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Abstract

A non-stationary flow in a network of thin tubes is considered. Its one-dimensional approx-
imation was proposed in a paper by G.Panasenko and K.Pileckas, Flows in a tube structure:
equation on the graph, JMP (2014). It consists of a set of equations with weakly singular
kernels, on a graph, for the macroscopic pressure. A new difference scheme for this problem
is proposed. Several variants are discussed. Stability and convergence are carefully investi-
gated, theoretically and numerically. In addition, numerical results are compared to the direct
numerical solution of the full dimension Navier-Stokes equations.
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1 Introduction

Modeling and effective computations of viscous flows in networks of thin pipes are important topics,
notably in microfluidics and flows in blood vessels. Because of the complexity of the geometry of
such 2D or 3D networks, it is important to have simplified, but relevant, models for these flows,
and then efficient schemes for solving them numerically. The main aim of the present work is to
design and study numerical schemes for such a simplified model which was obtained by Panasenko
& Pileckas, and consists in a time dependent, non local in time diffusion equations for the pressure,
set on a 1D-graph, with appropriate (Kirchhoff) junction conditions on the vertices of the graph.
It is described in [19] and mathematically justified in [21], by letting the diameters of the pipes
tend to zero, with appropriate scalings on the data. Also, we compare numerically the original
multidimensional problem with its simplified version, in order to establish the relevance of this
limit model [19].

Let us go first more into detail about this modeling. Stationary laminar incompressible viscous flows
in a thin tube were first studied empirically [25] and theoretically [7] in the nineteenth century. They
were described by the stationary Poiseuille profile. However, the time scale of the phenomena may
prevent stationary approximation to be valid as noticed by Womersley [32] for blood flows. In that
case, one needs to use a time-dependent Poiseuille type profile: a Womersley profile. Pileckas et
al. [24, 10, 18] studied the behaviour of the incompressible Navier-Stokes equations in an infinite tube
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when the diameter of the pipe is small, proving the existence and relevance of the time-dependent
Poiseuille profile in a quite general setting. Panasenko & Pileckas studied the incompressible Navier-
Stokes equation in a network of thin tubes, when the flow is stationary [16, 17, 20, 22] or time-
dependent [20, 21]. In that case of non-steady Navier-Stokes equations in the tube-structure,
similarly to [24, 10, 18], they obtain ([19, 21]) a limit, simplified model retaining this Womersley
effect. The model consists in a one dimensional, nonlocal in time, diffusion equation on the 1D-
skeleton (or graph) of the initial structure for the pressure, coupled with heat equations set in
rescaled cross sections of the tubes of this initial structure, with Kirchhoff type conditions at the
vertices of the graph and the continuity condition for the pressure.

The main aim of the present paper is to propose and study a numerical scheme, with several variants,
for this model. We show convergence and stability without any special restriction on the shape of
the cross sections of the tubes. An important point in designing the schemes is that in the coupling
mentioned above the heat equations in the cross sections can be solved explicitly with respect of
the gradient of the pressure, allowing to rewrite the equations for the pressure on the edges as
diffusion equations with convolution in time. In designing the schemes, we have to pay a particular
attention on how to discretize this couplings, or convolution products. Different possibilities are
investigated : exact kernels for special geometry of the cross-sections, numerical approximation on
the kernels for general cases, with order 1 or 2 in time, with of without corrections for small times,
using asymptotics for small times obtained in the second part of this work [8].

At this point, let us underline that this work is in two parts: properties of the kernels are investigated
in detail in a forthcoming paper ([8]). However, as mentioned above, some of these properties are
used in the numerics of the present paper.
Last, we also check the convergence numerically and compare the asymptotic model with the directly
numerically solved Navier-Stokes equations.

Let us mention well-known alternative models for network of pipes, considered for instance in
[1, 6, 9, 11, 28, 29, 31]. These models are hyperbolic on the graph and are designed for a different
context (high Reynolds number, elastic walls, as in arteries) than ours (modest Reynolds number,
rigid walls as in arterioles). See [19, 21] and the just mentioned references for detail.

Now, the plan of the paper is as follows. In Section, we recall the original and limit models in [19, 21]
and give a brief presentation of our scheme. In Section we present a few notations and the weak
form of the equations on the graph and prove a few additional regularity results that are needed in
this paper. In Section 3 we go more into detail about the discretization: the scheme as presented in
Section 1 is derived from the weak form as a Galerkin method; we show coercivity (and continuity)
of that approximate bilinear form; we give a few words on the discretization in the cross sections (the
details been given in the second part of this work [8]); and last some remarks on the implementation
of the scheme. Section 4 is devoted to the main results : convergences of the scheme and rates of
convergence, in relation with the accuracy on the approximation of the kernels: Theorems 1 and 2
and Corollary 1. Section 5 is devoted to the presentation of numerical results : comparison with
exact test cases and comparisons with full 3D Navier-Stokes equations.

