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Abstract 18 

Travel-time data from the aftershock sequence following the Mw5.9 Chenoua earthquake of 29 19 

October 1989 are inverted to obtain a 3 dimensional tomographic image of the region. The data are 20 

P and S waves travel-times obtained from 394 carefully selected aftershocks recorded at 18 21 

temporary stations between 7 and 18 November 1989. A 3-dimensional P-wave velocity model 22 

down to a depth of 10 km is obtained. At shallow depth, the velocity contrasts clearly outline the 23 

Plio-Quaternary sedimentary basins separated by the Chenoua bedrock high. Below 4 km, a sub-24 

vertical East-West low velocity zone can be seen down to the limit of the resolved model. The fault 25 

activated during the Chenoua event, as depicted by the aftershocks distribution is oblique to this 26 

structure and north of it. The location and geometry of the low velocity zone suggest it may 27 

correspond to a structure belonging to the suture between Eurasia and Africa, a former north 28 

dipping subduction zone, now a block boundary inherited from the Miocene collision phase. This 29 

structure may partly constrain the shallower deformation and could be responsible of the localized 30 

Sahel anticline north of the stable Mitidja basin. 31 

 32 

Keywords: Chenoua 1989 and Tipaza 1990 earthquakes, P and S waves local tomography, 33 

seismotectonics, Eurasia-Africa collision zone 34 
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1. Introduction 35 

Present-day seismic activity of the northern Algerian margin is a response to Plio-36 

Quaternary NNW-SSE shortening of the Miocene Eurasia-Africa collision belt. Understanding the 37 

distribution of seismicity and the locus of large earthquakes implies to better document the active 38 

faults as well as the major structures of the crust resulting from various collision phases.  39 

 The general geodynamic evolution of the Algerian margin is dominated by the northward 40 

drift of the African continent together with subduction and oceanic accretion in the Mediterranean 41 

domain (e.g. Benaouali et al. 2006; Tapponnier 1977). After an episode of south vergent shortening 42 

in the southern Atlas during the Eocene, the north vergent Miocene subduction of the Algerian 43 

margin lead to the collision of the Maghrebides and emplacement of a stack of flysh nappes. 44 

Following slab breakoff, and opening of the Algerian oceanic Mediterranean basin (Leprêtre et al. 45 

2013), isostatic rebound of the flexured margin led to generalized uplift along the southwestern 46 

Mediterranean coast (e.g. Pedoja et al. 2011). Presently, Africa is converging at a rate of 5-7 mm/yr 47 

towards the north (Nocquet and Calais 2004; Serpelloni et al. 2007; Figure 1 inset), reactivating the 48 

Tellian and Atlas fold and thrust belts (Benaouali et al. 2006), as well as inverting the steep 49 

previously transtensional continent-ocean Algerian margin (Strzerzynski et al. 2010; Déverchère et 50 

al. 2005; Domzig et al. 2006). North and south vergent anticlinal folding of the crustal slivers along 51 

the north-central coast of Algeria is probably responsible of most of the present-day coastal uplift, 52 

while relaxation of the margin flexure may still be responsible for part of a long wavelength uplift 53 

(Morel and Meghraoui 1996; Meghraoui et al. 1996; Pedoja et al. 2013; Authemayou et al. 2016).  54 

 The magnitude Mw5.9 Chenoua earthquake of 29 October 1989 is one of the 5 largest 55 

events that occurred in northern Algeria in the last 40 years since the 1980 El Asnam event (Figure 56 

1; El Asnam Mw7.3 1980; Constantine Ms5.9 1985; Chenoua Mw5.9 1989; Zemmouri Mw6.8 57 

2003; Beni Ilmane Ms5 2010; see also Table 1). Focal mechanisms of these earthquakes as well as 58 

those of smaller events indicate mostly NW-SE to NNW-SSE reverse faulting (e.g. El Asnam or 59 

Zemmouri; Delouis et al. 2004) or NE-SW left-lateral faulting on sub-vertical faults (Beni-Illmane; 60 

Yelles et al. 2013). The hypocentral depths of these earthquakes and their aftershock sequence 61 

generally remain in the mid to upper crust, i.e., above 10 km, and rarely down to 15-20 km (e.g. 62 

