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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has important
health and economic impacts in the elderly. Despite a better understanding of the
molecular mechanisms leading to the appearance of major pathological hallmarks
(senile plaques and neurofibrillary tangles), effective treatments are still lacking. Sporadic
AD forms (98% of all cases) are multifactorial, and a panoply of risk factors have
been identified. While the major risk factor is aging, growing evidence suggests that
chronic stress or stress-related disorders increase the probability to develop AD. An
early dysregulation of the hypothalamic-pituitary-adrenal axis (HPA axis or stress axis)
has been observed in patients. The direct consequence of such perturbation is an
oversecretion of glucocorticoids (GC) associated with an impairment of its receptors
(glucocorticoid receptors, GR). These steroids hormones easily penetrate the brain and
act in synergy with excitatory amino acids. An overexposure could be highly toxic in
limbic structures (prefrontal cortex and hippocampus) and contribute in the cognitive
decline occurring in AD. GC and GR dysregulations seem to be involved in lots of
functions disturbed in AD and a vicious cycle appears, where AD induces HPA axis
dysregulation, which in turn potentiates the pathology. This review article presents some
preclinical and clinical studies focusing on the HPA axis hormones and their receptors
to fight AD. Due to its primordial role in the maintenance of homeostasis, the HPA axis
appears as a key-actor in the etiology of AD and a prime target to tackle AD by offering
multiple angles of action.

Keywords: Alzheimer’s disease, glucococorticoids, stress-related disorder, CRH (corticotropin-releasing
hormone), HPA axis (hypothalamus-pituitary-adrenal), AVP (arginine vasopressin), 11β hydroxysteroid
dehydrogenase

GENERAL ASPECTS

Sporadic Alzheimer’s disease (AD; 98% cases) is a progressive neurodegenerative pathology, and
its complexity could be explained by a wide range of risk factors. Growing evidence suggests that
lifetime events such as chronic stress or stress-related disorders, like major depression disorder
(MDD) or anxiety, may increase the probability to develop AD (Heininger, 2000; Blennow et al.,
2006; Querfurth and LaFerla, 2010; Canet et al., 2019). In patients, an early dysregulation
of the hypothalamic-pituitary-adrenal (HPA) axis was observed (Hartmann et al., 1997;
Csernansky et al., 2006). The direct consequence of such perturbation is a glucocorticoids (GC)
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over-secretion associated with GC receptors (GR) signaling
impairment. These steroid hormones easily penetrate the brain
tissue and act in synergy with excitatory amino acids. A GC
overexposure is highly toxic in limbic structures (McEwen,
2008), especially in prefrontal cortex and hippocampus,
which could participate to the cognitive decline occurring in
AD. Furthermore, GC and GR dysregulations are involved
in lots of functions disturbed in AD: i.e., dysregulation
of the amyloid precursor protein (APP) processing, Tau
phosphorylation, neuroinflammation, oxidative stress and
excitotoxicity (Sapolsky, 1996; McEwen, 2008; Bengoetxea et al.,
2016). Thus, a vicious cycle between AD and the HPA axis seems
to occur, where AD induces the dysregulation of the HPA axis,
which in turn potentiates the pathology (Brureau et al., 2013;
Pineau et al., 2016; Canet et al., 2019).

This article reviews some preclinical and clinical studies
focusing on the HPA axis hormones and receptors as potential
targets for AD. Promising results are obtained by targeting
corticotropin releasing hormone (CRH), arginine vasopressin
(AVP) and GR, or by inhibiting the 11β-hydroxysteroid
dehydrogenase-1 (11β-HSD1), involved in GC synthesis. Finally,
this review intends to show that the HPA axis, due to its essential
role in the maintenance of homeostasis, could be a key factor in
the etiology of AD and a prime target to tackle AD by offering
multiple druggable opportunities.

