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ABSTRACT (200/200 WORDS) 

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer’s 

disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid 

receptors (GR) signaling impairment. However, the precise role of GR in the 

pathophysiology of AD remains unclear. 

Using an acute model of AD induced by the intracerebroventricular injection of amyloid-β 

oligomers (oAβ), we analyzed cellular and behavioral hallmarks of AD, GR signaling 

pathways, processing of amyloid precursor protein, and enzymes involved in Tau 

phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early 

altered in AD and involved in HPA axis control and cognitive functions. 

We found that oAβ impaired cognitive and emotional behaviors, increased plasma GC 

levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ 

potentiated the amyloidogenic pathway and enzymes involved both in Tau 

hyperphosphorylation and GR activation. Treatment with a selective GR modulator 

(sGRm) normalized plasma GC levels and all behavioral and biochemical parameters 

analyzed. 

GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the 

HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology 

of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce the therapeutic 

potential of sGRm in AD. 

 

Key-words: Selective GR modulator; GSK-3β; Cdk5; ROCK; PDK1 
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INTRODUCTION 

 Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is 

characterized by a progressive impairment of cognitive functions and the presence of 

senile plaques and neurofibrillary tangles (NFT) throughout the brain, including areas 

particularly involved in memory formation and emotional regulation. Plaques are 

composed of insoluble extracellular aggregates consisting mainly of amyloid-β (Aβ) 

peptides, while NFT result from hyper- and abnormal phosphorylation of the microtubule-

stabilizing protein Tau (1). There are several forms of AD. Familial forms with known 

mutations of specific genes represent less than 5% of cases, whereas 95% of patients 

develop sporadic forms, with unknown mechanisms, but with identified risk factors. The 

principal risk factor for sporadic AD is aging. But, there is also growing evidence that 

stressful lifetime events may increase the probability of developing AD (2). This view is 

particularly supported by the fact that in AD patients, cognitive and psychological 

symptoms are associated with an early deregulation of the hypothalamic-pituitary-adrenal 

(HPA) axis, as well as elevated levels of glucocorticoids (GC) in plasma and CSF (3,4). 

The HPA axis, highly involved in the stress response, triggers the adrenal cortex to 

release GC. These steroid hormones readily cross the BBB and bind to low affinity 

glucocorticoid receptors (GR) and high affinity mineralocorticoid receptors (MR) (5). GC 

are necessary for normal cellular activity and fundamental for many CNS functions, 

including learning and memory (6). While MR are localized mainly in the hippocampus, GR 

are more ubiquitous and are particularly found in several structures of the limbic system 

(prefrontal cortex (PFC), hippocampus and amygdala), which are strongly involved in 

cognitive and psychological functions, but also are important components of the neural 

circuitry modulating HPA axis activity (7). 

GC act synergistically with excitatory amino acids (like glutamate) in neurotoxicity. 

Hence, a deregulation of the HPA axis activity or a modification of GR functioning could be 

extremely toxic, especially in limbic structures (8), and thus could contribute to the 

cognitive decline and psychological symptoms that occur in AD. In chronic animal models 

of AD (transgenic mice), stress and GC administration affect the course of the pathology. 

Chronic stress accelerates the onset of cognitive deficits, triggers amyloid precursor 

protein (APP) misprocessing, enhances plaque pathology, reduces Aβ clearance, 

increases Aβ levels, stimulates Tau hyperphosphorylation and its neuronal accumulation 

(9,10). In the same line of evidence, a recent study showed that early life stress in 

APP/PS1 mice induced elevated corticosterone levels, associated with enhanced 
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hippocampal Aβ1-40/42 and BACE1 levels (11). In an acute pathomimetic model of AD 

obtained after a single intracerebroventricular (icv) injection of an oligomeric solution of Aβ 

(oAβ25-35) (12-14), we demonstrated a strong, long-lasting activation of the HPA axis, 

associated with a modification of GR and MR expression in brain regions involved in the 

control of GC secretion (hippocampus, amygdala and hypothalamus) (15), supporting its 

involvement in the etiology of AD (9,16-19). We also observed that an antagonist and 

selective modulators of the GR could potently counteract the effects of oAβ25-35 injection in 

the hippocampus, arguing strongly for a therapeutic potential of modulating GR activity 

(14). 

 In the present preclinical study, we focused our attention on the PFC for several 

reasons. (1) It is a cerebral region highly involved in the control of the HPA axis. Indeed, 

the PFC is involved in both driving the stress-induced activation of the HPA axis, and in 

mediating negative feedback regulation in times of stress (20). (2) The different 

subdivisions of the PFC are particularly involved in cognitive and emotional processing 

(21). (3) In AD, the PFC is rapidly affected (22). (4) GR levels in the PFC are five-fold 

higher than MR levels (23), suggesting that the PFC could be particularly sensitive to a 

dysregulation of the HPA axis activity. 

 Thus, on the basis of our previous findings (12-14) we took advantage of specific 

properties of a new selective GR modulator (sGRm) CORT113176 to decipher the role of 

GR in AD. CORT113176 is representative of a series of novel, selective non-steroidal GR 

ligands (1H-pyrazolo(3,4-g)hexahydro-isoquinoline sulfonamides) developed by Corcept 

Therapeutics (Fig.1B). It exhibits excellent affinity for GR with no measurable affinity for 

the other nuclear hormone receptors (progesterone, androgen, mineralocorticoid and 

estrogen) (14,24-26). CORT113176 demonstrated only partial antagonism and also some 

agonism in reaction to a viral protein in rat hepatocytes (14). Hence, we refer to it as a 

sGRm, with the implication of the advantages linked to selective receptor modulation that 

we previously reported in detail (14). In fact, this family of molecules has the potential to 

more selectively abrogate pathogenic GR-dependent processes in the brain (as 

antagonist), while retaining beneficial aspects of GR signaling (as agonist) (14,27-30). 

MATERIALS AND METHODS 

Animals 

 Adult male Sprague-Dawley rats (Janvier Lab., Le Genest-Saint-Isle, France) 

weighing 260-280g (8 weeks) at the beginning of the experiments, were housed 1 week 

before experiments in a standard animal facility (12H/12H light/dark cycle with lights on at 
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07H00; 21 ± 1°C, food and water ad libitum). All experiments, including sacrifices, were 

performed in conscious rats between 09H00 and 14H00, during the diurnal trough of the 

HPA axis circadian rhythm.  

Ethical considerations 

Animal procedures were conducted in strict adherence to the European Union 

Directive of 2010 (2010/63/EU). The National French Animal Welfare Committee and the 

local committee at the University of Montpellier approved all protocols (authorization: 

CEEA-LR-12160). All efforts were made to minimize the number of animals used, potential 

pain, suffering and distress. 

Amyloid-β peptide 

 In patients, soluble Aβ oligomers contains mainly the sequences Aβ1-40 and Aβ1-42 

(1). However, they also contain peptides with shorter sequences such as Aβ25-35 or Aβ25-

35/40 (31-33), identical between human and rodent (34). It can be produced in AD patients 

by enzymatic cleavage of Aβ1-40 (31,32). This Aβ peptide includes extracellular and 

transmembrane residues that have been reported to represent a biologically active region 

of Aβ (35-37) and to contain the highly hydrophobic region forming stable aggregates (36). 

