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Abstract

Purpose The aim of this work is to quantify the relative importance of the multiphase

model for the simulation of a gas bubble impacted by a normal shock wave in water. Both

the free-field case and the collapse near a wall are investigated. Simulations are performed

on both two-dimensional and three-dimensional configurations. The main phenomena in-

volved in the bubble collapse are illustrated. A focus on the maximum pressure reached

during the collapse is proposed.

Design/methodology/approach Simulations are performed using an inviscid com-

pressible homogeneous solver based on different systems of equations. It consists in solving

different mixture or phasic conservation laws and a transport-equation for the gas volume

fraction. Three-dimensional configurations are considered for which an efficient massively

parallel strategy was developped. The code is based on a Finite Volume discretization for

which numerical fluxes are computed with a HLLC scheme.

Findings The comparison of three multiphase models is proposed. It is shown that a sim-

ple four-equation model is well-suited to simulate such strong shock-bubble interaction.

The three-dimensional collapse near a wall is investigated. It is shown that the intensity

of pressure peaks on the wall is drastically increased (more than 200%) in comparison

with the cylindrical case.

Originality Such a comparison of multiphase models in the case of a strong shock-induced

bubble collapse is clearly original. Usually models are tested separately leading to a large

dispersion of results. Moreover, simulations of a three-dimensional bubble collapse are

scarce in the literature using such fine grids.

Keywords multiphase models; bubble collapse; 3-D simulation; shock waves
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1 Introduction

Cavitation erosion is a major problem for hydraulic and marine applications. This phe-

nomenon occurs when vapor bubbles collapse in the vicinity of solid walls leading to

negative consequences, such as vibrations, material damages and performance loss. On

the other hand, the destructive effects of cavitation can be exploited in medical appli-

cation such as shock wave lithotripsy (Jamaluddin et al., 2011). To clarify the physical

mechanism, numerous experimental and numerical studies of the collapse of cavity in wa-

ter have been proposed (Plesset and Chapman, 1971, Haas and Sturtevant, 1987, Bourne,

2002, Turangan et al., 2008, Johnsen and Colonius, 2009, Hawker and Ventikos, 2012,

Ozlem et al., 2012). The bubble collapse close to the wall has been addressed as the

fundamental mechanism producing damage. Its general behavior is characterized by the

formation of a water jet that penetrates through the bubble and the generation of a blast

wave during the induced collapse. Both the jet and the blast wave are possible dam-

aging mechanisms. However, the high-speed dynamics, the small spatio-temporal scales

as well as the complicated physics involved in these processes make any theoretical and

experimental approach a challenge.

There are two typical frameworks for numerically simulating high-speed two-phase

flows regarding how they treat the two-phase interface: the interface-tracking method

or sharp interface methods and interface-capturing method or diffuse interface methods.

Both approaches present advantages and drawbacks. With interface-tracking methods,

the location of the interfaces, treated as sharp discontinuities, is explicitly represented

during the time evolution (Ball et al., 2000, Hu et al., 2006, Nourgaliev et al., 2006,

Terashima and Tryggvason, 2009, Lauer et al., 2012). On the other hand, diffuse in-

terface methods are based on the solution of conservation laws (continuity, momentum,

and energy equations), while relaxing the sharp character of material interfaces and thus

allowing them to numerically diffuse over a small but finite region (Allaire et al., 2002,

Shyue, 2006, Johnsen and Colonius, 2009, Coralic and Colonius, 2013, Apazidis, 2016).

The computation of compressible multifluid flows lead to several difficulties due to non-
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physical oscillations generated at material interfaces when conservative schemes are used

(Abgrall, 1996). The volume fraction variation across acoustic waves causes difficulties

for the Riemann problem resolution particularly in the derivation of approximate Rie-

mann solvers. This is due to the occurrence of the large discontinuities of thermodynamic

variables and equations of state involved at material interfaces. In addition to that, the

non-monotonic behavior of the sound speed in the mixture causes inaccuracies in wave’s

transmission across interfaces.

Assuming all fluid components are described by a single velocity and a single pressure

function, the flow can be described by the compressible Euler equations and its thermo-

dynamics properties given by an equation of state (EOS). In order to identify each fluid,

a variable φ is used. Various choices of φ have been suggested in the literature, depending

on the model assumptions : the heat capacities ratio γ (Abgrall, 1996, Abgrall et al., 2003,

Janan and Marjani, 2007), the mass fraction of gas (Shyue, 1998, Terashima et al., 2013)

or the level-set function (Nourgaliev et al., 2006, Lauer et al., 2012). For these models,

some single-fluid algorithms and quasi-conservative or non-conservative approaches were

suggested to preserve the oscillation-free property. Recently, a non-oscillatory energy-

splitting conservative algorithm has been proposed to circumvent the appearance of os-

cillations around material interfaces (Lei and Li, 2018).

Recent developments in computing for compressible multiphase flows originated from the

seven-equation two-phase flow model (Baer and Nunziato, 1986). The two-fluid approach

is the most complete and each phase is governed by its own set of conservation laws. The

additional volume fraction equation prevents the occurrence of spurious pressure oscilla-

tions (Utkin, 2019). For many problems of practical importance, a reduced five-equation

model has been derived with the assumptions of velocity and pressure equilibrium be-

tween phases (Kapila et al., 2001, Murrone and Guillard, 2005, Daude et al., 2014) and

applied with success in various flows. By assuming the thermal equilibrium between

phases, a four-equation model can be expressed. It is composed of three conservation

laws for mixture quantities completed by an equation for a non-conservative quantity

describing the flow topology, usually the void ratio (Kunz et al., 2000, Goncalves and
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Charriere, 2014, Goncalves and Zeidan, 2017) or the mass fraction of one phase (Saurel

et al., 2016). With the assumption of complete thermodynamic equilibrium between

phases (local temperature, pressure, and free Gibbs enthalpy equality between phases),

the three-equation models or Homogeneous Equilibrium Models (HEM) are derived (Xie

et al., 2006, Goncalves and Patella, 2009, Bilanceri et al., 2010).

The present work focuses on the comparison of three one-fluid compressible models

to simulate the collapse of a gas bubble impacted by a shock wave in water. This study

is motivated by the large dispersion of results in the literature and the need to quantify

the relative importance of the model. The considered approaches are: i) a five-equation

model similar to the Kapila formulation (Kapila et al., 2001), ii) a four-equation model

(Goncalves and Charriere, 2014, Goncalves and Zeidan, 2018) used for different two-phase

applications involving cavitation, and iii) a multicomponent formulation (also called γ-

model) based on the works of Johnsen (Beig and Johnsen, 2015). The same numerical

methods are used for the spatial and time integration. We consider the case investigated

experimentally by Bourne and Field (Bourne and Field, 1992) and numerically by Ball

et al. (Ball et al., 2000). This case was computed by a large number of authors (Hu et

al., 2006, Nourgaliev et al., 2006, Terashima and Tryggvason, 2009, Lauer et al., 2012,

Hawker and Ventikos, 2012). Firstly, the free-field collapse is investigated with particu-

lar consideration on the maximum pressure reaching during the process. Secondly, the

collapse near a rigid wall is computed and the evolution of the wall pressure is analysed.

