASN) in different topologies. By combining this approach with hybrid broadcast and
unicast communication mechanisms, the author achieves highest energy efficiency which results an improving
lifetime for the network by 34− 36% compared to others approaches without reduction of the latency.

There are plenty other approaches using RL algorithms, which do not use neural network or Q-learning.
In [12], the author propose an algorithm using temporal difference learning with linear function approxi-
mation. This algorithm called RLMan dynamically adapts energy management policy to time-varying en-
vironment. The author successfully applied it to the Pow Wow platform [13], a wireless sensor node with
harvesting capabilities. The algorithm has been tested with two different sources of energy, indoor light
and outdoor wind. The average throughput is 70% higher than with state-of-the-art algorithms which it is
compared. And [14] applied RL algorithm to device-to-device communication for cellular networks. Device-
to-device communications help to improve cellular networks by reusing the spectrum resources. Nevertheless,
it provides interferences in the system while reusing the resources. The authors propose an adaptive power
allocation method using a bandit arm solver and provide an efficient interference management system. The



D2D throughput increased by 28% as compared with the distributed reinforcement learning.
RL is widely used to optimize the energy consumption. There are different algorithms available and

different approaches (look up table or neural network). However, the main challenge remains to find which
approach to use and how to define the MDP. In this the paper we explore this challenge while considering a
marine buoy case study presented in the following section.

2.3 Marine buoy case study

Monitoring the marine environment is an important and difficult task. Sea wave height, water temperature,
atmospheric pressure, and wind speed used for many practical applications, are usually obtained from three
sources: buoy measurements, model calculations, and ship observations. Compared to other data acquisition
methods, buoy measurements are the most reliable and readily data source available continuously for years.
Therefore, in this paper, we consider a marine buoy near the coast communicating with a base station. The
buoy is equipped with two sensors, an anemometer 3D and atmospheric sensor, to monitor environmental
conditions. The sensors have different energetic behaviours (Table 1) and we want the buoy to be deployed
as long as possible. In order to make it simple, data are sent immediately without processing. Since solar
radiation is the most effective environmental energy for harvesting, the buoy is equipped with solar panels. To
avoid collision with boats, a beacon light flash every 4 seconds and during 0.5 seconds when the brightness
is low.

The aim of the use case is both to extend the buoy’s lifetime and to maximize the measurement done by
the sensors. We minimize the set of actions that the system can take to keep it simple. So, the buoy can adjust
the sampling frequency of its sensors in order to preserve the battery’s energy. Thus, we use a RL algorithm
to control the sampling frequency of the sensors and to choose the correct frequency in order to preserve
the battery while maximizing the performance. The measured data are transmitted immediately, there is no
retention. Obviously, this approach is suboptimal [15]. The idea of this paper is to give a guideline to select
the appropriate RL approach for the energy management of a sensor node. The MDP presented here needs
some adaptation to be in accordance for the desired performance in the specification of your application.

We define our MDP as follows : a state space S of 10 states (for each 10% increment of the battery
charge), the set of actions A is the different operating modes our sensors are allowed to choose (i.e. a
sampling frequency (Hz) in [0.1, 0.2, · · · , 0.9, 1]). The reward function indicates what kind of behaviour best
serves our objective. In our RL model, the reward awarded at the end of an episode depends on the residual
battery energy and the sampling frequency of our sensors during the episode. We reward our system using a
simple function :

η ×N (frequency) + (1− η)×N (battery charge) (3)

whereN is the function that normalizes the values. η ∈ [0, 1] is a parameter which balances the importance of
the battery charge and the sampling frequency. It’s really important for the reward function to be deterministic
and bounded, otherwise the algorithms will never converge.

We conduct several simulations for three different algorithms, Q-learning, Dyna Q-learning and Deep
Q-learning. The principle of these algorithms is the subject of the next section. The production from so-
lar panels is estimated using the surface power coming from sun radiations. It uses state-of-the-art model
for photovoltaic panel [16]. The photovoltaic panel’s temperature is influenced by the solar irradiation, the
ambient temperature and the wind velocity. Climate data come from the meteorological station at Lorient,
France. It includes an archiving of wind (angle, speed) and ambient temperature. A sunshine model is also
implemented to estimate the surface power of the sun radiations. It depends on the date and node position on
the globe. All the details can be found in [17]. Figure 3 shows the evolution of the energy the solar panels
harvested during 3 weeks in summer.

