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A three-dimensional Hybrid High-Order
method for magnetostatics

Florent Chave, Daniele A. Di Pietro, and Simon Lemaire

Abstract: We introduce a three-dimensional Hybrid High-Order method for mag-
netostatic problems. The proposed method is easy to implement, supports general
polyhedral meshes, and allows for arbitrary orders of approximation.
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1 Introduction

Let Ω ⊂ R3 denote an open, bounded and connected polyhedral domain, with
boundary ∂Ω and unit outward normal n. We assume that Ω is topologically triv-
ial, and that ∂Ω is connected. For any X ⊂ Ω , we denote by (·, ·)X and || · ||X the
usual inner product and norm on L2(X ,Rl), l ∈ {1,2,3}. The standard magnetostatic
problem consists in finding the magnetic field u : Ω → R3 such that

curlu = f in Ω , (1a)
divu = 0 in Ω , (1b)

n×u×n = 0 on ∂Ω , (1c)

where H(div;Ω) 3 f : Ω →R3 denotes the current density and is such that div f = 0
in Ω and f·n= 0 on ∂Ω . We supplement Problem (1) with another unknown, namely
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the potential p : Ω → R, that satisfies p = 0 in Ω . From now on, Problem (1) refers
to this augmented problem with unknowns (u, p). The starting point of our dis-
cretization is the following equivalent weak formulation of Problem (1), originally
introduced in [8, Eq. (58)]: Find (u, p) ∈ X0×Y0 such that

a(u,v)+b(v, p) = (f,curlv)Ω ∀v ∈ X0, (2a)
−b(u,q)+ c(p,q) = 0 ∀q ∈ Y0, (2b)

where

X0 := {v ∈H(curl;Ω) : n×v×n = 0 on ∂Ω}, Y0 := H1
0 (Ω),

and the bilinear forms a : H(curl;Ω)×H(curl;Ω)→R, b : H(curl;Ω)×H1(Ω)→
R, and c : H1(Ω)×H1(Ω)→ R are given by

a(w,v) := (curlw,curlv)Ω , b(w,q) := (w,∇q)Ω , c(r,q) := (r,q)Ω . (3)

Testing (2a) with v = ∇ p ∈ X0, it is inferred that p = 0 in Ω . The well-posedness
of Problem (2) is then a consequence of the coercivity of a on the subspace of
X0 given by {w ∈ X0 : b(w,q) = 0 ∀q ∈ Y0}= {w ∈ X0 : divw = 0} which, in
turn, follows from the first Weber inequality (see, e.g., [1, Theorem 3.4.3]).

Various discretization methods have been studied in the literature to approximate
the Maxwell equations. We can, in particular, cite the seminal work of [9] on simpli-
cial elements. On more general element shapes, one can mention the Discontinuous
Galerkin method of [11], the Hybridizable Discontinuous Galerkin (HDG) methods
of [10] and [3], or the Virtual Element method of [12].

In this paper, we devise an easy-to-implement Hybrid High-Order (HHO) method
to solve Problem (1). HHO methods have been originally introduced in [7, 6]. Their
connections with HDG methods have been later discussed in [4] in the context of
scalar variable diffusion problems. The method we introduce here shares some sim-
ilarities with the HDG method of [3]. It indeed hinges, as in [3], on face unknowns
for the magnetic field belonging to a subtle subspace of Pk+1(F ;R2). However,
there are two main differences between our method and the one in [3]. First, taking
advantage of the fact that Problem (1) is actually first-order, we do not (locally) re-
construct a discrete curl operator. We hence (i) can consider a smaller local set of
face unknowns, and (ii) we do not have to solve a local problem on each mesh cell
(which may become, for a sequential implementation, rather costly in 3D, especially
for large polynomial degrees). Second, and as opposed to [3] in which the bilinear
form c is not introduced (therein, p may be nonzero and the authors are also inter-
ested in its approximation, which is not our case), we consider the formulation (2) of
Problem (1). At the discrete level, it enables to improve the stability of the method
without jeopardizing the approximation of u.

The rest of the paper is organized as follows. In Section 2 we describe the dis-
crete setting and our HHO discretization. In Section 3 we state the discrete problem
and discuss its well-posedness. Finally, in Section 4, we numerically validate the
proposed method.
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2 Hybrid High-Order discretization

2.1 Discrete setting

We consider sequences of refined meshes that are admissible in the sense of [5, Def-
inition 1.9]. Each mesh Th in the sequence is a finite collection {T} of nonempty,
disjoint, open polyhedra that are assumed to be star-shaped with respect to some
interior point. There holds Ω =

⋃
T∈Th

T with h = maxT∈Th hT , where hT denotes
the diameter of the cell T . For all T ∈ Th, the boundary of T is decomposed into
planar faces collected in the set FT . For admissible mesh sequences, card(FT ) is
bounded uniformly in h. Interfaces are collected in the set F i

h, boundary faces in the
set F b

h , and we define Fh :=F i
h∪F b

h . For all T ∈Th and all F ∈FT , the diameter
of F is denoted hF and the unit normal to F pointing outward T is denoted nT F . For
admissible mesh sequences, hF is uniformly comparable to hT .