Zemmouri earthquake, Bounif et al. 2004). The coherent stress depicted by the seismicity and the 63 

depths of the earthquakes imply that the crust is currently undergoing shortening involving 64 

structures inherited from the previous collisional events of the Miocene in the Tell and Atlas to the 65 

south along south vergent structures, and inverted structures or new reverse faults in the north along 66 

the Mediterranean margin (e.g., Roca et al. 2004; Benaouali et al. 2006; Yelles et al. 2009). 67 

Local tomography studies in the Maghrebides (Chiarabba et al. 1997; Bounif et al. 1998, 68 

2004; Abacha et al. 2014; van der Woerd et al. 2014; Bellalem et al. 2015) and elsewhere (e.g. 69 
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Thurber et al. 1983; Eberhart-Philips and Michael 1993; Dorbath et al. 1996, 2008) following 70 

moderate to large earthquakes enable to highlight the upper structural levels of the crust, 71 

sedimentary basin depths and extension (Aktar et al. 2004) or décollement levels of the thrusted 72 

Miocene nappes (van der Woerd et al. 2014), major crustal faulted block boundaries (Dorbath et al. 73 

2008; van der Woerd et al. 2014), crustal block juxtaposition in relation with seismic segmentation 74 

(Bounif et al. 1998), rupture segmentation in relation with pre-existing inverted normal faults 75 

(Chiarabba et al. 1997; Bellalem et al. 2015). 76 

In this manuscript we use the aftershock records of the Chenoua 1989 Mw5.9 earthquake to 77 

highlight the local crustal structure using P wave travel time data of the region west of Algiers 78 

along the Chenoua and Sahel anticlines (Figures 1 and 2).  79 

 80 

2. The Chenoua Mw5.9 earthquake of 29 October 1989 81 

 In this study we use the same dataset as in Bounif et al. (2003), namely the aftershocks 82 

recorded by 2 local networks of temporary stations deployed during 15 days 2 weeks after the main 83 

shock of 29 October 1989 (Figure 2). We will thus first summarize the main results from this and 84 

other works about the analysis of the aftershock sequence of the Chenoua earthquake.  85 

 The Chenoua earthquake occurred on 29 October 1989 at 19h:09m:12.9s (UT). It affected 86 

the region around the Chenoua massif located about 70 km to west-southwest of Algiers. It is the 87 

largest event that occurred in the Tellian Atlas after the events of El Asnam Mw6.9 of 10 October 88 

1980 (e.g. Ouyed et al. 1981; Philip and Meghraoui 1983) and Constantine Mw5.4 of 27 October 89 

1985 (Bounif et al. 1987; Deschamps et al. 1991) and before the Zemmouri Mw6.8 earthquake of 90 

21 Mai 2003 (e.g. Ayadi et al. 2003, 2008; Meghraoui et al. 2004). The earthquake of maximum 91 

intensity MSK VIII (e.g. Yelles 1991) felt until Algiers caused 35 casualties and 700 injuries, 92 

affected many cities and villages and completely destroyed ancient houses mostly along the 93 

southeast flank of the Chenoua massif. 94 

 The main shock has been located by various international networks (NEIC/USGS, CSEM, 95 

ISC) and by the national network (CRAAG) (Figure 2). Because the nearest stations are far from 96 

the epicenter and because there are no close stations to the north in the Mediterranean the locations 97 

are not very robust (Figure 2). Bounif et al. (2003) have relocated the main shock using a master 98 

event method. While the location is still uncertain, they have shown that the main shock is most 99 

probably located to the south-southwest of the following better-recorded aftershock sequence 100 

(Figure 2), favoring a mainly northeastward propagation of the rupture. The depth of the main 101 

shock is not well constrained by the international and national networks. Given the depths of the 102 

aftershocks, the main shock may have been located around 10 km depth (Bounif et al. 2003). 103 

Inversion of body waves indicates that the Chenoua earthquake mechanism is a nearly pure 104 
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reverse fault striking N66°E and dipping 56° to the NW (Bounif et al. 2003) in good agreement 105 

with the CMT Harvard centroid, which has a more northerly strike (N51E; Table 1). The main 106 

shock may be decomposed in two sub-events of 3 s and 4 s durations, respectively, with a similar 107 

mechanism and with the rupture propagating from SW at 13 km depth to the NE at 8 km depth. 108 