1.1 Thin tubes structure

We first describe a d-dimensional thin tubes structure, where d ∈ {2, 3}. Let O1, . . . ON be different
vertices of Rd, e1, . . . , eM closed segments ej = [OijOkj ] connecting these vertices. We assume
that these edges can only intersect at vertices. The end points of the skeleton of the graph, that
is the vertices that belong to a single edge are denoted by O1, . . . , ON1

(0 ≤ N1 ≤ N − 1) while
ON1+1, . . . , ON corresponds to junctions between the pipes. We fix a positive orientation for all
edges ej = [OijOkj ] as the direction from Oij to Okj . For simplicity, we use the same notation ej

for the vector
−−−−→
OijOkj as for the edge.

Let σ1, . . . , σM be smooth domains of Rd−1 representing the cross-sections of the pipes. The variable
in the cross-section direction is denoted with a hat: x̂ ∈ Rd−1. Let R(e1), . . . , R(eM ) be rotations in
Rd such that:

R(ej)(0̂, |ej |) = ej .
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Figure 1: Example of thin structure when d = 2, N1 = 6, N = 8,M = 7.

Let ωN1+1, . . . , ωM be bounded domains of Rd containing 0 which represent the junctions of the
tubes and define the initial d-dimensional network of tubes as :

Ωε =

(
N⋃

i=N1+1

(Oi + εωi)

)⋃ N⋃
j=1

Oij +R(ej)(εσj×]0, |ej |[)

 .

We assume that, for ε small enough, Ωε is connected, smooth except at the end sections

N1⋃
j=1

R(ej)(ε∂σj×

{0}). Last,

B =

M⋃
j=1

ej

is the graph of the structure.

We now, states the equations of the model we are dealing with. These equations are set on the graph
B and were obtained in [21] by passing to the limit as ε tends to 0 on the following incompressible
Navier-Stokes equations with Dirichlet’s boundary conditions, in Ωε :

∂uε

∂t
+ (uε · ∇uε)−∆uε = −∇pε on Ωε,

∇ · uε = 0 on Ωε,

uε(Oi +R(ej)(x̂, 0), t) = R(ej)
(
gi(ε−1x̂, ε−2t)

)
on Oi +R(ej)(εσj × {0}), i = 1, ..., N1, Oi ∈ ej ,

uε = 0 on ∂Ωε\
( N1⋃
i=1

(Oi +R(ej)(εσj × {0})|Oi∈ej )
)
,

uε|t=0 = 0,

pε(O1, t) = 0.

(1.1)
Here, gi : σi×R+ → Rd denotes the velocity profile in a reference frame at the free extremity of the

tube i for i ∈ {1, . . . , N1}. Let
∂

∂x(ej)
denote the derivative along the vector |ej |−1ej . According

to [20, 21], under some hypotheses on gi, pε(x, ε2t) can be approximated at the leading order by
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P (x, t) where P is the solution to the following problem on B:

− ∂

∂x(ej)
L(σj)

∂P

∂x(ej)
(x, t) = F (x, t) for x ∈ ej ,∑

Oi∈ej

αi,jL
(σj)

∂P

∂x(ej)
(Oi, t) = −Ψi(t) for i = 1, . . . , N,

P is continuous on the graph,

P (O1, t) = 0.

(1.2)

In (1.2)2: the summation is over all edges ej having Oi as an end point; αi,j = 1 if the orientation
ej starting from Oi is positive, and αi,j = −1 otherwise. The right hand sides in (1.2)1 are given
by :

Ψi(t) =


∫
σj

〈gi(x̂, t), (0̂, αi,j)〉dx̂ if i ∈ {1, . . . , N1}, Oi ∈ ej

0 if i ∈ {N1 + 1, . . . , N},

where 〈·, ·〉 denotes the Euclidean product.

The operator L(σj) are nonlocal in time operators relating the macroscopic equation for the pressure
(1.2) to the microscopic structures σj . For each such cross section σ they are defined: L(σ) :
L2(0,+∞)→ H1

0 (0,+∞) by:

∀t > 0, (L(σ)q)(t) =

∫
σ

U(x̂, t)dx̂ (1.3)

where U is solution of 
∂U

∂t
−∆x̂U = q(t) on σ,

U = 0 on ∂σ,

U = 0 if t = 0 on σ.

(1.4)

Remarks on (1.2).

(i) In usual applications F = 0, but it is useful, at least for building test problems with exact
solutions, to consider more general F .