2.2 Discrete unknowns

Let an arbitrary polynomial degree k≥ 0 be given. For X ∈ {F,T} and, respectively,
d ∈ {2,3}, and for l ∈ {1,2,3}, we denote by Pk(X ,Rl) the vector space of d-
variate, l-valued polynomial functions on X of total degree at most k. When l = 1,
we simply write Pk(X). The global sets of discrete unknowns for the magnetic field
and the potential are given by

Xk+1
h :=

{
vh =

(
(vT )T∈Th ,(vF)F∈Fh

)
:

vT ∈ Pk+1(T ;R3) ∀T ∈Th
vF ∈ ∇τ Pk+2(F) ∀F ∈Fh

}
,

Yk+1
h :=

{
q

h
=
(
(qT )T∈Th ,(qF)F∈Fh

)
:

qT ∈ Pk(T ) ∀T ∈Th
qF ∈ Pk+1(F) ∀F ∈Fh

}
,

where, for all F ∈ Fh, ∇τ Pk+2(F) denotes the space of (tangential) gradients of
polynomials of degree k+2 on F . For all vh ∈Xk+1

h , vh (not underlined) denotes the
function in the broken space Pk+1(Th;R3) such that vh|T := vT for all T ∈Th.

Remark 1. In [3], the authors consider face unknowns vF in the larger space

Pk(F ;R2)⊕∇τ P̃k+2(F),

where P̃k+2(F) is the space of homogeneous polynomials of degree k+2 on F .

We define the interpolators Ik+1
X,h : H1(Ω ;R3)→ Xk+1

h and Ik+1
Y,h : H1(Ω)→ Yk+1

h
such that, for any v ∈ H1(Ω ;R3) and q ∈ H1(Ω),
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Ik+1
X,h v :=

((
π

k+1
T (v|T )

)
T∈Th

,
(
π

k+1,∇
F γτ(v|F)

)
F∈Fh

)
, (4a)

Ik+1
Y,h q :=

((
π

k
T (q|T )

)
T∈Th

,
(
π

k+1
F (q|F)

)
F∈Fh

)
, (4b)

where (i) γτ(v|F) ∈ L2(F ;R2) denotes the tangential trace of v ∈ H1(Ω ;R3) on F ,
(ii) for X ∈ {F,T} and q∈N, π

q
X denotes, for l ∈ {1,2,3}, the L2(X ;Rl)-orthogonal

projector onto Pq(X ;Rl), and (iii) π
k+1,∇
F denotes the L2(F ;R2)-orthogonal projec-

tor onto ∇τ Pk+2(F). In what follows, we denote by π
q
h the global L2-orthogonal

projector such that, for all T ∈Th, π
q
h|T := π

q
T .

We finally introduce the following global sets of discrete unknowns, that enforce
the zero Dirichlet boundary conditions:

Xk+1
h,0 :=

{
vh ∈ Xk+1

h : vF ≡ 0 ∀F ∈F b
h

}
,

Yk+1
h,0 :=

{
q

h
∈ Yk+1

h : qF ≡ 0 ∀F ∈F b
h

}
.

2.3 Discrete bilinear forms

The discrete counterpart of the bilinear form a defined in (3) is the bilinear form
ah : Xk+1

h ×Xk+1
h → R given by

ah(wh,vh) := (curlh wh,curlh vh)Ω + sh(wh,vh), (5)

where curlh denotes the broken curl operator on Th and sh : Xk+1
h ×Xk+1

h → R is
the stabilization bilinear form such that

sh(wh,vh) := ∑
T∈Th

∑
F∈FT

h−1
F
(
π

k+1,∇
F (wF − γτ(wT |F)),π

k+1,∇
F (vF − γτ(vT |F))

)
F .

On the other hand, the discrete coupling bilinear form bh : Xk+1
h ×Yk+1

h → R is
given by

bh(wh,qh
) := ∑

T∈Th

(
−(qT ,divwT )T + ∑

F∈FT

(
qF ,wT |F ·nT F

)
F

)
. (6)

From the definitions (6) and (4b) of, respectively, bh and Ik+1
Y,h , one can easily prove

the following commutation property: For any q ∈ H1(Ω),

bh(wh, I
k+1
Y,h q) = (wh,∇q)Ω for all wh ∈ Xk+1

h . (7)

Finally, the discrete counterpart of the bilinear form c is the bilinear form ch :
Yk+1

h ×Yk+1
h → R given by



A 3D HHO method for magnetostatics 5

ch(rh,qh
) := ∑

T∈Th

(
(rT ,qT )T + ∑

F∈FT

hF(rF ,qF)F

)
.

One can easily see that ch(·, ·)1/2 defines a norm on Yk+1
h .

3 Discrete problem

Our HHO discretization of Problem (2) reads: Find (uh,ph
) ∈ Xk+1

h,0 ×Yk+1
h,0 such

that
ah(uh,vh)+bh(vh,ph

) = (f,curlh vh)Ω ∀vh ∈ Xk+1
h,0 , (8a)

−bh(uh,qh
)+ ch(ph

,q
h
) = 0 ∀q

h
∈ Yk+1

h,0 . (8b)

Some remarks are in order.