Both the seismic moment (8.2e17 N.m) and the size of the aftershock cloud (about 13-15 km long 109 

by 10-12 km wide) concur to the moment magnitude Mw5.9 (average slip of 20 cm; Bounif et al. 110 

2003). Given the depth of the main shock and the slip value, surface ruptures if any would be small. 111 

A set of secondary surface slips have been reported for a length of about 4 km along the southern 112 

flank of the Chenoua massif with about up to 12 cm of vertical displacement (south up) in sub-113 

vertical bedded Neogene conglomerates (Meghraoui 1991). The geometry and kinematics of these 114 

surface ruptures relative to the aftershock distribution (Bounif et al. 2003) suggest secondary 115 

deformation linked to the overall SW-NE anticlinal folding above a reverse fault dipping to the NW 116 

as underlined by the aftershock sequence (Bounif et al. 2003) and the overall tectonic structure 117 

deduced from offshore seismic sections (Domzig et al. 2006). 118 

About 3 months after the Chenoua main shock, another sequence started a few kilometers to 119 

the east, northeast of Tipaza. A main shock of magnitude Ms 4.9 occurred on 9 February 1990 at 120 

9h:30m:30s (36.78°N, 2.48°E after ISC; Figure 2). It was followed by a sequence of aftershocks 121 

that migrated towards the west-southwest and towards depth forming two distinct aftershock clouds 122 

(Figure 2; Sebaï 1997). The two northeast-southwest trending clouds are located at about 5-10 km 123 

and 10-15 km depths and extend over a length of 20 km. While the main shock is not well located, 124 

the time-evolution of the aftershock sequence suggests that the main shock is associated to the 125 

easternmost shallowest aftershocks cloud around 2.56°E 36.58°N and a depth of 7-10 km (Sebaï 126 

1997). The overall northwest dipping aftershock clouds (Figure 2) suggest activation of a northwest 127 

dipping reverse fault as suggested by the shallow dipping fault plane of the focal mechanism of the 128 

Harvard CMT (218 123 75)(event 8 in Figure 1A and Table 1). Both aftershock clouds have been 129 

interpreted as reverse ramps linked by a flat décollement and responsible of the Sahel anticlinal 130 

growth (Maouche 2002; Harbi et al. 2004; Figure 1B).  131 

 132 

3. Geologic and tectonic setting 133 

The Chenoua massif, located between the cities of Cherchell and Tipaza (Figures 1 and 2), 134 

belongs to the Algerian Sahel, or more generally to the Maghrebides mountains. It forms, together 135 

with the Algiers massif, the Petite and Grande Kabylie, a set of massifs along the Mediterranean 136 

coast that belong to the internal part of the collision belt resulting from the north directed Neo-137 

Thetys subduction during Cretaceous – lower Tertiary (Aïfa et al. 1996; Ayme et al. 1962). The 138 

suture that limits these massifs to the south is formed mostly by volcano-sedimentary units (Figure 139 
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1). Towards the Mediterranean a passive margin develops, with probably sinistral deformation 140 

during the extrusion towards southwest of the Alboran block and the opening of the Algerian-141 

Balearic basin (e.g. Tapponnier 1977; Frizon de Lamotte et al. 2009).  142 

The mainly NS compressive deformations from the Tertiary (EW anticlinorium and south 143 

directed reverse faulting) have exhumed in the center of the massifs pre-Cambrian metamorphic 144 

series (metamorphic unit of Brinshel), Devonian-Carboniferous series and the Mesozoic limestone 145 

series of the Kabylide. A folded Neogene sequence (continental conglomerate) together with 146 

basaltic magmatism (Belhaï 1987) follows emplacement of the Paleogene (Eo-Oligo-Miocene) 147 

flysh nappes (Belhaï et al. 1990). In addition, the mostly north-south Plio-Quaternary compression 148 

is superimposed, this time involving the reactivated passive margin to the north with mostly 149 

offshore structures (e.g. Yelles et al. 2009) .  150 

 The present-day convergence between Eurasia and Africa as determined from the plate 151 

tectonics and geodetic GPS data is oriented NW-SE and on the order of 5 mm/yr (e.g. McClusky et 152 

al. 2003; Nocquet and Calais 2004; Serpelloni et al. 2007; Figure 1, inset). This convergence of the 153 

plates at the longitude of the Chenoua massif is distributed among the Tell in the south to the alpine 154 

mountain belts of the Pyrenees and Alps to the north across the Iberian-Balearic zone. About 3 to 4 155 

mm/yr is accommodated in northern Algeria, from the north Algerian margin across the Sahel and 156 