THE HPA AXIS

The HPA axis is required to provide appropriate adaptation to
external or internal challenges called stress, which initiates a
cascade of hormonal processes (Figure 1A). This cascade starts in
the hypothalamic paraventricular nucleus (PVN) with a release
of CRH and AVP at the median eminence level. AVP acts
in synergy with CRH to induce pituitary adrenocorticotropin
(ACTH) release in blood (Whitnall et al., 1987; Mouri et al.,
1993; Raff, 1993; Torner et al., 2017). Then, ACTH triggers the
adrenal cortex to release GC (cortisol in human, corticosterone
in rodents). These hormones act widely throughout the body
and brain to mobilize energy resources in order to fight stress
and maintain homeostasis (Carroll et al., 2011). To avoid an
overactivation of the HPA axis, GC exert an inhibitory feedback
at all stages of the axis (Figure 1A; Tasker and Herman, 2011).
These steroid hormones bind to low affinity GR and high affinity
mineralocorticoid receptors (MR; Reul and de Kloet, 1985).
These nuclear receptors are necessary for normal cellular activity
and crucial for many central nervous system functions, including
learning and memory (Roozendaal, 2000). The GC circadian
regulation is under the control of MR, while under stress
conditions, GC rise significantly causing substantial activation of
GR (Reul and de Kloet, 1985; Thomas, 2015).

It is interesting to note that AVP and CRH are also
locally synthesized within the brain, where they are important
neuromodulators involved in the central organization
of various brain-mediated stress responses (Buijs, 1990;
Tilders et al., 1993).

In human, chronic stress and HPA axis dysregulation with
chronic GC hypersecretion appear to exert detrimental effects

in normal aging and AD (Hartmann et al., 1997; Lupien et al.,
1998; Notarianni, 2013; Givalois, 2014; Canet et al., 2018),
but also in Parkinson’s disease (Wu et al., 2016), Cushing’s
syndrome (Kroon et al., 2018), and MDD (Canet et al., 2018). A
prolonged exposure to GC appears to damage particularly limbic
structures (hippocampus and prefrontal cortex) by inducing a
state of vulnerability in these neurons through the disruption
of various cellular mechanisms (Sapolsky, 1996; McEwen, 2008).
This review will present several current strategies in AD, aiming
to restore HPA axis function and to limit GC production
and toxicity.

HPA AXIS: MULTIPLE PROMISING
TARGETS FOR AD TREATMENT

Targeting CRH Receptors In AD
CRH acts via G-protein-coupled receptor type 1 or 2 (CRH-
R1 and CRH-R2) with widespread brain expression to
orchestrate the stress response (Bale and Vale, 2004). In AD
patients, investigators reported a reduction of immunoreactive
cells for CRH in the cortex, associated with an increase of
postsynaptic CRH receptors density (Whitehouse et al., 1987;
Pomara et al., 1989; Behan et al., 1995). Besides clinical evidence,
it was shown that CRH and CRH-R1 play critical roles in the
regulation of stress-induced neuropathogenesis and behavioral
deficits in mice models of AD (Dong et al., 2008; Carroll et al.,
2011; Zhang et al., 2016; Table 1). CRH overexpressing mice
display increased Tau hyperphosphorylation and aggregation
in the hippocampus (Campbell et al., 2014). In Tg2576-AD
mice, chronic isolation stress increases the expression of
CRH-R1 in cortex and hippocampus (Dong et al., 2008).
These authors also showed that chronic administration of
antalarmin (a CRH-R1 antagonist) significantly decreased
plasma corticosterone levels, tissue Aβ1–42 levels and Aβ

plaques deposition in the brain, and blocked the effects of
isolation stress on anxiety levels and memory (Dong et al.,
2014). A few years later, a 3 month-treatment in food with
CRH-R1 antagonists (Antalarmin and R121919) was shown
to prevent stress-induced behavioral changes (anxiety and
memory) and synaptic loss in aged rats, perhaps by reversing
HPA axis dysfunction (Dong et al., 2018). Moreover, in another
mouse model of AD (APP/PS1) a 5 month-treatment with
R121919 prevented the onset of cognitive impairment, reduced
cellular and synaptic deficits and Aβ levels (Zhang et al., 2016).
Similarly, pre-treatment with another CRH-R1 antagonist
(NBI27914) in PS19-AD mice (P301S mutation) before
restraint/isolation stress prevented Tau hyperphosphorylation
and aggregation, neurodegeneration and fear-memory
impairment (Carroll et al., 2011).