Both two- and three-dimensional simulations are performed. As commented by different

authors (Hawker and Ventikos, 2012), the collapse process of a spherical bubble is faster

and more intense in comparison with the 2D cylindrical case. In the present study, we

show that the maximum pressure peak monitored at the wall is extremely higher for the

spherical collapse, suggesting stresses and potential damage on the material.

The paper is organized as follows. In section 2, we first review the theoretical for-

mulation and models. The description of numerical methods is presented in section 3.
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Preliminary results are proposed in section 4 to attest the ability of the numerical tool to

predict a shock-bubble interaction by comparison with experimental data. Then, results

are proposed in the two following sections for a gas bubble impacted by a shock wave

in water. The free-field case is studied in section 5 and the collapse near a rigid wall is

investigated in section 6. Finally, conclusions and future works are discussed.

2 Governing equations and models

The numerical simulations are carried out using an in-house, two-phase code solving

various one-fluid compressible inviscid systems. The phases are assumed to be sufficiently

well mixed and the sizes of the dispersed particle are sufficiently small, thereby eliminating

any significant relative motion. The phases are strongly coupled and move at the same

velocity. In addition, the phases are assumed to be in mechanical equilibrium: they share

the same pressure P . In case of assumption of thermal equilibrium, the phases share the

same temperature T . We introduce α and Y the void fraction and mass fraction of gas,

respectively.

2.1 The pure phases EOS

In the present study, we used the convex stiffened gas EOS for the pure phases (see

Metayer et al. (2004)):

P (ρ, e) = (γ − 1)ρ(e− q)− γP∞ (1)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (2)

T (ρ, h) =
h− q

Cp

(3)

where e is the internal energy, h the enthalpy, γ = Cp/Cv is the heat capacity ratio, Cp

and Cv are thermal capacities, q the energy of the fluid at a given reference state and P∞

is a constant reference pressure. The speed of sound c is given by:

c2 = γ
P + P∞

ρ
= (γ − 1)(h− q) (4)
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2.2 A five-equation model

We consider the 2-temperature model proposed by Kapila et al. (Kapila et al., 2001,

Murrone and Guillard, 2005) and used by various authors (Saurel et al., 2008, Daude et

al., 2014). The model consists in mixture balance laws for momentum and energy, balance

laws for mass of each pure phase and an additional equation for the void ratio. Viscosity,

surface tension, and phase change are not expected to affect the bubble dynamics over

the major part of the collapse and are therefore ignored. We present below the inviscid

equations, expressed in variables ((1− α)ρl, αρv, ρ~V , ρE, α):

∂((1− α)ρl)

∂t
+ div((1− α)ρl~V ) = 0 (5)

∂(αρv)

∂t
+ div(αρv~V ) = 0 (6)

∂(ρ~V )

∂t
+ div(ρ~V ⊗ ~V + PId) = 0 (7)

∂(ρE)

∂t
+ div(ρ~V H) = 0 (8)

∂α

∂t
+ ~V .grad(α) =

(

ρlc
2

l − ρvc
2

v

ρlc
2

l

1−α
+ ρvc2v

α

)

︸ ︷︷ ︸

=K

div(~V ) (9)

where ~V = (u, v) is the center of mass velocity vector, E = e + V 2/2 denotes the total

energy and H = h+ V 2/2 the total enthalpy. Subscripts ’l’ and ’v’ for liquid and vapor,

respectively. The term K involves the speed of sound of pure phases ck and it reflects the

effects of changes in volume of each phase.

On the basis of the stiffened gas EOS for each pure phase, an expression for the pressure

can be deduced from the mechanical equilibrium assumption (Saurel et al., 2008). This

expression is available in all possible fluid states, as a function of the void fraction α and
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the vapour mass fraction Y :

P (ρ, e, α, Y ) = (γ(α)− 1)ρ(e− q(Y ))− γ(α)P∞(α) (10)

1

γ(α)− 1
=

α

γv − 1
+

1− α

γl − 1
(11)

q(Y ) = Y qv + (1− Y )ql (12)

P∞(α) =
γ(α)− 1

γ(α)

[

α
γv

γv − 1
P v
∞ + (1− α)

γl
γl − 1

P l
∞

]

(13)

Temperature of both phases Tl and Tv follows the stiffened gas EOS.

Without heat and mass transfer, the mixture speed of sound obeys the Wallis or

Wood formulation (Wallis, 1967). This speed is expressed as a weighted harmonic mean

of speeds of sound of each phase:

1

ρc2wallis

=
α

ρvc2v
+

1− α

ρlc
2

l

(14)

The five equations form a system having a hyperbolic nature. The eigenvalues of the

1-D system are:

λ1 = u− cwallis, λ2,3,4 = u and λ5 = u+ cwallis.

2.3 A four-equation model

We modify the previous model assuming the thermal equilibrium between phases and

that the liquid is at its saturation state. The model consists in three conservation laws

for mixture quantities (mass, momentum and total energy) and the additional equation

for the void fraction (Goncalves, 2013, Goncalves and Charriere, 2014):

∂ρ

∂t
+ div(ρ~V ) = 0 (15)

∂(ρ~V )

∂t
+ div(ρ~V ⊗ ~V + PId) = 0 (16)

∂(ρE)

∂t
+ div(ρ~V H) = 0 (17)

∂α

∂t
+ ~V .grad(α) = Kdiv(~V ) (18)
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The mixture pressure follows equations (10)-(13). An expression for the mixture tem-

perature can be deduced from the thermal equilibrium assumption:

T (ρ, h, Y ) =
hl − ql
Cpl

=
hv − qv
Cpv

=
h− q(Y )

Cp(Y )
(19)

q(Y ) = Y qv + (1− Y )ql (20)

Cp(Y ) = Y Cpv + (1− Y )Cpl (21)

The eigenvalues of the matrix of the system can be easily computed. The system is

hyperbolic, eigenvalues for 1-D are:

λ1 = u− cwallis, λ2,3 = u and λ4 = u+ cwallis.