Tellian Atlas, to the Atlas in the south (Serpelloni et al. 2007) in agreement with the overall 157 

seismicity of this region (Figure 1).  158 

In addition to the south vergent reverse faults and folds of the coastal mountains (Sahel, 159 

Chenoua, Thenia)(e.g. Boudiaf et al. 1998; Figure 1), north directed thrust faults affect the 160 

continental margin deforming the margin sediments (e.g. Déverchère et al. 2005; Yelles et al. 2009; 161 

Leprêtre et al. 2013). The active deformation is characterized by thrust earthquakes like the Mw6.8 162 

Zemmouri event of Mai 2003 (Delouis et al. 2004; Bounif et al. 2004; Meghraoui et al. 2004; 163 

Déverchère et al. 2005; Semmane et al. 2005; Ayadi et al. 2008; Belabbes et al. 2009; Figure 1). 164 

The Chenoua mountain is a 13 km-long by 8 km-wide massif with elevations reaching 905 165 

m to the northwest of the Mitidja basin (Figures 1 and 2). The slightly east-dipping relief is 166 

truncated by a NE-SW structure to the east that make up the particular shape of the coast west of the 167 

city of Tipaza. Given mainly NS shortening during the Tertiary and the present-day strain (e.g. 168 

Nocquet 2012; inset in Figure 1), it is expected that the NE-SW striking faults are sinistral, the NW-169 

SE faults dextral and EW faults or ENE-WSW essentially associated to folds or active thrust faults. 170 

Quaternary deformation is attested along the southern Sahel ridge in the Mitidja basin (e.g. 171 

Glangeaud 1955; Domzig et al. 2006). 172 

 173 

 174 
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4. Data and methods 175 

 The 1989 Chenoua earthquake has been followed by numerous aftershocks from which 1300 176 

were recorded by a temporary network of 18 short period seismic stations installed between 31 177 

October 1989 and 6 January 1990 (Figure 2; Table 2). From the 1300 records, the best-localized 178 

394 events from November 7th to 18th were selected, when all the 18 stations were operational 179 

(Bounif et al. 2003). Because the main shock and most of the aftershocks are offshore, the 180 

azimuthal coverage is weak (Figure 2). Reading precision of arrival times are 0.05s for P waves and 181 

0.1s for S waves. The selected aftershocks with magnitudes ranging from 0 to 3.1 were localized 182 

with a minimum of 9 arrivals and 2 S waves, and have a rms <0.35s with a mean of 0.18s, and 183 

horizontal and vertical mean errors of 0.84 km and 1.06 km, respectively. 184 

 Positive P wave residuals (observed minus calculated travel times) at the stations form a 185 

WSW-ENE elongated zone aligned with the average strike of the Sahel anticline and negative 186 

residuals are located along the northern flank of the Chenoua massif (Figure 3). Average residuals 187 

represent the seismic waves velocity under the stations at shallow or intermediate depths where the 188 

seismic rays are the densest. Positive residuals correspond to lower velocities as compared to the a 189 

priori model, negative ones to higher velocities. The residual mapping (Figure 3) is thus a 190 

simplified first order view of the tomographic models described below. 191 

 P and S waves travel times were used to determine the 3D structure of the velocity model 192 

under the Chenoua massif and to refine the spatial distribution of seismic hypocenters. We used the 193 

TomoDD program (Zhang and Thurber 2003), and the post-processing weighted average model 194 

(WAM) method to stabilize the velocity model (Calo et al. 2009, 2011). The double difference 195 

tomography (Zhang and Thurber 2003) combines the relocalisation method HypoDD (Waldhauser 196 

and Ellsworth 2000) and the inversion method Simul (Thurber 1983). It simultaneously calculates 197 

the 3D velocity model with a higher precision in the seismic source regions and relocates the 198 

hypocenters. TomoDD has been applied to both P and S waves. The inverted data are on one part 199 

the travel times catalog, 4823 P waves and 2693 S waves, and on the other part, the travel time 200 

differences of nearby events at the same stations. For an inter-events distance of less than 2 km, we 201 

obtain 86228 pairs of 67147 P waves and 19081 S waves. Because the number of S waves travel 202 

times are small and their readings of low quality, we present only the results from the P waves. We 203 

used the 1D velocity model of Bounif et al. (2003) to start with, with an inversion grid centered at 204 