Such molecules have already been used in clinical trials for
mood disorders (Zorrilla and Koob, 2004, 2010) and MDD
(Nielsen, 2006) for many years, with disappointing results.
However, all these preclinical studies highlight a promising
therapeutic potential of CRH-R1 antagonists as treatments
for neurodegenerative disorders such as AD. New CRH-R1
antagonists are in development to improve their bioavailability
and safety profiles (Spierling and Zorrilla, 2017).
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FIGURE 1 | Mechanisms linking HPA axis dysregulation and AD. Following acute stress (A), hypothalamic PVN releases CRH and AVP in the blood portal of median
eminence. In response to CRH and AVP, corticotropic cells of anterior pituitary release ACTH in the peripheral circulation to induce GC secretion in blood by adrenal
cortex. Succinctly, (1) GC mobilize energy resources and increase cardiovascular function to fight stress. Besides, GC inhibit unnecessary functions in the early
phase of stress response, such as immunity, growth, digestion and reproduction. Then, (2) to avoid runaway of the system, GC exert an inhibitory feedback at all
stages of HPA axis (hypothalamus and pituitary). In addition, as they easily penetrate in the brain, GC also act on several regions involved in the control of HPA axis
activity, such as hippocampus and prefrontal cortex (tonic inhibition) or amygdala (tonic stimulation, Canet et al., 2018). However, chronic stress leads to a sustained
activation of HPA axis and could induce stress-related disorders, as for instance MMD and AD (B, Canet et al., 2018). In this context, GC over-secretion is
associated with GC resistance and GR signaling impairment (Chrousos et al., 1993). Homeostasis maintenance is compromised, leading to insulin resistance,
dyslipidemia, atherosclerosis, hypertension and a massive peripheral inflammation (Vitellius et al., 2018; Maslov et al., 2019). In limbic structures (hippocampus,
prefrontal cortex), it was shown that GC overexposure induces hippocampal and cortical atrophy (McEwen, 2008) and amygdala hypertrophy (Vyas et al., 2003,
2004), that could be related to learning and memory deficits, emotional impairment, excitotoxicity, neuroinflammation and oxidative stress (Sapolsky, 1996;

(Continued)
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FIGURE 1 | Continued
McEwen, 2008; Bengoetxea et al., 2016). In the AD context, high levels of
GC, and the dysregulation of the HPA axis activity observed in patients
(Hartmann et al., 1997; Swanwick et al., 1998), seems to be particularly
involved in the induction of amyloidogenic pathway and the abnormal
phosphorylation of Tau (Green et al., 2006; Pineau et al., 2016; Sotiropoulos
and Sousa, 2016; Vyas et al., 2016; Canet et al., 2019). Thus, it appears that
the rise of circulating GC increases AD pathology, resulting in a vicious cycle
by which pathology induces HPA axis dysregulation, GC overexposure and
GR signaling impairment, which in turn potentiates the pathology. Due to its
primordial role in the maintenance of homeostasis, targeting HPA axis offers
multiple angles of action to break this vicious cycle and pave the way to new
therapeutic strategies (C). Abbreviations: 11-βHSD1, 11β-hydroxysteroid
dehydrogenase-1; Aβ, amyloid-β protein; APP, amyloid precursor protein;
ACTH, adrenocorticotropin; AD, Alzheimer’s disease; AVP,
arginine-vasopressin; CRH, corticotropin releasing hormone; CRH-R1, CRH
receptor type 1; GC, glucocorticoids; GR, glucocorticoid receptors; HPA axis,
Hypothalamic-pituitary adrenal axis; MDD, Major depressive disorder; PVN,
paraventricular nucleus; sGRm, Selective GR modulator; V1b,
Arginine-vasopressin receptor sub-type 1b.