2.4 A multicomponent model

Different expressions have been proposed for the simulations of compressible multicompo-

nent two-phase flows (Abgrall, 1996, Shyue, 1998, Abgrall and Karni, 2001, Johnsen and

Colonius, 2009, Terashima et al., 2013). We consider here a variant of the formulation

developed to prevent temperature errors (Beig and Johnsen, 2015). The Euler equations

for multicomponent gases are written as

∂ρ

∂t
+ div(~V ) = 0 (22)

∂(ρ~V )

∂t
+ div(ρ~V ⊗ ~V + PId) = 0 (23)

∂(ρE)

∂t
+ div(ρ~V H) = 0 (24)

∂(αρv)

∂t
+ div(αρv~V ) = 0 (25)

The pressure and the temperature are related to the other variables by the equation

of state. For simplicity reasons, we rewrite the stiffened gas EOS as:

ρ(e− q) =
P

γ − 1
+

γP∞

γ − 1
(26)

= ρCvT + P∞ (27)

For multiphase flows, a one-fluid formulation is followed, in which the same thermody-

namic relationship holds in the entire domain. Material interfaces are denoted by changes
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in the material properties, which are advected by the flow.

Transport equations for specific functions of the material properties entering the equa-

tion of state must be solved. It has been shown for an isolated interface advection problem

that, to maintain pressure and temperature equilibria in time and space, the transport

equations for 1/(γ − 1), γP∞/(γ − 1) and P∞ must be solved in non-conservative form

and that for q and Cv in conservative form (Beig and Johnsen, 2015). Pressure and tem-

perature must be computed from these specific quantities in equations (26) and (27).

The complete system is therefore composed by 9 equations:

∂ρ

∂t
+ div(~V ) = 0 (28)

∂(ρ~V )

∂t
+ div(ρ~V ⊗ ~V + PId) = 0 (29)

∂(ρE)

∂t
+ div(ρ~V H) = 0 (30)

∂(αρv)

∂t
+ div(αρv~V ) = 0 (31)

∂ [1/(γ − 1)]

∂t
+ ~V .grad(1/(γ − 1)) = 0 (32)

∂ [γP∞/(γ − 1)]

∂t
+ ~V .grad(γP∞/(γ − 1)) = 0 (33)

∂P∞

∂t
+ ~V .grad(P∞) = 0 (34)

∂(ρq)

∂t
+ div(ρ~V q) = 0 (35)

∂(ρCv)

∂t
+ div(ρ~V Cv) = 0 (36)

The system is hyperbolic. In the 1-D case, the eigenvalues are:

λ1 = u− c, λ2,3,4,5,6,7,8 = u and λ9 = u+ c.

where the sound speed is defined by relation (4).

3 Numerics

The numerical simulations are carried out using an explicit solver for structured meshes.

This solver is based on a cell-centered finite-volume discretisation (Goncalves and Zeidan,
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2018).

3.1 Space discretisation

In two-dimensional space, the different systems can be represented in a matrix form as:

∂U

∂t
+ div [G(U)] +B(U) div~V = 0 (37)

• For the four-equation model, we have

U =











ρ

ρ~V

ρE

α











; G(U) =











ρ~V

ρ~V ⊗ ~V + PId

ρH~V

α~V











; B(U) =











0

~0

0

−(K + α)











• For the five-equation model

U =














(1− α)ρl

αρv

ρ~V

ρE

α














G(U) =














(1− α)ρl~V

αρv~V

ρ~V ⊗ ~V + PId

ρH~V

α~V














B(U) =














0

0

~0

0

−(K + α)














• For the multicomponent nine-equation model
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U =


























ρ

ρ~V

ρE

α

1/(γ − 1)

γP∞/(γ − 1)

P∞

ρq

ρCv


























G(U) =


























ρ~V

ρ~V ⊗ ~V + PId

ρH~V

α~V

~V /(γ − 1)

γP∞
~V /(γ − 1)

P∞
~V

ρq~V

ρCv
~V


























B(U) =


























0

~0

0

−α

−1/(γ − 1)

−γP∞/(γ − 1)

−P∞

0

0


























We focus herein on finite volume schemes. Regular meshes are considered. Integrating

the system on the cell Ci gives

Ωi
∂Ui

∂t
+
∑

ℓ∈∂Ci

∫

ℓ

G(U) · ~ni,ℓ dℓ+

∫

Ci

B(U) div~V dS = 0 (38)

where ∂Ci is the boundary of the cell, Ωi the surface of the cell and ~ni,ℓ is the outward

normal (with respect to cell Ci) of cell interface ℓ.

The numerical flux through the cell interface is computed with a HLLC scheme (Toro

et al., 1994, Batten et al., 1997). The method considers two averaged intermediate states

U∗
L et U∗

R separated by the contact wave of speed SM . The numerical flux Φi,ℓ at cell

interface ℓ can be expressed as:

Φi,ℓ(UL, UR) =







G(UL)~ni,ℓ if SL > 0

G(U∗
L)~ni,ℓ if SL ≤ 0 < SM

G(U∗
R)~ni,ℓ if SM ≤ 0 ≤ SR

G(UR)~ni,ℓ if SR < 0

where SL and SR are referred to the speeds of the smallest and largest waves at the cell

interface.
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We introduce the normal velocity component Vn = ~V .~n. The left (K = L) and right

(K = R) states of the variables U∗
K , and corresponding fluxes G(U∗

K), are defined by the

following relations:

• For the four-equation model

U∗

K =














ρ∗K

(ρu)∗K

(ρv)∗K

(ρE)∗K

α∗
K














=
1

SK − SM














ρK(SK − VnK
)

(ρu)K(SK − VnK
) + (P ∗ − PK)ni,ℓ

(ρu)K(SK − VnK
) + (P ∗ − PK)ni,ℓ

(ρE)K(SK − VnK
) + P ∗SM − PKVnK

αK(SK − VnK
)














G(U∗

K)~ni,l =














ρ∗KSM

(ρu)∗KSM + P ∗ni,ℓ

(ρv)∗KSM + P ∗ni,ℓ

(ρE)∗KSM + P ∗SM

α∗
KSM














• For the five-equation model

U∗

K =

















[(1− α)ρl]
∗

K

[αρv]
∗

K

(ρu)∗K

(ρv)∗K

(ρE)∗K

α∗
K

















=
1

SK − SM

















(1− α)ρlK(SK − VnK
)

αρvK(SK − VnK
)

(ρu)K(SK − VnK
) + (P ∗ − PK)ni,ℓ

(ρu)K(SK − VnK
) + (P ∗ − PK)ni,ℓ

(ρE)K(SK − VnK
) + P ∗SM − PKVnK

αK(SK − VnK
)
















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G(U∗

K)~ni,l =

















[(1− α)ρl]
∗

K SM

[αρv]
∗

K SM

(ρu)∗KSM + P ∗ni,ℓ

(ρv)∗KSM + P ∗ni,ℓ

(ρE)∗KSM + P ∗SM

α∗
KSM

















• For the multicomponent model

U∗

K =





























ρ∗K

(ρu)∗K

(ρv)∗K

(ρE)∗K

α∗
K

[1/(γ − 1)]∗K

[γP∞/(γ − 1)]∗K

(P∞)∗K

(ρq)∗K

(ρCv)
∗
K





























=
1

SK − SM





























ρK(SK − VnK
)