2.33°E and 36.583°N, and with a space between nodes of 3 km in the center, where the number of 205 

events and stations are important, and 5 km on the sides (see Appendix A1). The depth spacing is 3 206 

km until 12 km depth, which is the maximum hypocenter depths (Bounif et al. 2003). We computed 207 

12 tomographic inversions by changing the orientation of the grid by stepwise rotations of 15° (-208 

15°, -30°, 45°, 60°), the position of the grid of +1km in longitude, in latitude and both together, the 209 
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depth position of -1.5km and the velocity of ±20% (Appendix A1). 210 

 The WAM method has been applied to stabilize the final velocity model (Calo 2009). This 211 

method that can be applied to all tomographic inversions is based on resampling a velocity model 212 

ensemble. The final distribution of the velocity model is a weighted mean of the resolution 213 

estimates at each node (derivative weight sum DWS parameters) calculated during tomoDD 214 

inversions. From previous inversions we built the weighted average model (WAM) by keeping only 215 

the velocity values at nodes where the DWS>100. During this process, the weighted standard 216 

deviation (WSTD) is calculated at each node of the WAM grid to check for stability and 217 

acceptability. The WSTD is determined by using the velocity distribution and the similar weighted 218 

scheme to obtain the final velocity model (Appendix A2; Calo et al. 2013a, 2013b).  219 

 220 

5. Results 221 

The main results obtained by the WAM carried out in the region of the Chenoua concerning 222 

velocities and relocated hypocentres are presented in figures 4 and 5. Figure 4 shows the P waves 223 

velocities for layers at 0, 3, 6 and 9 km depths, as well as the locations of hypocentres located 224 

around each levels to +/-1.5 km.  225 

 226 

Relocated hypocentres  227 

 The 3D velocity model has been calculated with the weighting procedure of the Wam 228 

method and is used to refine the aftershock relocations. While the relocalization of the aftershocks 229 

has improved with the new velocity model of this study (Figure 2), the aftershock cloud bears 230 

nevertheless the same characteristics as those already described in Bounif et al. (2003). The 231 

aftershocks mostly depict a NE-SW striking structure (N40-50°E), about 15 km long and dipping 232 

about 55° to the northwest from 1-2 km below the surface to a depth of about 10 km (Figure 2). 233 

 234 

Vp horizontal sections 235 

 We discuss in the following 4 horizontal sections of the model at 0, 3, 6 and 9 km depths 236 

(Figure 4). At the surface the model is only resolved in the vicinity of the stations. At 6 and 9 km, in 237 

the middle of the 3D velocity model, the tomography is best resolved. At 9 km, due to less 238 

numerous aftershocks the resolution decreases. 239 

In the near surface model (depth of 0 km), we observe a large low velocity (3≤Vp≤4 km/s) 240 

NE-SW trending area and two high (5≤Vp≤5.5 km/s) velocity circular anomalies, one of which is 241 

located at the same place as the shallowest aftershocks. Note that the pattern of the surface layer is 242 

very similar to the picture of P wave residuals averaged at each station as shown in Figure 3. 243 

 At 3 km depth, two high velocity regions with velocities reaching 6 km/s are distinguished, 244 
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the one to the east was already observed at the surface. At this depth, the model is dominated almost 245 

entirely by low velocities 4.5≤Vp≤5 km/s, which seem to mark the extension towards depth of the 246 

slow anomalies described at the surface. 247 

 At 6 km depth the velocity pattern is changing. An EW zone of velocities about 5≤Vp≤5.5 248 

km/s is visible in the center of the tomographic map, and higher velocities (6≤Vp≤6.5 km/s) are 249 

present north and south of it.  250 

At 9 km depth, the pattern seen at 6 km depth is reinforced with a clear EW lower velocity 251 

anomaly right under the coastal massifs that showed higher velocities near the surface.  252 