Targeting AVP Receptors In AD
Hypothalamic neurons of PVN and supra-optic nucleus are the
major source of AVP (Swaab, 1998). This hormone is especially
involved in the regulation of water, electrolyte balance and in
the stress response (Swaab, 1995; Twist et al., 2000). AVP is
also implicated in many central processes including learning
and memory (de Wied et al., 1993; Caldwell et al., 2008; Lee
et al., 2009), anxiety (Caldwell et al., 2008; Lee et al., 2009), and
processing of social information (Cilz et al., 2018). The effects
of AVP are mediated by different receptor subtypes: V1a, V1b,
and V2, which are G-protein coupled receptors (Cilz et al., 2018).
However, the limbic action of AVP seems to be mediated by the
V1b subtype, enriched in the hippocampus (Young et al., 2006).
In rodents, its pharmacological activation enhances excitatory
post-synaptic currents (EPSCs) that are absent in V1b−/−

mice. V1b potentiation of EPSCs is dependent of N-methyl-D-
aspartate (NMDA) receptors activation and intracellular Ca2+

signaling (Pagani et al., 2015; Cilz et al., 2018).
In a depressive and/or anxiety context, the therapeutic interest

of V1b antagonists has been known for many years (Griebel
et al., 2003). This target is particularly studied in pathologies
associated with HPA axis dysregulation (Griebel et al., 2003;
Katz et al., 2016; Table 1). The first selective and orally active
V1b antagonist developed was SSR149415. In rodent models
of anxiety and depression, SSR149415 produced a clear-cut
anxiolytic-like activity in traumatic stress models (social defeat
paradigm) and antidepressant-like effects (Griebel et al., 2002).
More recently, in the same paradigm, other V1b antagonists
(TASP0390325 and TASP0233278) elicited antidepressant-like
effects (Iijima et al., 2014). These findings evidenced that V1b
receptor blockade is particularly interesting for the treatment of
affective and emotional disorders. For instance, several clinical
trials are in progress with the V1b antagonist ABT-436, which is
in phase 1b for depression treatment (Katz et al., 2016, 2017), and
in phase 2 for alcohol dependence treatment (Ryan et al., 2017).

Thus, while evidences about a direct involvement of
hypothalamic AVP in AD patients are not yet available
(Goudsmit et al., 1990; Lucassen et al., 1994; Ishunina et al.,

2002), many studies showed a crucial role played by AVP in
stress and stress-related disorders such asMDD or anxiety. These
findings are interesting as MDD could be a prodromal feature of
AD and dementia (Herbert and Lucassen, 2016; Ishijima et al.,
2017; Canet et al., 2018), justifying further investigations.

Targeting GC Synthesis In AD
11β-HSD1 is a key enzyme that mediates the intracellular
conversion of inactive cortisone to cortisol in humans (11β-
dehydrocorticosterone to corticosterone in rodent), the active form
of GC, thus amplifying steroid action. An haplotype in the 11β-
HSD1 gene that increases 6-fold the risk to develop AD was
reported (de Quervain et al., 2004).

Lowering GC exposure in the brain via intracellular inhibition
of 11β-HSD1 has emerged as a therapeutic strategy to
treat cognitive impairment in AD (Table 1). Pharmacological
inhibition of 11β-HSD1 (UE1961) in aged mice improved spatial
memory performance (Sooy et al., 2010). More recently, authors
also demonstrated using another inhibitor (UE2316), a reduction
of Aβ plaques in the cortex of old Tg2576-AD mice associated
with an increase of IDE levels and memory improvements (Sooy
et al., 2015). Moreover, in aged rodents, modulation of 11β-
HSD1 by genetic knockdown or pharmacological inhibition
improved memory. In Molher’s study, the authors tested an
acute treatment with two novels inhibitors (A-918446 and
A-801195, Abbott Laboratories). These compounds were able to
improve memory consolidation, short-term memory, and recall
in inhibitory avoidance (Mohler et al., 2011).

It is also known that aged mice develop elevated plasma
corticosterone levels that correlate with learning deficits in the
water-maze. This poor performance in a long-term memory
task can be ameliorated by an 11β-HSD1 knockout, implicating
lower intraneuronal corticosterone levels (Yau et al., 2001, 2015).
In senescence-accelerated SAMP8 mice, pre-treatment with
metyrapone, which inhibits the 11β-hydroxylase, completely
normalized corticosterone levels and restored spatial memory
(Iinuma et al., 2008).