The following section presents the reinforcement learning algorithms we use for the energy management
of our node and the results of simulations.



3 REINFORCEMENT LEARNING ALGORITHMS FOR ENERGY
MANAGEMENT

The choice of the correct RL algorithm to use is a challenging problem. Indeed, there are many algorithms
available and it is not easy to find the best for a target application. In this section, we explore different
algorithms with a look up table or with a neural network, and we try to propose a methodology to guide the
designer choice. Here, we investigate only the field of energy management.

3.1 Algorithms using a look up table

When we use an algorithm with a look up table, we use this table to store the expected future reward for
the selected action in a certain state (Figure 4). These values are called Q-values. In this paper, we present 2
algorithms which use this approach to learn, the Q-learning and the Dyna Q-learning.

3.1.1 Q-learning

The Q-learning (Algorithm 1) is a well-known and popular RL algorithm [18] due to its ease of implemen-
tation and to its convergence which is mathematically proven. In this section, we first present the algorithm
and in a second time the results achieved on the energy management for our case study.

The Q-learning reinforcement function is based on the value iteration algorithm. The aim of this algo-
rithm is to optimize the evaluation function for each state-action pair (s, a) in order to deduce an optimal
control strategy. For this purpose, Q-learning uses the temporal difference principle [19] to update the evalu-
ation function. The temporal difference corresponds to the difference between two successive estimates of a
couple’s gain expectation.

The Q-value associated with the state st and the action a in the look up table is updated with the following
equation :

Q(st, a) = Q(st, a) + α

(
r + γmax

a′
Q(st+1, a

′)−Q(st, a)

)
(4)

In equation 4, the term r + γmax
a′

Q(st+1, a
′)−Q(st, a) corresponds to the difference between the new

and the old estimation of Q(st, a), this is the temporal difference.

Learning rate α : The learning rate α determines how fast the new information will surpass the old one.
A factor of 0 would not teach anything to the agent, whereas a factor of 1 would only teach to the agent with
the latest information. In our work, we decrease slowly the learning rate α in such a way that it reflects the
degree to which a state-action pair has been chosen in the recent past. It is calculated as:

α = max

(
ζ

visited(s, a)
, 0.1

)
(5)

where ζ is a positive constant and visited(s, a) represents the visited state-action pairs so far [20].
A good optimization requires to choose a correct value for the discount factor γ and for the duration of

each action. We already have a heuristic (Equation (5)) to set up α. We set γ to 0.8 to consider the expected
reward to a near future. Indeed, the deployment length is a critical limitation for a monitoring application,
so we anticipate in the long term. And after numerous simulations, we choose to iterate the algorithm to
take a new action every 30 minutes. This delay avoids waking up the system too many times. This value is
dependent of the application and requires a good knowledge of both the algorithm and the application.

Results
We simulate a 3 week deployment of our buoy near to Lorient, Bretagne, France. Figure 5 shows the

evolution of the battery charge and the sampling frequency of the sensors. At the beginning, the agent has no
prior knowledge of its environment and takes random actions to become aware of it. After few iteration, we
observe a daily variation in the sampling frequency, it corresponds to the evolution of the harvested energy



during the day. At the end of the simulation, the agent still does not know perfectly its environment but the
daily variation are more well-defined.

The agent succeeds to adapt itself to the daily variation of the harvested energy without prior knowledge
about it. However, one problem with this algorithm is that we have to store the Q-value of each pair (s, a),
and it can only be uses for discrete state space and discrete action space. In addition, its time of convergence is
difficult to estimate and make it unusable for applications with time constraints. To improve the convergence’s
time of the Q-learning algorithm, there are different usable solutions. In the following section, we present the
Dyna Q-learning and the results of a simulation with identical parameters. The backbone of Dyna Q-learning
algorithm is the Q-learning to which few adjustments are made. And one advantage is the adjustment of its
complexity according to the computing capacity available.