 253 

Vp vertical sections 254 

    In Figures 5A and 5B are presented 10 Vp vertical sections projected N135 and NS, 255 

respectively (see location of sections in Figure 4). The N135 projection is perpendicular to the 256 

present-day active structures and the seismicity trend of the 1989 aftershocks, while the NS 257 

projection is perpendicular to the main tomographic anomaly at depth (slices 6 and 9 km, figure 4). 258 

Relocated hypocentres in the vicinity of the section are also projected.  259 

 The sections highlight the patterns already described above for the tomographic slices 260 

(Figure 4). The sections show clearly the low velocity anomalies of the surface down to a few 261 

kilometers separated by the localized high velocity anomalies that extend to larger depth (sections 4 262 

and 6 in figure 5A). Below 5 km, the pattern of anomalies is changing with a low velocity anomaly 263 

appearing below the high velocities of the surface. The NS sections clearly show that this low 264 

velocity anomaly is striking EW and extends to depths of 10 km. 265 

 266 

6. Discussion 267 

 268 

6. 1 Previous tomographic studies in the Algerian Tell  269 

The first tomographic study in Algeria has been performed by Chiarabba et al. (1997) using 270 

the aftershocks sequence of the El Asnam earthquake (October 10, 1980, Ms7.3)(Figure 1). 271 

Following the usual interpretation that velocity anomalies in the shallow crust are closely linked to 272 

lithologic heterogeneities (e.g. Eberhart-Phillips and Michael 1993; Foxall et al. 1993; Chiarabba et 273 

al. 1995), the high velocities observed in the footwall of the fault have been related to the presence 274 

of pre-Neogene basement. Another rapid anomaly has been linked to Mesozoic limestone 275 

formations along a former normal fault along the pre-Neogene basement, and a low velocity 276 

anomaly region corresponds to the quaternary sedimentary deposits of the Chelif basin. A more 277 

recent tomographic study (Bellalem et al. 2015) in the same region using more data and a new code 278 

corroborates the former results.   279 
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 The Constantine earthquake (October 27, 1985, Ms5.9) aftershocks sequence was used to 280 

compute a 3D velocity model of the P wave to a depth of 12 km (Bounif et al. 1998). The near 281 

surface low velocities (3.5 km/s) were associated to Mio-Pliocene and Quaternary deposits, while 282 

the high velocities (5.5 km/s) were related to the Constantine neritic and the Tellian Jurassic to 283 

Paleogene calcareous nappes. The depth extension of the velocity contrasts constrains the few 284 

kilometers nappes thickness. 285 

 Following the Zemmouri earthquake (May 21, 2003, Mw6.8) the 3D P wave velocity model 286 

based on the aftershocks sequence travel times (Ayadi et al. 2008), not only confirmed the upper 287 

layer distribution of Quaternary deposits and marine terraces (low velocities 4.5 to 5 km/s) and 288 

basement outcrops (high velocities) but highlighted a clear structural contact between the Blida 289 

thrust and fold belt (low velocities) and the metamorphic Kabylie basement block (high velocities). 290 

The more recent tomographic inversion (Kherroubi et al. 2017) based on the LOTOS program and a 291 

denser database confirmed previous results. 292 

  A more recent tomography in the region of the shallow Beni Ilmane earthquake of May 14, 293 

2010 of moderate magnitude (Md5.2) and its aftershock sequence mostly constrained the upper 294 

crustal (< 6 km) geological units and major geological structures (Abacha et al. 2014; Baldini 295 

1966).  296 

In general, aftershocks sequence tomographies from moderate to large earthquakes in slow 297 

deforming regions show no link between the distribution of seismicity and the 3D velocity pattern. 298 

The models tend to confirm the first order surface geology, in particular the major geological 299 

structures such as sedimentary basin regions (low velocities) and basement zones (high velocities). 300 

Major structural boundaries may be depicted at depth when the resolution is high enough, usually 301 

associated to the presence of deep seismic events (e.g. Zemmouri earthquake; Ayadi et al.  2008).  302 

 303 

6.2 3D velocity model in the Chenoua region 304 

 Near the surface and down to a few kilometers the contrasts correspond very well to the 305 

surface geology (Figures 4 and 5). The low velocities around 3 km/s are related to the Tertiary to 306 