Interest in this undecapeptide, which itself shows a β-sheet structure (12,36), has grown 

over the last decade, mainly because it induces neurite atrophy, neuronal cell death, 

synaptic loss, as well as synaptic plasticity and memory deficits in a similar way to Aβ1-40 

and Aβ1-42 (37), but with better solubility and efficiency (38,39). Aβ25-35 and scrambled 

Aβ25-35 peptides (PolyPeptide, Strasbourg, France) were dissolved in sterile water (1 µg/µl) 

and stored at -20°C. Since soluble Aβ oligomers correlate better with the progression of 

the disease (40), Aβ25-35 and scrambled peptides were aggregated by in vitro incubation at 

37°C (4 days) to obtain a solution mainly composed (more than 95%) of a mixture of 

soluble oligomer species (oAβ25-35), as previously characterized (13). 

Experimental procedures 

 To evaluate the impact of oAβ25-35 (acute model of AD), animals were divided into 

three groups. One group had no surgery (control rats), a second received an icv injection 

of incubated scrambled peptide (10 µg/rat) and a third received an icv injection of oAβ25-35 

(10 µg/rat). The animals were anesthetized with an intraperitoneal (ip) injection of 1 ml of a 

mixture of Ketamine and Xylazine (80 and 10 mg/kg b.w., respectively). oAβ25-35 was 

injected directly into the lateral ventricles using a David-Kopf stereotaxic apparatus 

(Phymep, Paris, France), (coordinates: AP -1 mm, L ±1.5 mm, DV -3.5 mm) (Fig.1A) (41). 

Based on a previous study (14) and in order to decipher the role of GR in oAβ toxicity, 

treatment with sGRm was conducted 1 week after the icv injection of oAβ25-35. 
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CORT113176 (10 mg/kg b.w. per injection) (Corcept Therapeutics, Menlo Park, CA, USA) 

(Fig.1B) was injected ip twice a day (09H00 and 18H00) for 1 week. The short-term 

memory or anxiety state of different groups of rats were tested (day 14) in a T-maze or in 

an elevated plus maze test (EPM), respectively. The following day (day 15) and 30 min 

after the last ip injection, the unanesthetized animals were sacrificed by decapitation. 

Blood samples and the PFC were rapidly collected for corticosterone assay and WB 

analysis. Naive rats received no treatment but were manipulated in the same manner as 

treated rats. Vehicle rats received only ip injections of sesame oil and served as negative 

controls for pharmacological treatments. 

Spatial short-term memory 

 T-maze test was used to rapidly assess the delayed alternation of rats. This 

memory behavioral test was used as a non-invasive recurrent readout that we usually 

perform to make sure we have an appropriate toxicity (12-15). The T-maze consisted of 

two short arms (A and B), extending from a longer alley and enclosed with high walls. The 

test involved two trials separated by 1 h. During the training session, one short arm (B) 

was closed. Rats were placed at the end of the long alley, allowed to visit the maze for 10 

min and then returned into their home cage. During the test session, animals were placed 

in the maze for 2 min, with free access to all arms. The number of visits and time spent in 

each arm were measured. The results were expressed as ratio of the time spent in the 

initially closed novel arm, over the time spent in the previous arm and as a ratio of the 

number of entries into the novel arm over the familiar one. The apparatus was cleaned 

with diluted ethanol (50%) between animals. 

Anxiety behavior 

The anxiety state of rats was measured using their ability to explore open and 

enclosed arms of an EPM, as previously described (15). The clear plexiglass apparatus 

consisted of two open arms (50 x 10 cm) and two enclosed arms (50 x 10 x 45 cm high), 

extending from a central platform and placed 60 cm above the floor. Each rat was placed 

at the center of the plus-maze facing the closed arm and its exploration behavior was 

recorded for 10 min. The results were expressed as total time spent in the open arms and 

the total number of entries was counted to verify general motor activity. An entry into an 

arm was recorded if the animal crossed the line that connected that arm with the central 

platform with all four legs. The apparatus was cleaned with diluted ethanol (50%) between 

animals. 
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Corticosterone assay 

 Blood samples were collected at the time of sacrifice (day 15), on 1 mg/ml EDTA 

(Sigma-Aldrich, Saint Quentin Fallavier, France), centrifuged at 4°C, and plasma stored at 

-20°C until assayed for corticosterone (14). Plasma corticosterone concentrations were 

assayed using a conventional ELISA kit (Enzo-Life Sciences, Farmingdale, NY, USA) in a 

10-µl plasma sample diluted (1:40) with the assay buffer. The assay sensitivity was 27 

pg/ml. The intra- and inter-assay coefficients were 6.6 and 7.8%, respectively. 

Aβ1-42 assay 

 Rats were sacrificed by decapitation 15 days after oAβ25–35 injection and brains 

were rapidly removed, PFC dissected out, weighted, frozen in liquid nitrogen and stored at 

-80°C until assayed. After thawing, PFC were sonicated (VibraCell; Sonics & Materials, 

Newtown, CT, USA) for 20s in a lysis buffer (42). After centrifugation (14000 rpm for 25 

min, 4°C), supernatants were used for Aβ1–42 ELISA assay (Anaspec, Fremont, CA, USA), 

according to the manufacturer’s instructions. Absorbance was read at 450 nm (Tecan i-

control, ThermoFisher Scientific, Illkirch , France) and sample concentration was 

calculated using the standard curve (SFig.3A). Results were then expressed in pg of Aβ1–

42/g of tissue. The assay sensitivity was 3.91 pg/ml. The intra- and inter-assay coefficients 

were 4.3 and 6.4%, respectively. 

WB analysis 

 WB were performed as previously described (14) in the whole PFC. All antibodies 

used are detailed in the Table 1. Briefly, after sacrifice, the PFC was micro-dissected, 

weighed, immediately frozen on liquid nitrogen and stored at -20°C. Tissues were 

sonicated (VibraCell; Sonics & Materials, Newtown, CT, USA) in a lysis buffer (12) and 

centrifuged (4°C). Supernatants were collected and the protein concentration was 

measured using a BCA kit (ThermoFisher Scientific, Illkirch , France). Sixty µg from each 

sample were taken for WB analysis. Samples were separated in SDS-polyacrylamide gel 

(12%) and transferred to a PVDF membrane (Merck-Millipore, Dachstein, France). The 

membrane was incubated overnight (4°C) with the primary antibody, rinsed and then 

incubated for 2h with the appropriate horseradish peroxidase-conjugated secondary 

antibody. Peroxidase activity was revealed by using enhanced-chemiluminescence (ECL) 

reagents (Luminata-Crescendo, Merck-Millipore). The intensity of peroxidase activity was 

quantified using Image-J software (NIH, Bethesda, MA, USA). β-tubulin (β-Tub) was used 

as a loading control for all immunoblotting experiments. 

Statistical analysis 
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 Data are presented as mean ± SEM and analyzed using two-way ANOVA followed 

by a Tukey’s multiple comparison test (GraphPad-Prism 5.0). P 0.05 was considered 

significant. The number of animals in each group is indicated within the columns. Before 

each analysis of variance, the Gaussian distribution was evaluated and validated by a 

Kolmogorov-Smirnov test (GraphPad-Prism 5.0). 