These promising data led to a clinical trial with a novel brain-
penetrant 11β-HSD1 inhibitor (UE2343, XanamemTM) for AD
treatment. The Phase 1 clinical studies showed that UE2343 is
safe, well tolerated and is able to moderately penetrate the brain
(Webster et al., 2017). In addition, it is interesting to note that
treatment of cognitively impaired elderly male patients with
carbenoxolone (a non-selective 11β-HSD1 inhibitor) improved
verbal fluency and memory (Sandeep et al., 2004).

Targeting GR In AD
The ubiquitous expression of GR and their involvement in a
broad range of biological processes make them a prime target
in many diseases. On the other hand, the global inhibition or
activation of these receptors can lead to many potential side
effects. For instance, it was demonstrated that a blockade of
brain GR with Mifepristone (RU486, the reference non-selective
GR antagonist) impaired spatial learning and memory in rodent
(Roozendaal and McGaugh, 1997; Oitzl et al., 1998). A more
recent study showed that central or peripheral administration
of RU486, immediately following memory reactivation, induced
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TABLE 1 | Preclinical and clinical studies targeting corticotropin releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoids (GC) or glucocorticoid receptors
(GR).

Context/model Molecular, cellular & behavioral impacts Reference

CRH receptors inhibition
CRH overexpression C57/B16 mice Increase Tau phosphorylation and aggregation. Campbell et al. (2014)
Antalarmin and R121919
(CRH-R1 antagonists)

Aged rats Prevention of stress-induced memory deficits and anxiety; Prevention of
stress-induced synapse loss and HPA axis dysfunction.

Dong et al. (2018)

R121919
(CRH-R1 antagonist)

APP/PS1 mice Prevention of the onset of cognitive impairment; Reduction of cellular and
synaptic deficits; Decrease of Aβ and C-terminal fragment levels.

Zhang et al. (2016)

NBI 27914
(CRH-R1 antagonist)

PS19 mice Prevention of stress-induced Tau hyperphosphorylation and aggregation,
neurodegeneration and fear memory impairment.

Carroll et al. (2011)

Antalarmin (CRH-R1
antagonist)

Tg2576-AD mice Decrease level of plasma Aβ1–42 and Aβ plaque deposits; Decrease level of
plasma corticosterone; Improve memory and anxiety behavior.

Dong et al. (2014)

Primary
hippocampal
culture

Inhibition of Aβ1–42 levels and PKA expression after a CRH treatment.

AVP receptors inhibition
SSR149415 (V1b
antagonist)

Anxiety/depression
rodent models

Anxiolytic-like activity in models involving traumatic stress exposure;
Antidepressant-like effects in FST.

Griebel et al. (2002)

TASP0390325 and
TASP0233278 (VI b
antagonists)

Depression rodent
models

Antidepressant-like effects in the FST; Reduction of the hyperemotionality after
olfactory bulbectomy.

Iijima et al. (2014)

ABT-436 (V1b antagonist) Human (MDD
subjects)

Phase 1b in clinical trial for MDD; Reduction of HPA axis hyperactivity; Favorable
symptoms changes.

Katz et al. (2017)

ABT-436 (V1b antagonist) Human (alcohol
dependence)

Phase 2 in clinical trial for alcohol-dependence; Increase of alcohol abstinence;
Reduction of alcohol outcomes for subjects with higher baseline levels of stress.

Ryan et al. (2017)

GR modulation

CORT108297 (sGRm)

3xTg-AD mice Reduction of APP C-terminal fragments and p25 levels. Baglietto-Vargas et al.
(2013)

Wistar rats Attenuation of electroconvulsive shock-induced retrograde amnesia. Andrade et al. (2012)
Sprague–Dawley
rats

Reduction of neuroendocrine stress responses and immobility in the FST. Solomon et al. (2014)

oAβ25–35 rat Reverse oAβ25–35-induced neuroinflammatory and apoptotic processes,
cognitive and synaptic deficits, and APP misprocessing.