(ρu)K(SK − VnK
) + (P ∗ − PK)ni,ℓ

(ρu)K(SK − VnK
) + (P ∗ − PK)ni,ℓ

(ρE)K(SK − VnK
) + P ∗SM − PKVnK

αK(SK − VnK
)

[1/(γ − 1)]K (SK − VnK
)

[γP∞/(γ − 1)]K (SK − VnK
)

P∞K(SK − VnK
)

(ρq)K(SK − VnK
)

(ρCv)K(SK − VnK
)





























G(U∗

K)~ni,l =





























ρ∗KSM

(ρu)∗KSM + P ∗ni,ℓ

(ρv)∗KSM + P ∗ni,ℓ

(ρE)∗KSM + P ∗SM

α∗
KSM

[1/(γ − 1)]∗K SM

[γP∞/(γ − 1)]∗K SM

(P∞)∗KSM

(ρq)∗KSM

(ρCv)
∗
KSM




























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where the pressure P ∗ is given by:

P ∗ = PL + ρL(VnL
− SL)(VnL

− SM) = PR + ρR(VnR
− SR)(VnR

− SM) (39)

And the contact-wave speed SM is defined by:

SM =
PR − PL + ρLVnL

(SL − VnL
)− ρRVnR

(SR − VnR
)

ρL(SL − VnL
)− ρR(SR − VnR

)
(40)

The HLLC solver requires the estimates of wave speeds SL and SR in the Riemann

problem. A direct and simple wave speed estimation is used:

SL = Min (VnL
− cL, VnR

− cR) ; SR = Max (VnL
+ cL, VnR

+ cR) (41)

For the non-conservative term, the integral term is approximated with the following

relation:
∫

Ci

B(U) div~V dS = B̃i

∑

ℓ∈∂Ci

∫

∂Ci

~V · ~ni,ℓ dℓ (42)

where B̃i is some average of B on cell Ci. In this work, we have used B̃i = B(Ui).

The cell interface value ui,ℓ is expressed as:

ui,ℓ(UL, UR) =







~VL.~ni,ℓ if SL > 0

SL−VnL

SL−SM

SM if SL ≤ 0 < SM

SR−Vn
R

SR−SM

SM if SM ≤ 0 ≤ SR

~VR.~ni,ℓ if SR < 0

The second-order accuracy in space is obtained using the MUSCL extrapolation. The

minmod slope limiter has been chosen for all simulations. The temporal integration is

performed using a three-step Runge-Kutta method.

3.2 Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of the character-

istic relations of the Euler equations. The number of variables to impose at boundaries is

13



given by the number of positive characteristics directed into the domain of interest. The

characteristic relations obtained for the five-equation system, in two-dimensional flows,

are:

−c2(ρc − ρs) + (P c − P s) = 0 (43)

V c
t − V s

t = 0 (44)

ρ(αc − αs)−K(ρc − ρs) = 0 (45)

(Y c − Y s) = 0 (46)

(P c − P s) + ρc(V c
n − V s

n ) = 0 (47)

(P c − P s)− ρc(V c
n − V s

n ) = 0 (48)

The variables with superscript c denote the variables to be computed at the bound-

ary. Variables with superscript s denote the variables obtained by the current numerical

scheme. Vt and Vn are the tangential and the normal component of the velocity, respec-

tively.

At inflow, we impose the initial values of the void ratio, densities of pure phases, and the

velocity. The pressure is evaluated with the last relation (48) and all variables can be

evaluated at the boundary.

At the outflow, the static pressure is imposed. The variables are computed with all

characteristic relations except the first one.

4 Preliminary results

A preliminary study is proposed to test the present numerical tool by comparison with

experimental results. Due to the weak number of experimental studies on liquid shock-

bubble interaction, we make comparisons with a helium bubble immersed in air and

impacted by a planar shock wave. Interaction of shocks in air with cylindrical and spheri-

cal cavities filled with helium or R22 gas were investigated in an early experimental study
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by Haas and Sturtevant (Haas and Sturtevant, 1987). More recently, an extensive exper-

imental study of a shock impact on spherical helium bubbles was conducted by Layes et

al. (Layes et al., 2009). We test the different models on one of theses cases. We consider

a helium bubble, for which the initial diameter is D0=4 cm, impacted by a normal shock

wave moving at the Mach number Msh = 1.175. The volume fraction α in this case is the

volume fraction of the lighter gas in a carrier gas. Due to the symmetry of the problem

the calculations are performed in a half-domain. Layes et al. present an experimental

investigation of the evolution of the bubble elongation L to the original diameter D0 as

function of time. A schematic diagram of the definition of L and a view of the com-

putation domain of size 40 × 4 cm are given in Figure 1. Parameters of the EOSs and

post-shock conditions are:








γ

P∞

ρ








Air

=








1.4

0 Pa

1.163 kg/m3








;








γ

P∞

ρ








Helium

=








1.648

0 Pa

0.16 kg/m3















P

ρ

u








post-shock

=








1.444 105 Pa

1.51 kg/m3

93.65 m/s








Simulations are performed using a uniform mesh composed by 2000×200 cells and

a time step ∆t = 5 10−9 s. A three-dimensional simulation is also performed using the

4-equation model. Due to the relatively good symmetry of the bubble during its defor-

mation observed in (Layes et al., 2009), only a quarter of the bubble is simulated with

symmetry conditions. The mesh is extruded in the spanwise direction and is composed of

2000×200×200 cells. A reference time t0 = D0/upost−shock is introduced. The evolution

of the bubble elongation L/D0 as a function of the dimensionless time t/t0 is illustrated

in Figure 2 for all considered models and the experimental data. The interface of the

bubble is evaluated using a criterion based on the variation of the void fraction between

two neighbouring cells. The threshold value is set to 40% of the maximum value of the

void fraction estimated at each time step, in agreement with a graphical estimation of
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the bubble interface. All simulations reproduce correctly the change of morphology of

the bubble. The bubble is firstly flattened in the direction of the shock propagation and

becomes kidney shaped due to the formation of a high speed air jet at the upstream

interface. The jet impingement on the downstream interface induces the formation of

counter-rotating vortical structures responsible for the bubble elongation.

Concerning the model comparison for the cylindrical case, we can see that the 4- and

5-equation models provide a similar solution. Discrepancies between numerical and ex-

perimental values are observed close to the minimum value of L/D0 in the initial stage

of bubble acceleration. At a later time, the bubble elongation is pretty well predicted by

both these models. The solution obtained with the multicomponent model follows the

same behaviour at the beginning of the interaction. Yet, after time t/t0 > 2.5, the ratio

L/D0 is under-estimated and the elongation process is not well captured.