3.1.2 Dyna Q-learning

The Dyna Q-learning (Algorithm 2) [21] is a variant of the Q-learning, which also uses a table to store the
Q-values. One drawback with Q-learning algorithm is its slow Q-values convergence, so the Dyna Q-learning
is proposed to accelerate this convergence. To achieve this objective, Dyna Q-Learning uses a partial and
deterministic model of the environment to learn using the previous experience. The last transition and the
associated reward are stored in memory for each visited state. The algorithm uses this model to optimize the
evaluation function at each episode or even independently during a break in the decision making process. It
selects a state s already visited and chooses an action a already performed, and then it uses the transition st+1

and the reward r stored in the memory to update the Q-value Q(s, a). The number of updates per sampling
period is noted N .

We use the same parameters α, γ and time slot as the Q-learning algorithm. Increasing the value of N
reduces the learning phase up to a certain limit. However it increases the computation as well which results
in an increase of the energy consumption. We choose to set N to 10, this value was determined after a series
of experiments to improve the convergence rate; higher values did not accelerated the learning as much.

Results
We simulate the Dyna Q-learning in the same conditions as the Q-learning during 3 weeks. Figure 6

shows the evolution of the battery charge and the sampling frequency of the sensors. At the beginning of the
simulation, the agent has no prior information about its environment and takes random actions as we can see
with high variation in the sampling frequency. Around day 13, the sampling frequency follows the battery
behaviour during the charge and discharge. At day 18 the sampling frequency reached the maximum at 1 Hz
while the battery is fully charged. We can consider that the value converged around day 13.

The results show that the Dyna Q-learning algorithm increases the convergence of the Q-value by 17%
in this example. The agent can take better decision about its sampling frequency to adapt itself the evolution
of the battery load. However if the convergence of the Q-values is accelerated, the memory requirement
increases as well. Indeed we need a look up table (A × S) for the Q-values and 2 others of the same size
to store the transition and the associated reward, and the problem is that embedded systems have often small
memory capacity. To reduce the use of memory, another approach consists in computing the different Q-
values possible using a neural network. The memory only stores the weight of neurons allowing larger MDP.

3.2 Algorithms using neural network

Creating and updating a Q-table is not efficient at all for large environments, it’s not scalable. The idea
in this case is to create a neural network that will approximate, given a state, the different Q-values for each
action (Figure 7). In this section, we present the Deep Q-learning (Algorithm 3) [22], a version of Q-learning
using neural networks.



3.2.1 Deep Q-learning

The Deep Q-learning uses a neural network to take advantage of their ability to generalize the learning.
Instead of storing the Q-value for each state-action pair in a look up table, a neural network takes as an input
the state and for each possible action computes the expected reward (Figure 7). We take the biggest Q-value
of this output to find our best action. Then after the episode, we update the neural network with the obtained
reward. Equation (6) shows how the algorithm adjusts the network’s weights ∆w using a gradient descent
algorithm.

∆w︸︷︷︸
Change in

weights

= α[(R+ γmax
a′

Q̂(st+1, a
′, w)︸ ︷︷ ︸

Maximum possible Q-value

for the next state

)− Q̂(s, a, w)︸ ︷︷ ︸
Current

predicted

value

] ∇wQ̂(s, a, w)︸ ︷︷ ︸
Gradient of our

current predicted

Q-value

(6)

The change in weights depends on the difference between the predicted value for the current state, the
highest value for the next state and the gradient of the predicted value∇wQ̂(s, a, w).

Experience replay helps to avoid forgetting previous experiences and reduces correlation between the
experiences. Because of high correlation between actions and states, the weights of the network are highly
variable. At each interaction with the environment, we receive a tuple (state, action, reward, new state) and
use it to learn the best action to take. The problem is that this information is obtained sequentially and the
network tends to forget the previous experience since it overwrites them with new experiences. With the
experience replay, we decrease this problem by storing the previous experiences in a replay memory while
interacting with the environment, thus we sample a small batch of experiences to feed our neural network.