RESULTS 

 To characterize the impact of oAβ25-35, we previously tested over time (after 1 and 2 

weeks) two different doses (5 and 10 µg/rat) on several parameters previously 

characterized in this acute model of AD (12) (SupFig.1A). While the scrambled peptide 

induced no modification in comparison with control naive rats, the dose of 10 µg of oAβ25-

35 was more efficient than the dose of 5 µg. Indeed, after 10 µg short-term memory deficit 

(T-maze) was observed up to 2 weeks post-injection (SupFig.1B) and plasma levels of 

corticosterone were increased from 1 to 2 weeks (SupFig.1C). 

 We next evaluated (in the PFC) the role of GR in the oAβ toxicity using a sGRm 

(CORT113176). Animals were treated one week after the icv injection of oAβ25-35 with 

CORT113176 according to a protocol and a dose established in a previous study (14). 

Control scrambled peptide and vehicle treatment induced no changes in any of the 

readouts relative to untreated animals (Fig.1-6). All blots of control conditions were 

presented in a supplementary document (SFig.2) to improve the clarity of figures and to 

highlight key effects. Two weeks after oAβ25-35, animals presented anxious behavior 

(Fig.1C), short-term memory deficits (Fig.1D), and high plasma concentrations of 

corticosterone (Fig.1E). Treatment with CORT113176 reversed all of these parameters 

(Fig.1). 

 Behavioral deficits observed two weeks after oAβ25-35, were associated with pre- 

(SYN) and post-synaptic (PSD95) deficits, increased apoptotic marker expression (Fig.2A-

D) and a marked neuroinflammation characterized by the activation of astrocytes (GFAP) 

(Fig.2A,E) and microglial cells (Iba1) (Fig.2A,F). Treatment with the sGRm normalized 

Caspase 3 expression, the pre- and post-synaptic deficits (Fig.2A,C,D) and blocked the 

neuroinflammatory processes (Fig.2A,F), as previously reported at the hippocampus level 

(14) or at the spinal cord level in an experimental model of amyotrophic lateral sclerosis 

(30). 

 In order to determine in the PFC the effects of oAβ25-35 (and of CORT113176) on 

glucocorticoid receptor signaling, as part of a potential feed-forward or feedback process, 

animals were treated as previously detailed (Fig.1A). The icv injection of oAβ25-35 
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increased the expression of MR and GR (Fig.3A-C). These effects were associated with 

an over-activation of GR, as characterized by an increase of the phosphorylated form of 

GR (Ser211) (Fig.3A,D). There were opposite changes in the expression of HSP90 and 

HSP70, the two main chaperones involved in the activity of GR (43), but also involved in 

the control of Aβ and Tau aggregation (44-46). The HSP90/HSP70 ratio (which reflects 

GR activation) (43) accordingly was substantially increased (Fig 3A, E). Treatment with 

CORT113176 reversed the increase of GR and MR, decreased the phosphorylation of GR 

and normalized the HSP90/HSP70 ratio (Fig.3). 

 The GR phosphorylation status (47) may constitute an important link between AD 

and GC. Indeed, GR can be phosphorylated on several serine and threonine residues. 

Thus, we characterized the impact of oAβ25-35 on GSK-3β and Cdk5, the two main 

enzymes involved in both the phosphorylation of GR (48), and the hyperphosphorylation of 

Tau (49,50). We first confirmed changed expression ratios of p(Ser9)GSK-3β/GSK-3β and 

p(Tyr216)GSK-3β/GSK-3β (51) (Fig.4A-C), reflecting an increase in GSK-3β activation. 

Second we observed increased levels of Cdk5 (Fig.4A,D), in association with those of p35 

and p25, which are involved in Cdk5 activation (52) (Fig.4A,E). We also measured 

increased levels of Calpain 1, a member of cysteine proteases family regulated by 

intracellular calcium and showing aberrant activity in AD (53). Calpain 1 is particularly 

involved in the activation of GSK-3β (54), and in the maturation of p35 in p25 (55) 

(Fig.4A,F). Lastly, we observed increases in the levels of Fyn (Fig.4A,G), a Src kinase 

associated with non-genomic effects of GR (56), involved in the activation of GSK-3β and 

the phosphorylation of Tau (49,57). This family of enzymes is bound to the inactive form of 

GR as chaperone, and released when GC bind to their receptors (56). Under physiological 

conditions, GC inhibit Fyn activity and phosphorylation (58), but under chronic stress, with 

high levels of GC, Fyn is upregulated especially in the hippocampus of adult rats (59). To 

summarize, the icv injection of oAβ25-35 activated both GSK-3β and Cdk5 pathways. This 

activation was associated with an increase of p25, Calpain 1 and Fyn levels in the PFC 

(Fig.4). Treatment with CORT113176 inhibited the activation of GSK-3β and Cdk5, the 

maturation of p35 into p25 and the increase of Calpain 1 and Fyn (Fig.4). 

 In the next part of this study, we characterized the different pathways of APP 

maturation, through the assessment of the different cellular elements involved in the 

mutually exclusive processing pathways of APP, the amyloidogenic and non-

amyloidogenic pathways (Figs 5 & 6). APP processing and induction of the amyloidogenic 

pathway (Fig.5) were evaluated by measuring PFC levels of full-length APP (precursor of 
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amyloid proteins) (Fig.5A,B), C99 (precursor of Aβ peptides) (Fig.5A,C), BACE1 (β-APP 

cleaving enzyme) (Fig.5A,D), PS1 (presenilin-1, a subunit of the γ-secretase) (Fig.5A,E) 

and IDE (insulin degrading enzyme, involved in the clearance of Aβ) (Fig.5A,F). Two 

weeks after the injection of oAβ25-35, APP levels were increased and amyloidogenic 

processing was enhanced. This activation was associated with an increased formation 

(BACE1 and PS1), and a decreased clearance (IDE). One week of treatment with 

CORT113176 inhibited the activation of the amyloidogenic pathway. The increase in levels 

of APP, C99, PS1 and BACE1, but also the IDE down-regulation were fully reversed 

(Fig.5). To characterize the non-amyloidogenic pathway in the PFC, we evaluated by 

western blot the levels of the α-secretase-cleaved soluble APP ectodomain (sAPPα) and 

ADAM10 (A disintegrin and metalloproteinase Domain-containing protein 10, a component 

of α-secretase) (Fig.6A-C). Two weeks after the injection of oAβ25-35, sAPPα and ADAM10 

were decreased. This inhibition of the non-amyloidogenic processing of APP was totally 

reversed by one week of treatment with CORT113176 (Fig.6A-C). Finally, in order to 

confirm the induction of the amyloidogenic pathway, we assayed the endogenous levels of 

Aβ1-42 in the PFC (SFig.3). As expected, two weeks after the icv injection of oAβ25-35, Aβ1-42 

levels were increased by 18% in the PFC. This upregulation was totally reversed by the 

treatment with CORT113176 (SFig.3B). Even if the levels of Aβ1-42 assayed in the PFC 

were relatively low, they are consistent with some previous studies in rats (60,61). 