Taking the 2D and 3D results together, we observe that the flattening process and the

beginning of the bubble elongation is very well predicted by the 3D simulation, certainly

due to the more intense jet speed in the spherical case. Later, when the helium bubble is

transformed into a vortex ring, the ratio L/D0 is over-estimated and the bubble elonga-

tion is more pronounced in the spherical case in comparison with the cylindrical case.

The evolution of the density gradient modulus obtained for the cylindrical case with all

models are plotted in Figures 3 and 4 at different dimensionless times t/t0. The computed

wave patterns are in good agreement with the shock observations presented in (Haas and

Sturtevant, 1987). At time t/t0 = 0.09, the incident shock has impacted the helium

bubble. A reflected wave is seen on the left and a transmitted wave propagates inside the

bubble. Further, because of the small critical angle, a precursor shock wave and Mach

stem form outside the bubble, generating a shock-on-shock interaction. The transmitted

shock wave reaches the downstream interface of the helium bubble around t/t0 = 0.19.

Later, a secondary transmitted wave propagates outside the bubble tangentially connected

to the primary transmitted wave while a reflected wave runs inside the bubble. This

internal reflected wave emerges from the upstream interface as a back-scattered wave.
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At time t/t0 = 0.26, the first reflected wave impacts the wall and reflects. Later, the

bubble becomes kidney shape due to the air jet. The distortion and motion of the helium

volume are clearly illustrated. When the jet impinges on the downstream interface, it

spreads out laterally forming a pair of vortical structures. As commented previously, the

4- and 5-equation models provide a similar solution. Yet, discrepancies are noticeable

with the multicomponent solution. The penetration of the air jet is less pronounced at

times t/t0 = 0.94 and 1.17. The acceleration of the gas is weaker, leading to a gap on the

position of the bubble centroid.

5 Shock-induced bubble collapse in free field

5.1 Presentation of the case

We consider the interaction of a single cavity in water with a 1.9 GPa shock. This

problem has been investigated experimentally by Bourne and Field (Bourne and Field,

1992). We compare our results with the previous simulations of Ball et al. (Ball et al.,

2000), Nourgaliev et al. (Nourgaliev et al., 2006) and Hawker and Ventikos (Hawker and

Ventikos, 2012).

A cylindrical air bubble, for which the initial diameter D0=6 mm, is immersed in a water

pool, under the following initial conditions: ~V = (0, 0) m/s, P=105 Pa, ρair=1 kg/m3, and

ρwater=1000 kg/m3. Due to the symmetry of the problem the calculations are performed

in a half-domain. The center of the bubble is located at (9, 0) mm in the computational

domain of size 24 × 12 mm. The bubble is collapsed by a normal shock wave moving

at Msh = 1.72, initially located at abscissa xsh = 4 mm. Parameters of the EOSs and

post-shock conditions are:








γ

P∞

ρ








Liquid

=








4.4

6× 108 Pa

1000 kg/m3








;








γ

P∞

ρ








Gas

=








1.4

0 Pa

1 kg/m3







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






P

ρ

u








post-shock

=








1.9 109 Pa

1323.65 kg/m3

681.58 m/s








The boundary conditions are the following: the top and bottom boundaries are as-

sumed to be a wall and a symmetry axis, respectively. The left and right sides are

assumed to be non-reflecting. Simulations are performed using a uniform mesh composed

by 1600×800 cells and a time step ∆t = 10−9 s. The influence of both time and space

steps has been previously studied in (Goncalves et al., 2018) to ensure that grid indepen-

dence was achieved.

Firstly, a description of the main phenomena involved in this shock-bubble interaction

is proposed. Results are obtained using the five-equation model. The time evolution of

the density gradient modulus (Schlieren-type representation) and the pressure field are

plotted in Figure 5 from time t = 2.4 µs to t = 4.8 µs. After the water shock wave

has collided with the bubble, a strong rarefaction wave is reflected backwards from the

interface, and a weak shock wave is transmitted inside the bubble (time t = 2.4 µs). Due

to the pressure difference between both sides, the bubble is asymmetrically contracted

(time t = 3 µs), which induces a jet of water along the axis of flow symmetry. When this

water jet strikes the right interface of the bubble (at time t = 3.6 µs), an intense blast

wave (referred to as water-hammer shock (Hawker and Ventikos, 2012)) is generated in

the surrounding water leading to a high-pressure zone. The blast front, which expands

continuously, is highly asymmetric due to the high-speed water jet (see at time t = 4

µs). The rightward blast wave increases as a cylindrical wave (time t = 4.4 µs). The

interaction of the leftward wave with the bubble fragments leads to high pressure levels

(around time t = 4.8 µs), which is the most intense reached during the collapse.
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5.2 Comparison of models

We compare the behaviour of the three considered models. The maximum pressure Pmax

reached during the collapse is plotted in Figure 6. The 4- and 5-equation models provide

similar results. One can observe the first peak at time t = 3.8 µs after the water jet

impacts the bubble front and the second peak at time t = 4.7 µs when the leftward blast

wave collides the bubble fragments. Small discrepancies are noticeable on the peak values,

which are slightly higher using the five-equation model. For the multicomponent model,

although the global evolution is similar, some clear differences are illustrated. We observe

a time shift for the pressure increases corresponding to the blast wave formation and the

bubble pieces collapse. Moreover, the intensity of the maximum pressure peak is reduced

in comparison with the other models. Values of these different times and peaks are given

in Table 1. The second peak predicted with the multicomponent model is almost 20%

smaller in comparison with the five-equation solution.

4-equation 5-equation multicomponent

blast wave formation time (µs) 3.54 3.54 3.59

first peak time (µs) 3.8 3.8 4.2

first peak intensity (bar) 43,000 48,000 43,000

second peak time (µs) 4.7 4.7 4.78

second peak intensity (bar) 77,200 80,000 66,700

maximum jet velocity (m/s) 3700 3500 3300

temperature peak (K) 10,000 - 5,700

Table 1: Comparison of results obtained with the three models.

The pressure evolution on the symmetry axis is plotted at different times in Figure 7 for

results obtained with the four-equation model (left) and multicomponent model (right).

As the results provided by the five-equation model are very close to the four-equation

solution, they are not presented here. For the four-equation model, we can observe the

first peak at time t = 3.8 µs after the water jet impacts the bubble front leading to the
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blast wave generation, the decrease of this peak at time t = 4.2 µs and the second peak

(around 68,000 bar) at time t = 4.8 µs when the leftward blast wave collides with the

bubble fragments. We remark that the maximum value of the pressure peak (around

77,200 bar, see Table 1) is not located on the symmetry axis but in the bubble pieces

(see Fig. 5). For the multicomponent model, the pressure rise takes more time up to

t = 4.2 µs. The intensity of the second peak on the axis (around 66,000 bar) is close to

the maximum value (66,700 bar). Moreover, this peak is located downstream (x = 0.0111

m) in comparison with the four-equation solution (x = 0.0104 m).