Pineau et al. (2016)

CORT113176 (sGRm)
Wobbler mice Reduction of neurodegeneration and neuroinflammation. Meyer et al. (2014)
oAβ25–35 rat Reverse oAβ25–35-induced neuroinflammatory and apoptotic processes,

cognitive and synaptic deficits, and APP misprocessing.
Pineau et al. (2016)

GC synthesis inhibition
UE1961
(11β-HSD1 inhibitor)

Aged mice Improvement of short-term memory. Sooy et al. (2010)

UE2316
(11β-HSD1 inhibitor)

Tg2576-AD mice Reduction of Aβ plaques in cortex; Increase of IDE levels; Memory
improvements.

Sooy et al. (2015)

A-918446
(11β-HSD1 inhibitor)

Aged rodents Improvement of memory consolidation and recall in inhibitory avoidance;
Increase of CREB phosphorylation.

Mohler et al. (2011)

A-801195
(11β-HSD1 inhibitor)

Improvement of short-term memory

11β-HSD1 knock-out Aged mice Prevention of intra-neuronal corticosterone increase; Improvement of long term
memory (watermaze).

Yau et al. (2001)

Metyrapone
(1lβ-hydroxylase inhibitor)

SAMP8 mice Prevention of stress-induced corticosterone elevation, spatial memory deficits
and hippocampal neurons loss.

Iinuma et al. (2008)

UE2343
(11β-HSD1 inhibitor)

Human Phase 1 of clinical trial: compound safe, well tolerated and able to penetrate the
brain (healthy subjects).

Webster et al. (2017)

Carbenoxolone
(11β-HSD1 inhibitor)

Aging human Improvement of verbal memory and fluency. Sandeep et al. (2004)

a deficit in post-retrieval long-term memory, and memory did
not re-emerge after a footshock reminder (Nikzad et al., 2011).
Indeed, GC, GR and associated signaling pathways are crucial
for memory consolidation. Acute stress and GR activation were
shown to enhance memory consolidation and to inhibit working
memory at the same time (Barsegyan et al., 2010). Many factors
should be taken into consideration to understand and predict
these GC contradictory effects. Depending on the brain area and
on acute vs. chronic stress conditions, GC/GR can exert opposite

effects (Roozendaal, 2002; McEwen, 2008; Barsegyan et al., 2010;
Figure 1).

It is also important to mention the key role of GR
in inflammatory processes. GR are necessary to maintain
homeostasis since they control the expression of a large part of
anti- and pro-inflammatory genes (Barnes, 1998; Van Bogaert
et al., 2011; Coutinho and Chapman, 2011). An antagonist can
prevent a crucial action of GR and lead to severe side effects
associated with aberrant inflammatory processes. For example,
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it was shown that RU486 blocked the anti-inflammatory effects
of exercise in a murine model of allergen-induced pulmonary
inflammation (Pastva et al., 2005).

In AD, it was reported that patients treated with prednisone
(a GC used for its anti-inflammatory properties) presented
a more pronounced behavioral decline compared to the
placebo-treated cohort (Aisen, 2000). Similarly, it was shown
that GC administration (dexamethasone) in 3xTg-AD mice
increases Aβ pathology and subsequent Tau accumulation and
hyperphosphorylation (Green et al., 2006). It results inexorably
in a vicious cycle whereby the pathology increases the secretion
of GC, which further enhances the pathology (Baglietto-Vargas
et al., 2013; Brureau et al., 2013; Pineau et al., 2016; Canet et al.,
2018, 2019). All these findings tend to prove that in AD, but also
in all pathologies implying GC, both GR agonists or antagonists
should be used with caution.

Recently, in a search to abrogate potential side effects of GR
antagonism, new compounds were developed and act as highly
selective GR modulators (sGRm; Clark et al., 2008; Beaudry
et al., 2014; Hunt et al., 2015; Pineau et al., 2016; Meijer et al.,
2018; Viho et al., 2019). The use of sGRm is an attractive
approach to separate wanted from unwanted outcomes. Different
sGRm were developed and vary substantially in their biological
activities. These molecules have the ability to act as agonist,
as well as antagonist depending on the tissue or gene targets,
but also on the physiological context. However, one thing to
keep in mind is that the prediction of exact sGRm action is
really challenging considering the numerous factors to take into
account. Meijer et al. (2018) recently stated about the complexity
of sGRm mechanisms: ‘‘even if we know the coactivators that will
be recruited by a sGRm-GR complex, in most cases it is unknown
which signaling pathways are involved in which transcriptional
process. Given the large number of coactivators and their highly
gene- and tissue-specific regulation, such analyses are very time
consuming, if informative’’.