 To understand by which mechanisms non-amyloidogenic pathways could be 

inhibited, we evaluated the involvement of the Rho-kinases system. These Ser/Thr kinases 

are involved in cell motility, cell proliferation, autophagy and apoptosis (62-64). They have 

been suggested as potential therapeutic targets for neurodegenerative diseases, including 

AD (66-68). This effect seems to be mediated by Rho-associated coiled-coil kinases 

(ROCK)-induced overactivation of the 3-phosphoinositide-dependent kinase 1 (PDK1) 

activity (65,68). In fact, exacerbated ROCK activity seems to increase the pool of PDK1 

molecules physically interacting with and phosphorylated by ROCK (65,68). The 

overactivation of this system inhibits the non-amyloidogenic pathway (65,68) and affects 

Tau phosphorylation (69,70). They seem particularly involved in the inhibition of sAPPα 

synthesis (68) and in the phosphorylation of Tau (69,71). Their activity is modulated by GC 

(72) via GR activation (73). To characterize the Rho-kinase system, we measured the PFC 

levels of Rho-associated coiled-coil kinases (ROCK1 & ROCK2) (Fig.6A,D,E) and the 3-

phosphoinositide–dependent kinase (PDK1) (Fig.6A,F). Here, two weeks after injection of 

oAβ25-35, we observed in the PFC an increase of ROCK1, ROCK2 and PDK1, which was 

normalized by one week of treatment with the sGRm (Fig.6A, D-F). 
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DISCUSSION 

 In previous studies, we provided evidence for a vicious cycle between AD and the 

HPA axis. We showed that the pathology, and especially the amyloid toxicity, rapidly 

increases GC secretion that in turn, modulates APP processing (14,15). This dysregulation 

seems to be under the control of GR, since treatment with a new class of selective GR 

ligands blocks the installation of this cycle in the hippocampus and re-establishes all 

parameters analyzed and disturbed by the amyloid toxicity (memory and synaptic deficits, 

neuroinflammation, apoptosis, APP processing and high levels of GC) (14). This recent 

study (14), allowed us to design and validate the experimental protocol of treatment with 

sGRm. Briefly, we determined treatment timing and duration, doses and specificities of the 

two sGRm (CORT108297 & CORT113167) tested, in comparison to the non-selective 

antagonist of reference, Mifepristone. It appeared that one week of treatment (two ip 

injection per day) with CORT113176 (10 mg/kg per injection) displayed the most effective 

therapeutic potential against toxicity induced by oAβ25-35. Owing to its efficacy and 

selectivity, this sGRm was selected in the present mechanistic study. 

 Here, on the basis of our precedent finding (14), we aimed to decipher the role of 

GR in AD and to characterize associated underlying mechanisms. For this purpose, we 

evaluated the impact of oAβ25-35 on several intracellular pathways involved in the activation 

of GR, but also in the pathophysiology of AD. We show the establishment of several 

intracellular vicious cycles involving GC and GR, providing mechanistic insight to a central 

role of these receptors in the etiology of AD (Fig.7). The notion of a vicious cycle between 

GC signaling and pathogenesis is reinforced by the fact that modulation of GR activity with 

CORT113176 normalized all changes induced by the amyloid toxicity. 

 In the first part of our study, in order to validate our protocols in comparison with the 

previous study (14), we confirmed that one week of treatment with a sGRm 

(CORT113176) at the dose of 10 mg/kg is sufficient to reverse short-term memory deficits 

and to reestablish plasma concentrations of corticosterone disrupted by the icv injection of 

oAβ25-35. In addition, and for the first time, we show that treatment with sGRm is able to 

reverse anxious behavior induced by the amyloid toxicity (15). We equally demonstrate 

that sGRm treatment is able to reverse synaptic deficits, neuroinflammation and apoptosis 

processes induced by oAβ25-35 in the PFC, as previously observed in the hippocampus 

(14). 

 Then, we showed that the icv injection of oAβ25-35 increased GR phosphorylation on 

Ser211, a site involved in the activation of GR in rats (48). This activation was associated 
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with an increase and activation of GSK-3β and Cdk5, with a substantial increase of the 

HSP90/HSP70 ratio (important for GR activity (43)), but also, importantly, in the control of 

Aβ and Tau aggregation (44-46). The activation of GSK-3β and Cdk5 is under the control 

of several enzymes (49,50,54,55,57), including Fyn and Calpain 1 that are regulated by 

GC (58,59), induced by the amyloid toxicity, and increased in AD patients (74). Our data 

show that the over-activation of GR induced by oAβ25-35 coincided with an increase of 

these two enzymes (Fig.7). 

 We also observed that oAβ25-35 induced a strong increase of Calpain 1. This 

augmentation could be the reflection of its proteolytic activity, given that it was concomitant 

with an activation of two of its substrates, GSK-3β and an increase of p25/p35 ratio. These 

effects were reversed by treatment with the sGRm (CORT113176), providing evidence of 

an intracellular loop by which pathology increases the activation of GR (directly via GSK-

3β and Cdk5 and indirectly via Fyn and Calpain 1), which in turn increases the activation 

of these key enzymes and the HSP90/HSP70 ratio, worsening the AD pathogenesis (44-

46) (Fig.7). 

 Our current data show that the seeding and the accumulation of endogenous Aβ 

induced by the icv injection of oAβ25-35 (43) (SFig.3B), not only results from the activation 

of amyloid-pathways, but also from the inhibition of non-amyloid-pathways. Indeed, the icv 

injection of oAβ25-35 provoked the activation of the amyloidogenic pathway in the PFC, 

through an increase of Aβ synthesis (APP/C99, Aβ1-42, BACE1 and PS1 up-regulation) and 

a decrease of Aβ clearance (IDE down-regulation), as previously reported for the 

hippocampus (14). Besides, Aβ oligomers also inhibit the non-amyloidogenic pathway 

(sAPPα and ADAM 10 down-regulation) and that this effect could be controlled by the 

activation of ROCK1 and ROCK2 (Fig.7). We showed that the oAβ25-35 injection-induced 

inhibition of sAPPα and ADAM10 is associated with an activation of ROCK/PDK1 

pathways. These results are consistent with several studies showing that ROCKs 

modulate the shedding of sAPPα through an inhibition of tumor necrosis factor-α-

converting enzyme (TACE or ADAM) activity, and that ROCKs depletion reduces Aβ levels 

(68,75,76). ROCK activity seems to be directly up-regulated by GC (72,73,77), and 

ROCK/PDK1 activation after oAβ25-35 is reversed by treatment with CORT113176, again 

constituting a vicious cycle based on feedforward effects on GR signaling (Fig.7). 

 ROCK also affect Tau hyperphosphorylation (69,70). They activate the two principal 

enzymes involved in Tau phosphorylation, Cdk5 and GSK-3β (71,78). In addition, 

ROCK/PDK1 inhibition of sAPPα may affect Tau, since it was shown that sAPPα reduces 
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GSK-3β-mediated Tau phosphorylation (79). These two mechanisms again link GR and 

GC to the pathophysiology of AD (Fig.7). Likewise, Tau phosphorylation may also be 

directly impacted by the other GR-related enzymes we described. Indeed, Fyn can directly 

phosphorylate Tau on tyrosine residues (80). Fyn can also directly activate GSK-3β to 

rapidly induce Tau phosphorylation in human neuroblastoma cells (57). In the same line of 

evidence, it appears that Fyn controls the activity of PDK1 through an up-regulation of 

ROCK (81,82), and thus could also participate in the inhibition of the non-amyloidogenic 

pathway. Calpain 1 also activates GSK-3β and Cdk5, promoting Tau phosphorylation and 

Tau-associated neurodegeneration (49,50). Calpain 1 can cleave the neuron-specific 

Cdk5 activator p35 to produces p25, which accumulates in the brains of AD patients (52). 