Quaternary sediments of the Mitidja basin and surrounding piedmonts of the Tellian Atlas to the 307 

south. Low velocities are also seen north of the Chenoua massif related to coastal sediments 308 

although the resolution becomes weaker in the absence of stations to the north. As discussed above 309 

and observed on other tomography models, the seismicity recorded for the Chenoua sequence seems 310 

to be distributed randomly among fast and low velocity zones (Figures 4, 5A and 5B), which 311 

characterizes mostly slow deforming zones where earthquakes are of moderate size, have very large 312 

recurrence times, and not very large cumulative displacements. In this case, the seismic activity is 313 

not strong enough to modify significantly the rheological properties of the crust. The only structural 314 
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link observed is the seismicity alignment with the overall topography of the Chenoua massif and 315 

thus the surface geology. Active folding is uplifting the Chenoua massif with its Palaeozoic 316 

metamorphic core covered by Tertiary sediments above a NE-SW striking NW dipping thrust fault 317 

(Figures 1 and 2).  318 

Deeper, the present-day seismicity seems even more disconnected from the structures visible 319 

in the tomography (Figures 4C and 4D). An E-W striking low velocity zone is observed at 6 km, 320 

and even better at 9 km. Because there is no link with the present-day active deformation, the 321 

presence of an E-W striking low velocity zone has to be linked with inherited structures from 322 

former tectonic events. This sub-vertical E-W striking low velocity zone at the base of the upper 323 

crust is thus most certainly linked to the N-S convergence during the Miocene subduction of the 324 

Algerian margin. Whether this low velocity zone corresponds to subducted low-density upper 325 

crustal rocks or sediments, or to a fluid rich shear zone of the former subduction cannot be 326 

determined. Its position and geometry suggest it belongs to the structures emplaced during the 327 

Miocene suturing event (Figure 1B).  328 

 The structures evidenced by the local tomography, together with the present-day thrust 329 

geometry as evidenced by the aftershock sequences of the 1989 and 1990 events near Tipaza, thus 330 

depict the collision zone of the north Algerian coastal margin (Figure 1B). Two domains are 331 

outlined. The first domain to the north, with a complex structure of NE-SW oblique reactivated 332 

faults (Chenoua, Tipaza and Alger anticlines), north of a more simple and probably younger and 333 

shallower more linear fault (the Sahel anticline) (Figure 1D). These thrusts are south verging but 334 

remain north and do not cross-cut the domain boundary. The second domain comprises the Mitidja 335 

basin, which remains largely undeformed, but flexured by overthrusting of the Algerian margin. We 336 

thus suggest that the geometry of the main structures presently active along the coast near Algiers 337 

reflects the structuration of the margin during the Miocene collision. However, because present-day 338 

convergence is ongoing and oriented NW-SE (Figure 1, inset), obliquely to the more N-S oriented 339 

Miocene convergence (e.g. Benaouali et al. 2006), shortening extends at the front of the Algerian 340 

margin along SW-NE striking structures (Figure 1), such as the the Khair-al-Din thrust fault or the 341 

set of Boumerdès thrust faults more to the east (e.g. Yelles et al. 2009; Déverchère et al. 2005).  342 

 343 

7. Conclusion 344 

 Reconstructing the structuration of the lithosphere can help understanding the present-day 345 

pattern of deformation. Local seismic tomography gives the opportunity to illuminate structures 346 

down to the middle crust. In this study we show the presence of a major velocity anomaly down to a 347 

depth of 10 km probably linked to the Miocene subduction along the Algerian margin. This 348 

structure possibly associated to the suture of Eurasia and the African plate is presently the locus of 349 
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localized strain as depicted by recent large earthquakes such as the Chenoua Mw6 event of 1989 350 

and active folding in the Sahel ridge.  351 

 352 
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Figure captions 560 

Figure 1. A) Seismotectonic map of northern Algeria (modified from Yelles et al. 2009). Major 561 

earthquakes (Mw>5) are represented together with their focal mechanisms. Bathymetry from 562 

Domzig (2006). White line is position of section in Figure 1B. Inset is position of map in Eurasia-563 

Africa plate tectonic frame, vectors are relative motion between Eurasia and Africa from GPS 564 

geodesy (red arrows) and plate reconstructions Nuvel-1A (white arrows, Demets et al. 1994 ), after 565 