Remark 2 (Well-posedness). At the discrete level, p
h

is a priori nonzero. The well-
posedness of Problem (8) hinges on the following discrete Weber inequality, whose
proof will be given in the forthcoming article [2]: For all (wh, rh) ∈ Xk+1

h,0 ×Yk+1
h,0

such that
−bh(wh,qh

)+ ch(rh,qh
) = 0 ∀q

h
∈ Yk+1

h,0 , (9)

it holds
‖wh‖2

Ω . ah(wh,wh)+ ch(rh, rh). (10)

Note that the commutation property (7) is instrumental to prove (10). Remark, as
well, that the discrete solution (uh,ph

) to Problem (8) satisfies (9). The inequal-
ity (10) implies that |(wh, rh)|2e,h := ah(wh,wh) + ch(rh, rh) defines a norm on the
subspace of Xk+1

h,0 ×Yk+1
h,0 given by (9). As a consequence, the bilinear form of Prob-

lem (8), that is

Ah
(
(wh, rh),(vh,qh

)
)

:= ah(wh,vh)+bh(vh, rh)−bh(wh,qh
)+ ch(rh,qh

),

is coercive on the latter subspace. This is not true if ch is only a semi-norm on Yk+1
h,0 ,

as is the case in [3].

Remark 3 (Algebraic aspects). We point out that all the element unknowns can be
locally eliminated, resulting in a global system written in terms of face unknowns
only. In Table 1 we collect the dimensions, for several values of k, of the local sets
of face unknowns for both the potential and the magnetic field, and we provide a
comparison with [3].

Remark 4 (Convergence rates). For smooth enough solutions, the error in discrete
energy-norm |·|e,h is expected to be of order k+1, whereas an order k+2 is expected
for the L2-error on the magnetic field. Details will be given in [2]. Recall that we are
not interested here in the approximaton of p = 0, but only in that of u.
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k dim
[
Pk+1(F)

]
dim

[
∇τ Pk+2(F)

]
dim

[
Pk+1(F)

]
dim

[
Pk(F ;R2)⊕∇τ P̃k+2(F)

]
0 3 5 3 5
1 6 9 6 10
2 10 14 10 17
3 15 20 15 26

Table 1 Dimensions of the local sets of face unknowns for the potential (first column) and the
magnetic field (second column), for both our method (left) and the one of [3] (right).

4 Numerical experiments

We let Ω be the unit cube, and we consider the following smooth solution:

u(x1,x2,x3) :=

 sin(πx2)sin(πx3)
sin(πx1)sin(πx3)
sin(πx1)sin(πx2)

 . (11)

One can easily verify that u defined by (11) satisfies (1b) and the boundary condi-
tion (1c). The expression of the source term f is inferred from (1a). The numerical
experiments are performed on two mesh families, a cubic one and a regular tetra-
hedral one, as shown on Figure 1. Element unknowns are locally eliminated, and
the resulting (condensed) global linear system is solved using the SparseLU direct
solver of the Eigen library, on an Intel Xeon E5-2680 v4 2.4 GHz with 128 Go of
RAM. We display on Figures 2 and 3 the relative errors as functions of, respec-

(a) Cubic (b) Regular tetrahedral

Fig. 1 Mesh families for the numerical tests.

tively, the meshsize, the solution time in seconds, i.e. the time needed to solve the
(condensed) global linear system, and the number of (interface) degrees of free-
dom (DoF). For both mesh families, the observed convergence orders are, as ex-
pected, (i) k + 1 for the error ah(uh− Ik+1

X,h u,uh− Ik+1
X,h u)1/2, and (ii) k + 2 for the

error ‖uh−π
k+1
h u‖Ω . Figures 2 and 3 also clearly exemplify the fact that, whenever

the solution is smooth enough (at least locally), if one wants to increase the ac-
curacy, then raising the polynomial degree is computationally much more efficient
than refining the mesh.



A 3D HHO method for magnetostatics 7

a h
(u

h
−

Ik+
1

X
,h

u,
u h
−

Ik+
1

X
,h

u)
1 /

2

10−1.2 10−1 10−0.8 10−0.6 10−0.4
10−3

10−2

10−1

100

1

1

1

2

1

3

10−4 10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

k = 0 k = 1 k = 2

102 103 104 105
10−3

10−2

10−1

100

1

1/3

1

2/3

1

1

‖u
h
−

π
k+

1
h

u‖
Ω

10−1.2 10−1 10−0.8 10−0.6 10−0.4

10−4

10−3

10−2

10−1

1

2

1

3

1

4

10−4 10−3 10−2 10−1 100 101 102 103

10−4

10−3

10−2

10−1

102 103 104 105

10−4

10−3

10−2

10−1

1

2/3

1

1

1

4/3

Meshsize Solution time (s) Number of DoF

Fig. 2 Errors vs. h (left column), solution time (middle column), and number of DoF (right col-
umn) on cubic meshes.
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Fig. 3 Errors vs. h (left column), solution time (middle column), and number of DoF (right col-
umn) on regular tetrahedral meshes.
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