In fact, it was shown that induction of p25 by Calpain 1 causes prolonged activation and 

mislocalization of Cdk5 and that the p25/Cdk5 kinase hyperphosphorylates Tau, disrupts 

the cytoskeleton and promotes the apoptotic death of primary cortical neurons (55). Thus 

Fyn and Calpain 1 upregulations may be involved in both the increased Tau 

phosphorylation after oAβ25-35 injection (13), and in the activity of GSK-3β, Cdk5, and the 

processing of APP. This highlights the potential link that GR activation could play between 

Aβ and Tau (Fig.7).  

 The mechanisms by which GR affects the multiple enzymes identified here is 

unclear. GR are nuclear receptors that directly interact with specific genes via binding to 

glucocorticoid response element (GRE), interactions with other transcription factors, or via 

non-genomic mechanisms, such as epigenetic modifications (5, 82). A GRE has been 

described in the promoter regions of APP and BACE1 (84-86). For the other proteins no 

mechanism of transcriptional regulation via GR has been identified. A recent study on 

hippocampal slices pre-treated with an inhibitor of transcription activity, showed a non-

genomic activation of GSK-3β by GC (87). The efficacy of the sGRm suggests that it is 

able to antagonize also non-genomic GR signaling. Of note, involvement of membrane-

localized GR was linked to AD not only for the regulation of GSK-3β (88), but also – 

surprisingly - in the regulation of BACE1 (89). For the other proteins, further investigations 

will be needed to decipher which mechanisms are involved in GR regulatory activity. There 

is also the potential for more indirect mechanisms, since membrane-localized GR can 

facilitate glutamatergic transmission (90-92), affect some of the factors that we identified 

here via stimulation of excitotoxicity pathways (8). 

 This new study provides new arguments supporting the development of a vicious 

cycle based on GR activation in AD, here based on analysis of changes in the PFC. In this 
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preclinical study, the new sGRm (CORT113176) blocked this cycle and normalized all AD 

processes analyzed, including extracellular (ADAM10, BACE1 and IDE), intramembrane 

(PS1) and intracellular enzymes (Cdk5/p25, GSK-3β, Fyn, Calpain 1, ROCKs and PDK1). 

In addition, we cannot exclude, as previously mentioned in the hippocampus (14), the 

involvement of MR in the effects observed after sGRm treatment. Indeed, several studies 

suggested a neuroprotective role of these receptors in a context of GR blockade (93-95). 

Thus, further investigations are needed to decipher the precise role of MR in the 

pathophysiology of AD. We moreover demonstrated that the accumulation of endogenous 

Aβ, induced by the amyloid toxicity and the concomitant dysregulation of HPA axis, 

resulted from the activation of amyloidogenic and the inhibition of the non-amyloidogenic 

pathways (Fig.7). All of these data place HPA axis dysregulation and GR in a central and 

crucial position in the pathophysiology of AD, linking amyloid toxicity and Tau deregulation. 

This work also highlights the therapeutic potential of sGRm to counteract negative effects 

induced by the amyloid toxicity and to reestablish the functionality of GR and a fortiori to 

reestablish the primal role of GC in the maintenance of homeostasis. 
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LEGENDS 

Figure 1 

Effects of selective GR modulator on, anxious behavior, spatial short-term memory 

deficits and high levels of corticosterone induced by the icv injection of oAβ25-35. Panel A: 

Experimental protocol - At T0, adult male rats (Sprague Dawley) were injected directly into 

the lateral ventricles using a stereotaxic apparatus (coordinates: AP -1 mm, L ±1.5 mm, 

DV -3.5 mm). One group has not undergone surgery (control rats, white column), a second 

group received an icv injection of scrambled Aβ25-35 peptide (negative control - 10 µg/rat - 

orange column) and a third group received an icv injection of oAβ25-35 peptide (Aβ - 10 

µg/rat - red column). Animals were weighted daily and one week after the icv injection (at 

Week 1), animals were treated with vehicle or CORT113176 (10 mg/kg per injection) 

through two intraperitoneal (ip) injections per day during 7 days. At day 14 (Week 2), the 

anxious behavior or the spatial short-term memory of each rat were tested in an elevated 

plus maze (EPM) or in a T-maze, respectively. The following day (day 15), 30 min after the 

last ip injection, the animals were sacrificed, blood samples and PFC were rapidly 

collected for corticosterone assay and Western blot analysis, respectively. Panel B: 

Chemical structure of the selective GR modulator tested in this study, CORT113176 

(reproduction with the permission of Corcept Therapeutics). Panel C: Anxious behavior 

was determined in the EPM paradigm. Each animal was placed at the center of the EPM 

and allowed to freely explore for 10 min. Data were expressed as time spent in the open 

arms (OA) in % of total time. Two-way ANOVA: F2,59= 7.90 for group, p< 0.001, F2,59= 1.54 

for treatment, ns; and F4,59= 2.95 for interaction, p< 0.05. Panel D: Spatial short-term 

memory performance was determined in a T-maze test and was expressed as the ratio of 

the time spent in the initially closed arm (B) over the time spent in the previous arm (A). 

Two-way ANOVA: F2,48= 9.10 for group, p< 0.001; F2,48= 8.51 for treatment, p< 0.001; and 

F4,48= 2.36 for interaction, ns. Panel E: Plasma concentrations of corticosterone (CORT) 

were determined by Elisa and expressed as ng/ml. Two-way ANOVA: F2,45= 39.0 for 

group, p< 0.0001; F2,45= 15.3 for treatment, p< 0.0001; and F4,45= 10.8 for interaction, p< 

0.0001. * p< 0.05 and ** p< 0.01 vs. respective control (C) group. + p< 0.05 and ++ p< 

0.01 vs. respective scrambled (S) group. x p< 0.05 and xx p< 0.01 vs. respective naive rat 

in each group (C, S or oAβ). The number of animals in each group is indicated within the 

columns. 

Figure 2 
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The effects in the PFC of selective GR modulator on the different cellular markers 

(Panel A) modified by the icv injection of oAβ25-35, were evaluated by Western blot. 

Variations of apoptosis (caspase-3, 19 kDa) (Panels A,B), post-synaptic marker (PSD95, 

95 kDa) (Panels A,C), pre-synaptic marker synaptotagmin (SYN, 65 kDa) (Panels A,D), 

neuroinflammatory markers GFAP (55 kDa, astrocyte cells) (Panels A,E) and Iba1 (17 

kDa, microglial cells) (Panels A,F) were evaluated in control (C - white column) and in icv 

injected rats with 10 µg/rat of scrambled peptide (S - orange column) or oAβ25-35 (Aβ - red 

column), treated or not with vehicle (sesame oil) or selective GR modulator, CORT113176 

(10 mg/kg per ip injection). For experimental protocol see Fig.1A. The variations of 

Caspase-3, PSD95, SYN, Iba1 and GFAP in the PFC were normalized with the variations 

of β-tubulin (β-tub, 50 kDa) and compared with non-injected rats (control group: C). Two-

way ANOVA: Caspase-3: F2,59= 6.75 for group, p< 0.01; F2,59= 3.08 for treatment, p< 0.05; 

and F4,59= 1.73 for interaction, ns; PSD95: F2,67= 4.08 for group, p< 0.05; F2,67= 0.50 for 

treatment, ns; and F4,67= 3.15 for interaction, p< 0.05; SYN: F2,66= 5.97 for group, p< 0.01; 

F2,66= 2.36 for treatment, ns; and F4,66= 3.87 for interaction, p< 0.05; GFAP: F2,66= 31.04 

for group, p< 0.0001; F2,66= 8.52 for treatment, p< 0.001; and F4,66= 3.49 for interaction, p< 

0.05; Iba1: F2,59= 10.1 for group, p< 0.001; F2,59= 4.28 for treatment, p< 0.05; and F4,59= 

2.08 for interaction, ns. 