The evolution of the axial velocity on the symmetry axis is drawn in Figure 8 for

results obtained with the four-equation model (left) and multicomponent model (right).

The acceleration of the flow leading to the high-speed jet is clearly illustrated for both

models. The axial velocity reached its maximum value around time t = 3 µs, decreases

and remains at a high level around 2500 m/s. The intensity of the jet is higher using

the four-equation model (3700 m/s) in comparison with the multicomponent model (3300

m/s). Our results are in agreement with the experimental work of Bourne and Field, who

reported a jet velocity at impact around 3300 ± 300 m/s.

The temperature evolution along the symmetry axis is plotted in Figure 9 for results

obtained with the 4-equation model (left) and multicomponent model (right). We clearly

observe two intense peaks at times 2 and 3 µs, respectively. They correspond to the

temperature augmentation across the transmitted shock wave inside the bubble. These

peaks are largely higher with the four-equation model: 6000 K for the first peak to compare

with 1600 K for the multicomponent model. The more intense peak is observed just before

the high-speed jet impinges upon the downstream side of the bubble. It reaches 10,000 K

for the four-equation model and 5700 K for the multicomponent model. Different authors

have discussed about the existence of extreme temperatures reached during the bubble

collapse with the formation of a hot plasma linked to the sonoluminescence phenomenon

(Flannigan and Suslick, 2005, Mahdi et al., 2010, Merouani et al., 2014). The temperature
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field obtained with the 5-equation model is not presented. Indeed, due to the absence of

heat transfer model between phases, the gas temperature reaches huge values.

Ball (2000) Nourgaliev (2006) Hawker & Ventikos

peak pressure on jet impact (bar) 47,000 101,000 58,900

jet velocity on jet impact (m/s) 2600 2850 2810

temperature peak (K) 12,000 25,000 14,000

Table 2: Comparison with previous 2D simulations of the same configuration.

In comparison with previous numerical simulations presented in Table 2, we see that

our results are globally coherent.

Finally, the computation cost is given in Table 3 for a simulation time of 6 µs (single-

processor calculation). Due to the stiffness of the case, the time step has been reduced

to 5.10−10 s for the five-equation simulation, leading to a factor 3 for the CPU cost in

comparison with the four-equation model. The multicomponent model induces a supple-

mentary cost by a factor 1.6.

As regard to this test case, the four-equation model is clearly more attractive than the

five-equation formulation: we obtain similar results for a weaker cost. Is is not easy to dis-

criminate the four-equation and multicomponent models due to the absence of reference

data.

models ∆t (s) CPU cost ratio

4-equation 10−9 1

5-equation 5.10−10 2.95

multicomponent 10−9 1.61

Table 3: Comparison of CPU costs for a 2D simulation time of 6 µs.
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5.3 Three-dimensional simulation

We consider now a three-dimensional simulation using the four-equation model. The

domain is extruded in the spanwise direction. The center of the bubble is located at

(9, 0, 0) mm in the computational domain of size 24× 12× 12 mm, as illustrated in Fig-

ure 10. The mesh is composed of 1600×800×800 cells. Due to the symmetry assumption,

we compute only a quarter of the spherical bubble. The time step is set to 5.10−10 s. The

simulations are performed at a resolution of 200 points per radius (ppr), which amounts

to a total number of about 1 billion cells.

The evolution of the maximum pressure during the cavity collapse is plotted in Fig-

ure 11 for both 2D and 3D simulations. Main phenomena are similar to those described

previously in the 2D case. One can observe the first peak after the water jet impacts the

bubble front and the second peak (more intense) when the leftward blast wave collides

the bubble fragments. The bubbles turn into toroids and the flow creates a ring vortex.

As observed previously (Hawker and Ventikos, 2012), the collapse process of a spherical

bubble is faster and more intense, resulting in higher pressure peaks. These authors esti-

mated the water-hammer shock pressure to be 40% higher for a spherical bubble. Table

4 compares various quantitative measures between 2D and 3D simulations. The more

intense peak reaches 111,000 bar for the 3D case (50% more than the 2D collapse). These

effects are due to the higher focusing that the 3D situation entails, which lead to a faster

water jet.

2-D case 3-D case

first peak time (µs) 3.8 3.4

first peak intensity (bar) 43,000 68,000

second peak time (µs) 4.7 4.07

second peak intensity (bar) 77,200 111,100

Table 4: Comparison of results from 2D and 3D simulations.

22



6 Bubble collapse near a wall

This test is an extension of the last one considering a wall placed behind the bubble

at an initial distance from the center L. The ratio L/R is a major parameter that

governs the bubble collapse dynamics. As suggested in (Johnsen and Colonius, 2009),

the bubble initially located at a distance lower than L/R= 2 presents high potential to

cause damage. We consider the case for which the distance L = 5 mm (L/R = 1.66).

Numerical parameters are similar to the previous case. The size of the computational

domain is 14 × 12 mm. Simulations are performed using a uniform mesh composed by

934×800 cells and a time step ∆t = 10−9 s.

6.1 Four-equation simulation

A qualitative description of the physical phenomena is proposed from results obtained

using the four-equation model. At time t = 3.6 µs, as previously discussed, the water jet

collides the bubble interface leading to the formation of an intense blast wave. At this

same time, the incident shock impacts the wall and reflects, which generates the first pres-

sure peaks on the solid (around 50,000 bar). The time evolution of the density gradient

modulus and the pressure field are plotted in Figures 12 from time t = 4.2 µs to t = 6

µs. The rightward front of the blast wave impacts the wall at time t = 4.2 µs and reflects

as a reinforced shock wave generating a high-pressure area (time t = 4.4 µs and later).

The pressure on the wall reaches more than 80,000 bar. The cylindrical reflected wave

impacts the contact line between the fluid of the jet and that of the leeward bubble. A

quasi normal front propagates between the bubble pieces, while the cylindrical part con-

tinues its progression (time t = 4.6 µs). The leftward front of the blast wave re-collapses

the bubble fragments generating a high-pressure zone in the fluid and interacts with the

other front of the blast wave (time t = 4.8 µs and later). This re-collapse process of the

remaining bubble generates another strong shock waves in the liquid, called sheet-jetting

shocks (Hawker and Ventikos, 2012). These strong shocks propagate in all directions. The

impact and reflection on the wall result in the most intense wall pressure peak at time
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t = 5 µs (around 110,000 bar, see Figure 13). The wave network is very complex with

numerous interactions. At time t = 5.4 µs, a high-pressure zone is observed behind the

leftward front on the symmetry axis. Finally, at time t = 6 µs, the contact line is close

to impact the wall. The wall pressure is still high with values reaching 75,000 bar.