A neural network does not need to explore all state-action pairs. The network can find good solution
without exploring the states by generalizing its knowledge. However the Deep Q-learning needs different
experiences to avoid overfitting. The overfitting appears when the network fails to reliably predict future
observation.

This algorithm has parameters to adjust as the previous ones. The learning rate α determines how fast
the new experience replaces the old ones, and a neural network is more sensitive than a look up table to this
parameter evolution since it impacts all the weights and so all the computed reward. So we set α to 0.1,
which is a balance between network stability and convergence speed. The value of α is determined after
several experiments. The discount factor γ still represents the importance given to the future reward over
the immediate one and we set it to the same value 0.8. We tested different hyperparameters for our neural
network and finally, we selected a neural network composed with 1 input layer neuron then 1 hidden layer
of 20 neurons and finally 10 neurons in the output layer. An overly complex or simple network will not
be efficient at all. The activation function is a rectifier (Equation (7)). We store in a memory the last 10
experiences in order to use it as a batch.

f(x) = x+ = max(0, x) (7)

Results
As for the previous algorithms, we simulated the system over a period of 3 weeks. Figure 8 displays

the evolution of the battery load and the sampling frequency of the sensors. At the beginning the sampling
frequency is low and increases after day 17. Nevertheless we start to observe the daily variation around
day 4. At the end the sampling frequency increases and the daily variation disappears. The agent loses the
information it learned at the beginning.

The Deep Q-learning algorithm achieves an energy management using less memory than the Q-learning.
However it forgets over the time the daily variation information. A way to improve the learning is to store
only relevant information in the memory, but the question is how to determine which information is relevant.

The following section presents a comparison of the three presented algorithms to help designers to deter-
mine the most appropriate for their applications.



4 COMPARATIVE RESULTS

We simulated three different reinforcement learning algorithms using the same decision process. The
goal of each algorithm was to manage the energy of the same marine buoy equipped with solar panels. The
variation in the harvested energy during the day makes the energy management challenging. They succeed
to adapt the sampling frequency to this daily variation. These algorithms use Q-values to determine the best
action to take and the convergence of the Q-values is difficult to anticipate. The algorithms have probably not
reached the optimal policy but provide good enough decision to preserve the system’s battery.

The choice of the RL algorithm to use is not straightforward and depends on application requirements,
computation capabilities and available memory. Moreover, there are numerous different embedded systems
and their capabilities in memory and processing vary a lot. Each algorithm has its own advantages and so, the
choice of the trade-off will depend on the context.

In order to provide designers with guidelines, we compare the algorithms using four criteria : the compu-
tation requirement, the memory needs, the learning speed and the stability of the algorithm. The computation
requirement is important for an embedded system. Indeed, these systems have limited computing capacity
and often time constraint applications. Moreover, they consume energy to compute the Q-value and it would
be counter-productive to consume more energy or to take more processing time for the energy management
algorithm than for the main application. The Q-learning algorithm is the less processing-hungry algorithm
since it computes only a value at each iteration. The Deep Q-learning computes all the Q-values at each
iteration and the training of the neural network requires processing too.

Memory usage is another parameter to consider since the memory available on a micro-controller unit
is often low (few kB). The neural network approach needs less memory than a look up table for large en-
vironment since it stores only the weights of the neurons, whereas the look up table stores all the Q-values.
Moreover it is possible to further reduce the memory usage of a neural network by reducing the number of
neurons but we decrease the accuracy of the computed Q-values.

The learning speed requirement depends on the application. Reinforcement learning approaches can only
be used when the system can make errors safely and learn. However, some applications need to take good
decisions quickly after the deployment of the node. The Deep Q-learning surpasses other algorithms on the
learning speed. In fact, the neural networks have the property to generalise the learning, which makes the
knowledge of the Q-values in one state usable in a different state. A solution to have the benefits of a good
convergence speed while using a look up table, is to implement a Dyna Q-learning and then disable the model
of the environment when the learning rate α is low.