The variations are expressed as means ± SEM in % of control values. * p< 0.05 and 

** p< 0.01 vs. respective control (C) group. + p< 0.05 and ++ p< 0.01 vs. respective 

scrambled (S) group. x p< 0.05 and xx p< 0.01 vs. respective naive rat in each group (C, S 

or Aβ). 

Figure 3 

The effects in the PFC of CORT113176 on the activation of GR induced by the icv 

injection of oAβ25-35, were evaluated by Western blot. Variations of the expression of MR 

(100 kDa) (Panels A,B) and GR (95 kDa) (Panels A,C), the phosphorylation of GR 

(p[Ser211]GR, 95 kDA) (Panels A,D) and the expression ratio of HSP90/HSP70 (90 kDa / 

70 kDa) (Panels A,E) were evaluated in control (C - white column) and in icv injected rats 

with 10 µg/rat of scrambled peptide (S - orange column) or oAβ25-35 (Aβ - red column), 

treated or not with vehicle (sesame oil) or the selective GR modulator CORT113176 (10 

mg/kg per ip injection). For experimental protocol see Fig.1A. The variations of all proteins 

in the PFC were normalized with the variations of β-tubulin (β-tub, 50 kDa) and compared 

with non-injected rats (control group: C). Two-way ANOVA: MR: F2,54= 11.0 for group, p< 

0.0001; F2,54= 2.96 for treatment, p< 0.05; and F4,54= 3.06 for interaction, p< 0.05; GR: 

F2,51= 22.1 for group, p< 0.0001; F2,51= 8.45 for treatment, p< 0.001; and F4,51= 5.97 for 
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interaction, p< 0.001; pGR: F2,52= 2.99 for group, p< 0.05; F2,52= 2.56 for treatment, ns; 

and F4,52= 4.05 for interaction, p< 0.01; HSP90/HSP70: F2,50= 29.9 for group, p< 0.0001; 

F2,50= 6.00 for treatment, p< 0.01; and F4,50= 6.55 for interaction, p< 0.001. 

The variations are expressed as means ± SEM in % of control values. * p< 0.05 and 

** p< 0.01 vs. respective control (C) group. + p< 0.05 and ++ p< 0.01 vs. respective 

scrambled (S) group. x p< 0.05 and xx p< 0.01 vs. respective naive rat in each group (C, S 

or Aβ).  

Figure 4 

The effects in the PFC of CORT113176 on the activation of GSK-3β and Cdk5 

pathways induced by the icv injection of oAβ25-35, were evaluated by Western blot. The 

activation of GSK-3β (ratio of p[Tyr216]GSK-3β/GSK-3β total & ratio of p[Ser9]GSK-

3β/GSK-3β total, 46kDa each) (Panels A-C) and Cdk5 (30 kDa) (Panels A,D) pathways, 

the expression ratio of p25/p35 (25 & 35 kDa) (Panels A,E), Calpain 1 (80 kDa) (Panels 

A,F) and FYN (59 kDa) (Panels A,G) were evaluated in control (C - white column) and in 

icv injected rats with 10 µg/rat of scrambled peptide (S - orange column) or oAβ25-35 (Aβ - 

red column), treated or not with vehicle (sesame oil) or the selective GR modulator 

CORT113176 (10 mg/kg per ip injection). For experimental protocol see Fig.1A. The 

variations of all proteins in the PFC were normalized with the variations of β-tubulin (β-tub, 

50 kDa) and compared with non-injected rats (control group: C). Two-way ANOVA: 

p[Tyr216]GSK-3β/GSK-3β: F2,51= 17.0 for group, p< 0.0001; F2,51= 6.07 for treatment, p< 

0.01; and F4,51= 2.49 for interaction, p< 0.05; p[Ser9]GSK-3β/GSK-3β: F2,51= 11.9 for 

group, p< 0.0001; F2,51= 6.99 for treatment, p< 0.01; and F4,51= 2.81 for interaction, p< 

0.05; Cdk5: F2,48= 12.1 for group, p< 0.0001; F2,48= 0.87 for treatment, ns; and F4,48= 3.73 

for interaction, p< 0.01; p25/p35: F2,47= 13. 2 for group, p< 0.0001; F2,47= 12.1 for 

treatment, p< 0.0001; and F4,47= 16.5 for interaction, p< 0.0001; Calpain 1: F2,49= 15.5 for 

group, p< 0.0001; F2,49= 5.54 for treatment, p< 0.01; and F4,49= 4.10 for interaction, p< 

0.01; Fyn: F2,50= 16.1 for group, p< 0.0001; F2,50= 2.82 for treatment, p< 0.05; and F4,50= 

4.70 for interaction, p< 0.01. 

The variations are expressed as means ± SEM in % of control values. * p< 0.05 and 

** p< 0.01 vs. respective control (C) group. + p< 0.05 and ++ p< 0.01 vs. respective 

scrambled (S) group. x p< 0.05 and xx p< 0.01 vs. respective naive rat in each group (C, S 

or Aβ). The number of animals in each group is indicated within the columns. 

Figure 5 
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The effects in the PFC of selective GR modulator on the APP processing and the 

induction of the amyloidogenic pathway (Panel A) induced by the icv injection of oAβ25-35, 

were evaluated by Western blot. Variations of full-length APP (precursor of amyloid 

peptides, 125 kDa) (Panels A,B), C99 (precursor of amyloid-β peptides, 13 kDa) (Panels 

A,C), β-APP cleaving enzyme (BACE1, 70 kDa) (Panels A,D), Presenilin 1 (PS1, 20 kDa) 

(Panels A,E) and Insulin Degrading Enzyme (IDE, 110 kDa) (Panels A,F) were evaluated 

in control (C - white column) and in icv injected rats with 10 µg/rat of scrambled peptide (S 

- orange column) or oAβ25-35 (Aβ - red column), treated or not with vehicle (sesame oil) or 

selective GR modulator, CORT113176 (10 mg/kg per ip injection). For experimental 

protocol see Fig.1A. The variations of APP, C99, BACE1, PS1 and IDE in the PFC were 

normalized with the variations of β-tubulin (β-tub, 50 kDa) and compared with non-injected 

rats (control group: C). Two-way ANOVA: APP: F2,66= 7.76 for group, p< 0.001; F2,66= 3.20 

for treatment, p< 0.05; and F4,66= 4.60 for interaction, p< 0.01; C99: F2,56= 21.1 for group, 

p< 0.0001; F2,56= 11.5 for treatment, p< 0.0001; and F4,56= 7.12 for interaction, p< 0.001; 

BACE1: F2,58= 5.59 for group, p< 0.01; F2,58= 3.99 for treatment, p< 0.05; and F4,58= 2.92 

for interaction, p< 0.05; PS1: F2,51= 29.4 for group, p< 0.0001; F2,51= 1.61 for treatment, ns; 

and F4,51= 4.89 for interaction, p< 0.01; IDE: F2,56= 6.47 for group, p< 0.01; F2,56= 4.06 for 

treatment, p< 0.05; and F4,56= 1.99 for interaction, ns. 