Serpelloni et al. (2007). PK: Petite Kabylie; C: Constantine; B: Beni Ilmane; AM: Algiers massif. 566 

Dashed purple line is position of Tertiary suture.  567 

B) Synthetic lithospheric scale sections perpendicular to main structures of the margin near 568 

Chenoua massif. Yellow star, inferred position of Chenoua 1989 earthquake hypocenter; black dots 569 

projection of aftershock clouds of Mw5.9 1989 and M5 1990 seismic sequences (see text for 570 

details). 571 

 572 

Figure 2. A) Aftershocks of the 29 October 1989 Mw5.9 Chenoua earthquake (circles) registered 573 

by 2 local networks between 7 and 18 November 1989 (Bounif et al. 2003) and of 9 February 1990 574 

Tipaza M5 earthquake (squares) (Sebaï 1997). Seismic station details in Bounif et al. (2003); B-C-575 

D-E) N135E sections across aftershock clouds from SW to NE (scale as in figure 2A).  576 

 577 

Figure 3. Positive and negative P wave residuals averaged at each station. At first order, shallow 578 

crustal low and fast velocity zones are depicted (see text).  579 

 580 

Figure 4. P wave model slices at depths of 0, 3, 6 and 9 km. White circles are seismicity of each 3 581 

km-thick slice. Line numbers (1 to 10) refer to N135 and NS sections of figures 5A and 5B, 582 

respectively. Seismic stations and coastline are indicated. 583 

 584 

Figure 5. A) and B) are N135 and NS sections, respectively, of the P wave model (see location in 585 

figure 5). Seismicity (red circles) in the vicinity of the sections as well as nearby seismic stations 586 

are also shown.  587 

 588 

Table 1. Characteristics of major instrumental earthquakes shown in Figure 1. 589 

 590 

Appendix 591 

A1. WAM grids 592 

A2. Resolution of the velocity model 593 

 594 
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Appendix 
 
A1. WAM grids 
 
 
 
 
 
 
 

 
  



 
A2. Resolution of the velocity model 
 
The figures show the Weighted Standard Deviation  (WSTD) calculated directly from the velocity 

distribution from the previous 12 inversions, selected to build a final WAMs model. The latter 

allows to evaluate the stability and reliability of the inversion (Calo et al., 2013). 

 
 
 
 
 
 
 

 
 



Table 1 Characteristics of major instrumental earthquakes of northern Algeria 

# Locality date longitude latitude depth str1 dip1 rake1 str2 dip2 rake2 Mw Mb Ms Reference

1 Orleansville 09.09.54 1.566 36.285 - 253 61 104 46 32 76 6.5 Espinoza & Lopez–Anoyo (1984)

2 Orleansville 10.09.54 1.241 36.617 - 44 90 -8 134 82 172 6.0 Dewey (1990)

3 El Asnam 10.10.80 1.36 36.25 14 225 54 83 57 36 80 7.1 6.5 7.3 Global CMT; Deschamps et al. (1982)

4 El Asnam 08.11.80 1.37 36.18 - 230 52 90 5.3 Ouyed et al 1981

5 Tenes 15.01.81 1.65 36.33 14.5 181 53 29 72 67 139 5.0 4.6 Global CMT/ISC

6 Oued Djar 31.10.88 2.73 36.35 - 103 55 167 201 79 36 5.4 Global CMT/ISC

7 Chenoua 29.10.89 2.43 36.62 10 246 56 86 71 34 94 5.9 5.8 6.0 Bounif et al. (2003)

8a Tipaza 09.02.90 2.42 36.73 10 49 18 95 225 72 88 5.0 4.7 CSEM/CMT

8 Tipaza 09.02.90 2.48 36.78 15 49 18 95 225 72 88 5.0 4.7 Global CMT/ISC

9 Alger 04.09.96 2.81 36.9 - 11 76 -4 102 86 -166 5.5 5.3 5.3 Global CMT/CRAAG

10 Zemmouri 21.05.03 3.65 36.85 10 57 44 71 262 49 107 6.8 6.9 Global CMT/CRAAG

11 Zemmouri 27.05.03 3.79 36.94 15 70 31 92 248 59 89 5.7 5.5 Global CMT

12 Zemmouri 29.05.03 3.55 36.84 15 14 59 5 282 86 149 5.1 4.6 Global CMT
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