The stability depends on the impact that new information can have on the algorithm. The stability of the
neural network approach is lower, indeed, with each network update all future Q-values are modified. While
a new experience with Q-learning only changes one Q-value and only once. With the Dyna Q-learning,
this Q-value can be modified several times before repeating the experiment with the use of a partial model.
This criterion becomes important when the learning ends because a bad experience can modify the agent’s
behaviour, which is why the value of α is modified as the exploration progresses, reducing this risk.

These different parameters (Figure 9) should give a designer the guideline to choose the most appropriate
algorithm for the energy management of the system he is developing. After choosing the algorithm, the
designer must find the correct parameters for his application. These parameters are found either with the
designer’s experience or empirically.

5 CONCLUSION AND PERSPECTIVES

More and more algorithms of energy management use a Reinforcement Learning approach, since it
allows a system to adapt dynamically to changes in its environment. Nevertheless, there is numerous existing
algorithms using different approaches. In this paper, we select and compare three RL algorithms with an
energy management of the same marine buoy, Q-learning, Dyna Q-learning and Deep Q-learning. Based on
our experiments, we propose a classification to help designers to select an appropriate solution depending on
their system’s constraints. These criteria are Learning Speed, Stability as well as Storage and Computation



requirements. The comparison shows that each approach has its own advantages and drawbacks. And the
choice of the approach depends on the application and the trade-off between computation and memory use.

The energy management used in this paper is quite simple. The only possible action of the agent is to
modify the sensors sampling frequency, the data are transmitted immediately that is a sub-optimal solution.
An improvement would be to propose a more complex energy management algorithm with several different
actions, to change the sampling frequency but also the transmission parameters. Future works aim to imple-
ment the improved algorithms on a real marine buoy and test them with the real world conditions in order to
validate the simulation results.
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6 FIGURES AND TABLES

Figure 1: Energy consuming task of a sensor node

Environment
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ActionStateReward

Figure 2: Interaction between an agent and its environment

Table 1: Buoy components
Components Characteristic
Anemometer 3D WindMaster HS
Atmospheric sensor YOUNG61302L
Processor Cortex-M4 MCU
Transmitter CC1000
Harvester Power
Solar panel 2× 10 W

Battery capacity 5200 mA
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Figure 3: Evolution of the energy harvested in simulation between 07/01/2017 and 07/21/2017

Figure 4: Overview of how a look up table works

Algorithm 1 Q-learning
Initialize Q(s, a) arbitrarily
The agent observes the initial state s0
for each decision epochs do

Choose a from s using policy derived from Q
Take action a, observe the new state s′ and the associated reward r

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(st+1, a

′)−Q(s, a)

)
s← st+1

end for
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Figure 5: Evolution of the battery charge and sampling frequency of the sensors using the Q-learning algo-
rithm

Algorithm 2 Dyna Q-learning
Initialize Q(s, a) arbitrarily
The agent observes the initial state s0
for each decision epochs do

Choose a from s using policy derived from Q
Take action a, observe the new state st+1 and the associated reward r

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(st+1, a

′)−Q(s, a)

)
m(s, a)← st+1, r
for i = 1 to N do
s← random visited state
a← random visited action
st+1, r ← m(s, a)

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(st+1, a

′)−Q(s, a)

)
end for

end for
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Figure 6: Evolution of the battery charge and sampling frequency of the sensors using the Dyna Q-learning
algorithm

Figure 7: Deep Q-learning

Algorithm 3 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for each decision epochs do

Initialise sequence s1 = x1 and preprocessed sequenced φ1 = φ(s1)
With probability ε select a random action at
otherwise select at = max

a
Q∗(φ(st), a; θ)

Execute action at and observe reward rt
Set st+1 = st, at, xt+1 and pre-process φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random mini-batch of transitions (φj , aj , rj , φj+1) from D

Set yj =

{
rj for terminal φj+1

rj + γmax
at+1

Q(φj+1, at+1; θ) for non-terminal φj+1

Perform a gradient descent step on (yj −Q(φj , aj ; θ))
2

end for
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Figure 8: Evolution of the battery charge and sampling frequency of the sensors using the Deep Q-learning
algorithm

Figure 9: Algorithm comparison
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