The evolution of the wall pressure on the symmetry axis at different times is shown

in Figure 13 (on the left). At time t = 3.6 µs, the incident shock impacts the wall,

which generates the first pressure peak. At time t = 4.2 µs, the blast wave impacts the

wall and its reflection causes an intense pressure peak on the axis. At time t = 4.4 µs,

the superposition of the reflected blast wave and the incident shock generates a high-

pressure area with a peak located around abscissa x ≃ 0.0015 m (it can be observed in

Figure 12b). Later, the maximum wall pressure value is again located on the symmetry

axis. As previously discussed, the most intense peak is reached around time t = 5 µs due

to the impact of sheet-jetting shocks on the wall. After this time, the pressure peak on

this axis decreases but the high pressure area extends and covers all the wall surface at

t = 7 µs. The maximum wall pressure reached during the collapse is plotted in Figure 13

(on the right). Numerous peaks can be observed, corresponding to the impact of various

waves as previously described: the incident shock (time t = 3.6 µs), the blast wave (time

t = 4.4 µs) and sheet-jetting shocks (time t = 5 µs and also time t = 5.4 µs). We remark

also that the maximum value, close to 107,000 bar, is not located on the axis but near

the axis.

6.2 Multicomponent simulation

We compare now results obtained with the multicomponent model. The time evolution of

the density gradient modulus and the pressure field are plotted in Figures 14 at different

times. The main phenomena described previously are observed. As commented for the

free-field case, a small lag is noticeable for the time of generation of the blast wave and

therefore its impact on the wall. The shape of the collapsing bubble is not the same, and
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especially the contact line between the fluid of the jet and that of the leeward bubble,

which is larger using the multicomponent model.

The evolution of both the wall pressure on the axis and the maximum wall pressure

are shown in Figure 15. On the symmetry axis, we can see that the pressure peaks reach

similar values between models. For both simulations, the maximum intensity is close to

100,000 bar at time t = 5 µs. The maximum wall pressure marks some difference. The

pressure peak due to the blast wave reflection (around time t = 4.4 µs) is less pronounced.

As previously commented, the maximum value (around 110,000 bar) is not located on the

axis but close the axis. Moreover, the maximum value is no more obtained at time t = 5

µs but at times t = 5.6 µs and t = 6 µs due to the sheet-jetting shocks (see Figure 16).

For the free-field case, we remarked that the intensity of the pressure peak in the fluid was

lower in comparison with the four-equation result (see Table 1: 66,700 bar in comparison

with 77,200 bar). Yet, as regard to the wall pressure peaks, both models provide similar

intensities.

An enlargement of the density gradient modulus and pressure field is proposed in

Figure 16 in order to better observe the sheet-jetting shocks. At time t = 5.4 µs, these

shock waves are well illustrated and propagate in both direction. The leftward wave

impacts the wall and reflects at time t = 5.6 µs generating a high-pressure area. Another

wave reflects on the wall at time t = 6 µ generating the second high pressure peak

highlighted in Figure 15.

6.3 Three-dimensional simulation

The computational domain is extruded in the spanwise direction, that is 14 × 12 × 12

mm. The mesh contains 934 × 800× 800 cells. Due to the stiffness of the case, the time

step is decreased to 10−10 s. Only a simulation performed with the four-equation model

is presented.
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The pressure field and isosurfaces of the density are plotted in Figure 17 at different

times. At time t = 2.15 µs, the incident shock impacted the bubble and the water jet

penetration is well illustrated. At time t = 3.25 µs, the blast wave is propagating after

the water jet collided the bubble interface. The incident shock wave impacts the wall at

time t = 3.65 µs and the leftward blast wave propagates toward the vortex ring. The

rightward blast front impacts the wall at time t = 3.9 µs leading to a high-pressure area

on the wall. At time t = 4.15 µs, the low-pressure area associated to the vortex ring is

clearly illustrated. The leftward blast front continues its propagation. At time t = 4.25

µs, a pressure peak is monitored at the wall due to the sheet-jetting shock waves (not

visible on this figure).

Another view of the pressure field is given in Figure 18 to better observe the wall

pressure evolution. A time t = 3.9 µs, the blast wave impacts the wall generating a high-

pressure area around the bubble axis until the incident shock wave impact has generated

a pressure load on the wall. The reflection of the blast wave induces an intense pressure

peak on the wall illustrated at time t = 4.15 µs. Another wall pressure peak around the

bubble axis is observed at time t = 4.5 µs due to the impact of a sheet-jetting wave. At

times t = 4.6 and t = 4.75 µs, a high-pressure area is highlighted in the fluid inside the

vortex ring. It is due to the reflected blast wave which recollapses the bubble fragments.

The most intense wall pressure peak is observed between time t = 4.75 and t = 4.85 µs

due to the impact and reflection of a sheet-jetting shock wave (see figure 19).

The evolution of the maximum wall pressure reached during the bubble collapse is

plotted in Figure 19. The intense peak due to the blast wave impact (around 170,000

bar) is observed around time t = 3.9 µs. Later, two other peaks are illustrated due the

impact of sheet-jetting waves (close to 150,000 bar and 125,000 bar, respectively). The

most intense peak at time t = 4.78 µs is extremely violent (higher than 300,000 bar) due

to another sheet-jetting shock wave. In comparison with the 2D solution, the intensity is
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multiplied by a factor 3.

Finally, the wall pressure evolution on the symmetry axis is shown in Figure 20. One

can observe the impact and reflection of different waves on the wall: the incident shock

wave (t = 3.63 µs), the blast wave (t = 3.76− 4.02 µs), a sheet-jetting wave (t = 4.26 µs)

and the most intense peak at time t = 4.78 µs. Similarly to the 2D case, the largest val-

ues of the pressure are not located on the symmetry axis but around the longitudinal axis.

Now, we compare our simulations with an existing model of prediction of the maximum

pressure during the collapse. Recently, a predictive framework for the peak pressure

from nonspherical bubble collapses has been developped by Supponen et al. (Supponen

et al., 2017) using simultaneous time-resolved shadowgraphy and hydrophone pressure

measurements. Their model is based on the assumption that the shock wave is generated

by a jet impact hammer pressure. The formulation involves the parameter ζ , which

represents the dimensionless equivalent of the Kelvin impulse and the distance d between

the bubble center and the hydrophone sensor:

Pmax = 1.6(ρc2∆P )1/2
(
R0

d

)1.2

ζ−0.17 ; ζ = 0.195

(
L

R0

)−2

(49)

The application of the model for different values of the distance d is given in Table 5.

A large discrepancy appears between the numerical results and the model prediction. This

model has been built and compared with data obtained for weak driving pressures ∆P .

In the present study, the intensity of the incident shock wave is very strong (∆P =1.9

GPa), that could explain this gap.