The variations are expressed as means ± SEM in % of control values. * p< 0.05 and 

** p< 0.01 vs. respective control (C) group. + p< 0.05 and ++ p< 0.01 vs. respective 

scrambled (S) group. x p< 0.05 and xx p< 0.01 vs. respective naive rat in each group (C, S 

or Aβ). 

Figure 6 

The effects in the PFC of selective GR modulator on the non-amyloidogenic 

pathways (Panel A) modulated by the icv injection of oAβ25-35, were evaluated by Western 

blot. Variations of sAPPα (100 kDa) (Panels A,B), ADAM10 (α-secretase, 70 kDa) 

(Panels A,C), Rho-associated coiled-coil kinases (ROCK1 & ROCK2, 160 kDa) (Panels 

A,D,E) and 3-phosphoinositide–dependent kinase (PDK1, 60 kDa) (Panels A,F) were 

evaluated in control (C - white column) and in icv injected rats with 10 µg/rat of scrambled 

peptide (S - orange column) or oAβ25-35 (Aβ - red column), treated or not with vehicle 

(sesame oil) or selective GR modulator, CORT113176 (10 mg/kg per ip injection). For 

experimental protocol see Fig.1A. The variations of sAPPα, ADAM10, ROCK1, ROCK2 

and PDK1 in the PFC were normalized with the variations of β-tubulin (β-tub, 50 kDa) and 

compared with non-injected rats (control group: C). Two-way ANOVA: sAPPα: F2,49= 8.65 

for group, p< 0.001; F2,49= 3.92 for treatment, p< 0.05; and F4,49= 4.25 for interaction, p< 
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0.01; ADAM10: F2,48= 6.56 for group, p< 0.01; F2,48= 7.07 for treatment, p< 0.01; and 

F4,48= 7.08 for interaction, p< 0.001; ROCK1: F2,31= 16.1 for group, p< 0.0001; F2,31= 4.11 

for treatment, p< 0.05; and F4,31= 3.30 for interaction, p< 0.05; ROCK2: F2,51= 10.5 for 

group, p< 0.001; F2,51= 7.23 for treatment, p< 0.01; and F4,51= 3.77 for interaction, p< 0.01; 

PDK1: F2,50= 15.9 for group, p< 0.0001; F2,50= 1.55 for treatment, ns; and F4,50= 4.76 for 

interaction, p< 0.01. 

The variations are expressed as means ± SEM in % of control values. * p< 0.05 and 

** p< 0.01 vs. respective control (C) group. + p< 0.05 and ++ p< 0.01 vs. respective 

scrambled (S) group. x p< 0.05 and xx p< 0.01 vs. respective naive rat in each group (C, S 

or Aβ). 

Figure 7 

 Schematic figure recapitulating the central role of GR and the therapeutic potential 

of selective GR modulators in AD. The icv injection of Aβ oligomers increases APP, C99 

PS1 and BACE-1 contents, concomitantly with a decrease of IDE, evidencing the induction 

of the amyloidogenic pathway and, as previously observed, Aβ1-42 production (42) and Tau 

hyperphosphorylation (13). In parallel, the icv injection of Aβ oligomers inhibits sAPPα and 

ADAM10, evidencing the inhibition of non amyloidogenic pathway. Aβ oligomers induce, in 

addition to an excess of circulating GC, an overactivation of GR, which is associated with 

an increase of the two main chaperones (HSP90 & HSP70) particularly involved in the 

activity of GR (43), but also in the control of Aβ and Tau aggregation (44-46). Thus, active 

GR translocate to the nucleus where they exert their genomic effects through GRE, 

inducing APP and BACE-1 gene transcription, and potentiating Aβ oligomers production. 

Therefore, it evidences a first intracellular vicious cycle by which pathology increases 

circulating GC, which in turn increase pathology. Aβ oligomers also enhance contents and 

activity of key enzymes involved directly (Cdk5 and GSK-3β) or indirectly (Calpain 1 and 

Fyn) in the activation of GR, but also in the hyperphosphorylation of Tau. Enzyme 

inductions which are regulated by GR, as evidenced after treatment with the selective GR 

modulator (CORT113176), demonstrate non-genomic effects of GR and thus a second 

intracellular vicious cycle. Indeed, pathology increases the activation of GR via several 

keys enzymes (Cdk5, GSK-3β, Calpain 1 and Fyn), which in turn increase the activation of 

these enzymes involved in the pathophysiology of AD. Finally, it appears that amyloid 

toxicity inhibits also the non-amyloidogenic pathways, reinforcing the displacement of the 

equilibrium in favor of endogenous amyloid seeding and evidencing another intracellular 

loop by which pathology increases the activation of GR, which in turn increases the 

activation of ROCKs/PDK1 pathways, as evidenced after treatment with the selective GR 
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modulator (CORT113176). This activation accentuates the pathology through the inhibition 

of α-secretase (ADAM10) and sAPPα synthesis, as previously reported (79), but also by 

increasing the phosphorylation of Tau (69,70,71,78). 

 Red arrow: showed in this study. Purple arrow: showed in our previous studies 

(13,65). Black arrow: known in the literature (See discussion for references). Blue arrow: 

hypothesis to assess. Red cross: Schematic effects of sGRm. AD: Alzheimer’s Disease; 

ADAM10: A disintegrin and metalloproteinase domain-containing protein 10 (α-secretase); 

APP: amyloid precursor protein; Aβ: amyloid-β peptide; BACE-1: β-APP cleaving enzyme 

(β-secretase); Cdk5: cyclin-dependent kinase-5; GC: glucocorticoids; GR: glucocorticoid 

receptors; GRE: glucocorticoid responsive element; GSK-3β: glycogen synthase kinase 3-

β; HSP: heat-shock protein; IDE: insulin degrading enzyme; PDK1: 3-phosphoinositide–

dependent kinase; PS1: Presenilin 1 (γ-secretase); ROCKs: Rho-associated coiled-coil 

kinases; sGRm: selective GR modulator (CORT113176). 
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Table 1: Antibodies used in Western blot experiments 
 

Protein 
Mol. 

weight 
Antibody 

Dilutio

n 
Ref. Supplier 

Primary antibodies 

ADAM10 
(85)

 72 kDa 
Rabbit anti-
ADAM10 

1/1000 AB19026 Merck-Millipore, France 

APP/C99 
(14)

 
125/13 

kDa 
Rabbit anti-
APP/C99 

1/750 PA1-84165 
Thermo-Fisher 
Scientific, France 

BACE1
 (14)

 70 kDa 
Rabbit anti-

BACE 
1/1000 #5606 

Cell Signaling/Ozyme, , 
St Cyr-l’Ecole, France 

Calpain 1 
(86)

 80 kDa 
Rabbit anti-

calpain 1 large 
subunit (µ-type) 

1/1000 #2556 
Cell Signaling/Ozyme, 
France 

Caspase 3 
(14)

 19 kDa 
Rabbit anti-
caspase 3 

1/500 #9665 
Cell Signaling/Ozyme, 
France 

Cdk5 
(87)

 30 kDa Rabbit anti-Cdk5 1/500 #2506 
Cell Signaling/Ozyme, 
France 

Fyn 
(88)

 59 kDa Rabbit anti-Fyn 1/500 #4023 
Cell Signaling/Ozyme, 
France 

GFAP 
(14)

 55 kDa 
Mouse anti-

GFAP 
1/2000 G3893 Sigma-Aldrich, France 

GR 
(15)