In a direct application, sGRm offered promising results
(Table 1). One of them, and the first to be developed by
Corcept Therapeutics (Menlo Park, San Mateo, CA, USA), is
CORT108297. It was first described as an antagonist (Belanoff
et al., 2010), but its modulatory properties were discovered
few years later (Zalachoras et al., 2013). In fact, the authors
surprisingly observed that CORT108297 induced a unique
interaction profile between GR and its coregulators compared
with the full agonist dexamethasone and the non-selective
antagonist, RU486. This atypical profile could explain the
paradoxical effects of CORT108297 according to the brain
region (Zalachoras et al., 2013; Viho et al., 2019). In
rats, CORT108297 attenuates electroconvulsive shock-induced
retrograde amnesia (Andrade et al., 2012). This molecule also
presents antidepressant properties and reduces neuroendocrine
stress responses and immobility in the forced-swimming test
(FST), alike imipramine, a classic treatment for MDD (Solomon
et al., 2014). By contrast, treatment with another member of this
family, CORT118335, which has the particularity of being a GR
modulator but also a MR antagonist, did not affect immobility in
the FST (Nguyen et al., 2018), confirming a differential specificity
and efficacy of each molecule.

In the 3xTg-AD mice, a 21 days treatment with
CORT108297 reduced APP C-terminal fragments and p25 levels
(Baglietto-Vargas et al., 2013), which is the activator of cyclin
dependent kinase 5 (Cdk5), involved in AD pathophysiology
(Patrick et al., 1999). In an acute rat model of AD (the oAβ25–35
model), we tested the therapeutic potential of CORT108297 and
CORT113176 (Pineau et al., 2016). CORT113176 is also a
sGRm, but displays a better affinity for GR than CORT108297
(Beaudry et al., 2014; Pineau et al., 2016). In this acute model,
we previously evidenced a strong, long-lasting activation
of the HPA axis, associated with a modification of GR and
MR expression in brain regions involved in the control of
GC secretion (hippocampus, amygdala and hypothalamus;
Brureau et al., 2013). We found that both compounds
(CORT113176 at a lower dose than CORT108297) were
able to reverse neuroinflammatory and apoptotic processes,
cognitive and synaptic deficits, and APP misprocessing (Pineau
et al., 2016). To confirm the interest of sGRm, we compared
these compounds with RU486. Interestingly, we observed that
this non-selective antagonist only partially reversed previously
observed pathological impairments (Pineau et al., 2016). In the
same line of evidence, CORT113176 showed promising effects
in a mouse model of amyotrophic lateral sclerosis by reducing
neuronal injury and neuroinflammation in the spinal cord
(Meyer et al., 2014). Thus, even if these compounds seemed to
exhibit predominantly antagonistic actions in limbic structures
in pathological conditions (Andrade et al., 2012; Atucha et al.,
2015; Pineau et al., 2016), they could avoid side effects of GR
blockade by some agonistic properties.

CONCLUSIONS

If we postulate that AD is a stress-related disorder, targeting HPA
axis hormones and receptors could be an attractive approach
and pave the way for new therapeutic strategies. Indeed, due
to its primordial role in the maintenance of homeostasis, the
HPA axis seems to be a key-actor in the etiology of AD and a
prime target to tackle the pathology by offeringmultiple angles of
action. Several strategies aiming to restore a normal functionality
and activity of the HPA axis are in development with promising
results. Some of these molecules are already in clinical studies,
not necessarily in an AD context. Since some of them already
obtained a safe and tolerated profile, testing them in AD patients
could be a really encouraging challenge in the near future. Finally,
this review wishes also to alert about the risk in prescribing
GC-based therapies in the elderly or in early AD patients.
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