R0/d=1/2 R0/d=1 R0/d=2

Pmax 24,500 56,300 129,000

Table 5: Prediction of the maximum pressure (in bar) given by the model of Supponen

et al. when the ratio R0/d varies.
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7 Conclusion

In the present study, a comparison of two-phase models is proposed for the simulation

of a shock-induced bubble collapse. Three different formulations are considered: a five-

equation model, a four-equation model and a γ-model. First, the free-field collapse is

investigated. It is shown that the main phenomena are similarly computed by models.

Yet, some clear differences are highlighted as regard to the intensity of the pressure peaks

and their time of appearance. The γ-model provides a lower pressure intensity (20 %

smaller for the most intense peak) with a time shift in comparison with the other models.

The CPU cost comparison tends to eliminate the five-equation model in comparison with

the four-equation one: it provides similar results with a cost multiplied by a factor 3. A

three-dimensional simulation is performed using the four-equation system. The collapse

process of a spherical bubble is faster and more intense, resulting in a 50% more intense

pressure peak in comparison with the cylindrical case.

Secondly, the bubble collapse near a wall is studied. The ratio L/R between the bub-

ble distance to the wall and the initial radius of the bubble is a key parameter. In this

paper, the ratio is set to 1.66 leading to high potential damages. It is shown that the

main phenomena are similarly computed by both the four-equation and γ-models. The

pressure loading on the material surface during the bubble collapse is due to the impact

of the blast wave and the sheet-jetting shock waves, which are generated by the collapse

of the remaining bubble ring. The intensity of the most intense pressure peak has the

same magnitude (around 110,000 bar) using both models.

Finally, a three-dimensional simulation is performed using the four-equation model. It

is highlighted that the impact of the sheet-jetting shock wave leads to a huge pressure

peak on the wall for which the intensity is higher than 300,000 bar (200 % more intense

in comparison with the cylindrical case). This pressure loading can cause high stresses

inside the material making the structure more vulnerable of having micro-ruptures. The

pertinence of 2D simulations to study wall damages caused by a bubble collapse is there-

fore questionable for such cases.
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Further works are in progress to study the influence of the parameter L/R on the collapse

and to perform coupled fluid-structure simulations.
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Figure 1: Definition of the bubble elongation L (top) and initial situation for the helium

bubble impact (down).
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Figure 2: Evolution of the bubble elongation L/D0 function of the dimensionless time

t/t0. Comparison between the different models and experimental data.
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Figure 3: Evolution of the density gradient modulus at different dimensionless times:

t/t0=0.09, 0.12, 0.14 and 0.19 from top to down. 2D simulations performed with the

4-equation model (2nd column), the 5-equation model (3rd column) and the multicompo-

nent model (4th column). Comparison with experimental visualizations from Haas and

Sturtevant (1987) (1st column).
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Figure 4: Evolution of the density gradient modulus at different dimensionless times:

t/t0=0.26, 0.59, 0.94 and 1.17 from top to down. 2D simulations performed with the

4-equation model (2nd column), the 5-equation model (3rd column) and the multicompo-

nent model (4th column). Comparison with experimental visualizations from Haas and

Sturtevant (1987) (1st column).
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b) e)

c) f)

Figure 5: Evolution of the density gradient modulus and pressure field (in bar) at times:

a) t = 2.4 µs, b) t = 3 µs, c) t = 3.6 µs, d) t = 4 µs, e) t = 4.4 µs, and f) t = 4.8 µs. 2D

simulations performed with the 5-equation model.
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Figure 6: Evolution of the maximum pressure (in bar) reached during the collapse obtained

with the three models. 2D results.
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Figure 7: Evolution of the pressure during the bubble collapse on the symmetry axis for

the 4-equation model (left) and the multicomponent model (right). 2D results.
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Figure 8: Evolution of the axial velocity during the bubble collapse on the symmetry axis

for the 4-equation model (left) and the multicomponent model (right). 2D results.
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Figure 9: Evolution of the mixture temperature during the bubble collapse on the sym-

metry axis for the 4-equation model (left) and the multicomponent model (right). 2D

results.

43



Figure 10: Initial situation for the three-dimensional simulation.
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Figure 11: Evolution of the maximum pressure reached during the collapse. Comparison

between 2D and 3D simulations obtained with the 4-equation model.
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Figure 12: Evolution of the density gradient modulus and pressure field (in bar) at times:

a) t = 4.2 µs, b) t = 4.4 µs, c) t = 4.8 µs, d) t = 5 µs, e) t = 5.4 µs, and f) t = 6 µs. 2D

simulation performed with the 4-equation model. Collapse near a wall with L/R = 1.66.
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Figure 13: Evolution of the wall pressure on the symmetry axis (left) and the maximum

wall pressure (right). 2D simulation performed with the 4-equation model. Collapse near

a wall with L/R = 1.66.
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Figure 14: Evolution of the density gradient modulus and pressure field (in bar) at times:

a) t = 4.2 µs, b) t = 4.4 µs, c) t = 4.8 µs, d) t = 5.2 µs, e) t = 5.6 µs, and f) t = 6.0

µs. 2D simulation performed with the multicomponent model. Collapse near a wall with

L/R = 1.66. 48
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Figure 15: Evolution of the wall pressure on the symmetry axis (left) and the maximum

wall pressure (right). 2D simulation performed with the multicomponent model. Collapse

near a wall with L/R = 1.66.
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a) c)

b) d)

Figure 16: Enlargement of the density gradient modulus and pressure field (in bar) at

times: a) t = 5.4 µs, b) t = 5.6 µs, c) t = 5.8 µs, and d) t = 6.0 µs. 2D simulation

performed with the multicomponent model. Collapse near a wall with L/R = 1.66.
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Figure 17: Evolution of the pressure field (in bar) and isosurfaces of the density at times:

a) t = 2.15 µs, b) t = 3.25 µs, c) t = 3.65 µs, d) t = 3.9 µs, e) t = 4.15 µs, and f)

t = 4.25 µs. 3D simulation performed with the 4-equation model. Collapse near a wall

with L/R = 1.66.
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Figure 18: Evolution of the pressure field (in bar) at times: a) t = 3.9 µs, b) t = 4.15 µs,

c) t = 4.5 µs, d) t = 4.6 µs, e) t = 4.75 µs, and f) t = 4.85 µs. 3D simulation performed

with the 4-equation model. Collapse near a wall with L/R = 1.66.

52



t (s)

P
w

m
a

x
(b

a
r)

3E­06 4E­06 5E­06 6E­06
0

50000

100000

150000

200000

250000

300000

Figure 19: Evolution of the maximum wall pressure reached during the collapse. 3D

simulation performed with the 4-equation model. Collapse near a wall with L/R = 1.66.
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Figure 20: Evolution of the wall pressure on the symmetry axis at different times. 3D

simulation performed with the 4-equation model. Collapse near a wall with L/R = 1.66.
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