 95 kDa Rabbit anti-GR 1/1000 #3660 
Cell Signaling/Ozyme, 
France 

GSK-3β 
(39)

 46 kDa 
Mouse anti-

GSK-3β 
1/2000 610202 

BD-Biosciences, 
Rungis, France 

HSP70 
(34)

 70 kDa 
Rabbit anti-

HSP70 
1/500 #4872 

Cell Signaling/Ozyme, 
France 

HSP90 
(34)

 90 kDa 
Rabbit anti-

HSP90 
1/1000 #4877 

Cell Signaling/Ozyme, 
France 

Iba1 
(14)

 17 kDa Rabbit anti-Iba1 1/750 013-19741 
Wako Chem,,Osaka, 
Japan 

IDE 
(14)

 110 kDa Rabbit anti-IDE 1/3000 AB9210 Merck-Millipore, France 

MR 
(15)

 100 kDa Rabbit anti-MR 1/100 SC11-412 
SantaCruz Biotech., 
Dallas, TX, USA 

p[Ser9]GSK-3β 
(39)

 46 kDa 
Mouse anti-

p[Ser9]GSK-3β 
1/1000 #9336 

Cell Signaling/Ozyme, 
France 

p[Tyr211]GSK-3β 
(39)

  46 kDa 
Mouse anti-

p[Tyr216]GSK-
3β 

1/2000 612313 
BD-Biosciences, 
France 

p35/p25 
(87)

 
35/25 
kDa 

Rabbit anti-
p35/p25 

1/500 #2680 
Cell Signaling/Ozyme, 
France 

PDK1 
(58)

 
56-68 
kDa 

Rabbit anti-
PDK1 

1/1000 #5662 
Cell Signaling/Ozyme, 
France 

pGR 
(89)

 95 kDa 
Rabbit anti-

p[Ser211]GR 
1/1000 #4161 

Cell Signaling/Ozyme, 
France 

PS1 
(90)

 22 kDa Rabbit anti-PS1 1/1000 #5643 
Cell Signaling/Ozyme, 
France 

PSD95 
(14)

 95 kDa 
Rabbit anti-

PSD95 
1/2000 #3450 

Cell Signaling/Ozyme, 
France 

ROCK1 
(58)

 160 kDa 
Rabbit anti-

ROCK1 
1/500 #4035 

Cell Signaling/Ozyme, 
France 

ROCK2 
(58)

 160 kDa 
Rabbit anti-

ROCK2 
1/500 #8236 

Cell Signaling/Ozyme, 
France 

sAPP
(58)

 100 kDa 
Mouse anti-

sAPP 
1/50 11098 

IBL, Hamburg, 
Germany 

SYN 
(14)

 65 kDa 
Mouse anti-

synaptotagmine 
1/1000 MAB5200 Merck-Millipore, France 

β-Tub 50 kDa 
Mouse anti-β-

Tubulin 
1/7500 T4026 Sigma-Aldrich, France 

Secondary antibodies 

IgG 
Goat anti-rabbit IgG 
peroxidase conjugate 

1/2000 A61-54 Sigma-Aldrich, France 

IgG 
Goat anti-mouse IgG 
peroxidase conjugate 

1/2000 A67-82 Sigma-Aldrich, France 
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S-Figure 1 

Time-course effect of a single icv injection of an oligomeric solution of Aβ25-35 

(oAβ25-35) on spatial short term memory (T-maze test) and plasma levels of 

corticosterone (CORT). Panel A: Experimental protocol - At T0, adult male rats 

(Sprague Dawley) were injected directly into the lateral ventricles using a stereotaxic 

apparatus (coordinates: AP -1 mm, L ±1.5 mm, DV -3.5 mm). One group has not 

undergone surgery (control rats - white column), a second group received an icv 

injection of scrambled Aβ25-35 peptide (negative control - 10 µg/rat - light blue) and a 

third group received an icv injection of oAβ25-35 peptide (oAβ25-35 - 5 or 10 µg/rat - 

medium and dark blue, respectively). Animals were tested or sacrificed 1 and 2 

weeks after the icv injection. Panel B: As detailed in Materials and Methods, short-

term memory performance (T-maze test) was expressed as the ratio of the time 

spent in the initially closed arm (B) over the time spent in the previous arm (A). Two-

way ANOVA: F3,54 = 15.3, p< 0.0001 for Group; F1,54 = 0.02, p> 0.05 for Time and 

F3,54 = 0.42, p> 0.05 for Interaction. Panel C: Plasma concentrations of 

corticosterone (CORT) were determined by Elisa and expressed as ng/ml. Two-way 

ANOVA: F3,47 = 24.5, p< 0.0001 for Group; F1,47 = 1.18, p> 0.05 for Time and F3,47 = 

1.11, p> 0.05 for Interaction. 

Data were expressed as Mean ± SEM. * p< 0.05 and ** p< 0.01 vs. control 

non-injected rats (control group, C) and + p< 0.05 and ++ p< 0.01 vs. scrambled 

injected rats (negative control group, S). øø p< 0.01 vs. selected group. The number 

of animals in each group is indicated within the columns. 



S-Figure 2 

 The lack of effects in the PFC of scrambled Aβ25-35 peptide in the different 

groups of animals tested in this study (naive (N), treated with vehicle (V) or with 

CORT113176 (C-11)) were resumed in this Figure in order to improve the clarity of 

main figures and to highlight key effects. The different markers were evaluated in 

these control groups by Western blot in the same time as treated groups. Panel A: 

Apoptosis (caspase 3); Panel B: Synaptic (PSD95 & SYN) and Neuroinflammatory 

(GFAP & Iba1) markers; Panel C: GR system (GR, p[Ser211]GR, MR, HSP90, 

HSP70); Panel D: enzymes involved both in GR activation and Tau phosphorylation 

(Cdk5, p35/p25, GSK-3β, p[Ser9]GSK-3β, p[Tyr216]GSK-3β, Fyn, Calpain 1); Panel 

E-F: amyloidogenic (APP/C99) and non-amyloidogenic (sAPPα) pathways, focusing 

in particular on the extracellular (ADAM10, BACE1 and IDE), intramembrane (PS1) 

and intracellular enzymes (ROCK1, ROCK2 and PDK1). 

S-Figure 3 

The effects in the PFC of selective GR modulator on the endogenous Aβ1-42 levels 

induced by the icv injection of oAβ25-35, were evaluated by ELISA. Aβ1-42 levels were 

evaluated in control (C - white column) and in icv injected rats with 10 µg/rat of 

scrambled peptide (S - orange column) or oAβ25-35 (Aβ - red column), treated or not 

with selective GR modulator, CORT113176 (10 mg/kg per ip injection). For 

experimental protocol see Fig.1A. Panel A: Aβ1-42 ELISA standard curve obtained at 

450 nm. Panel B: The endogenous concentrations of Aβ1-42 in the PFC were 

expressed as means ± SEM in pg/g tissue. Two-way ANOVA: F2,24 = 6.22 for Group, 

p< 0.01; F1,24 = 5.09 for Treatment, p< 0.05; and F2,24 = 2.21 for Interaction, p> 0.05. * 

p< 0.05 vs. respective control (C) group, + p< 0.05 vs. respective scrambled (S) 



group and x p< 0.05 vs. respective naive rat in each group. The number of animals in 

each group is indicated within the columns. 
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