(ii) Equation(1.2)2 is the Kirchhoff condition which expresses the conservation of mass at the
junctions and at the ends of the graph. If the system has a solution, it satisfies the following
compatibility condition:

∀t ∈ [0, T ],

N∑
`=1

Ψ`(t) +

∫
B
F (x, t)dx = 0. (1.5)

where

∫
B

denotes the integral over all edges of the graph (see (2.13)). If this compatibil-

ity condition is satisfied then, the equation on Ψ1 is redundant and can be omitted in the
discretization.

(iii) Pressure can be obtained by solving system (1.2) and then, the velocity profile at some distance
from the junctions by solving (1.4). This is discussed in Section 3.5.3. To obtain the next
order of approximation, the continuity of pressure (1.2)3 may be replaced by a coupling with
Navier-Stokes equations in regions surrounding the junctions (see [21]). Such couplings are
also discussed and numerically tested in [3, 4, 5].
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1.2 Numerical scheme and convergence

The main goal of this article is to propose a numerical method to solve problem (1.2). This is done
in the present section.
First, the operator L(σ) can be rewritten as a convolution operator:

(L(σ)q)(t) =

∫ t

0

K(σ)(t− τ)q(τ)dτ, (1.6)

where the kernel K(σ) is defined by

K(σ)(t) =

∫
σ

V (x̂, t)dx̂,

V being the solution of the heat equation:
∂V

∂t
−∆V = 0 on σ×]0,+∞[,

V (., 0) = 1 on σ,

V (x̂, t) = 0 t > 0, x̂ ∈ ∂σ.

(1.7)

The discretization is then as follows. Let (t0 = 0, t1 = k, . . . , tQ = kQ = T ) be a subdivision of [0, T ]

with a uniform step k. For each edge e, we introduce a subdivision (x
(e)
0 = 0, x

(e)
1 = h(e), . . . , x

(e)

S(e) =

S(e)h(e) = |e|) of [0, |e|] with a uniform step h(e). Let X(ei)
s = Oi +R(e)(0̂, x(e)s ).

Let P (e)
s,q be an approximation of P (X(e)

s , tq+1/2), where tq+1/2 =
tq + tq+1

2
. Consider the following

difference scheme:

f
(ej)
s,q+1 = −k

q∑
q̃=0

K̃
(σj)
q−q̃

P
(ej)
s+1,q̃ − 2P

(ej)
s,q̃ + P

(ej)
s−1,q̃

(h(ej))2
if


1 ≤ j ≤M,

0 < s < S(ej)

0 ≤ q < Q

, (1.8)

Ψ`,q+1 =
∑

1≤j≤M,O`∈ej

−h(ej)
2

f
(ej)
s,q̃+1 − k

q∑
q̃=0

K̃
(σj)
q−q̃

P
(ej)
s+α`,j ,q̃

− P (ej)
s,q̃

h(ej)

 if

{
2 ≤ ` ≤ N
0 ≤ q < Q

, (1.9)

P (e)
s,q = P

(ẽ)
s̃,q if e, ẽ ∈ {e1, . . . , eM}, s ∈ {0, S(e)}, s̃ ∈ {0, S(ẽ)}, X(e)

s = X
(ẽ)
s̃ , 0 ≤ q < Q (1.10)

P
(e)
0,q = 0 if X

(e)
0 = O1, 0 ≤ q < Q, (1.11)

where:

• K̃(σ)
q is either K(σ)

q =
1

k

∫ tq+1

tq

K(σ)(t)dt for q ≥ 0 when the kernel can be computed explicitly

(see (3.22)-(3.25)) or a suitable approximation of it (see Section 3.4).

• Ψ`,q = Ψ`(tq) for 0 ≤ q ≤ Q and 1 ≤ ` ≤ N ,

• f (ej)s,q = F (X(ej)
s , tq).

• in (1.9), s = 0, α`,j = 1 if X
(ej)
0 = O` and s = S(ej), α`,j = −1 if X

(ej)

S(ej)
= O`. Note that

X
(ej)
s+α`,j

is the node closest to O` among those on the edge ej .

A similar numerical scheme can be found in [15, 26, 27] when B is a tree, the cross-section a disc,
and all the data are periodic in time. However, the convergence is not addressed in [15, 26, 27].

Let:

θ(k) = max
1≤j≤M

|K(σj)
0 − K̃(σj)

0 |+
Q−1∑
q=1

|K(σj)
q −K(σj)

q−1 − K̃(σj)
q + K̃

(σj)
q−1 |. (1.12)

Note that θ(k) = 0 if K̃(σ)
q = K(σ)

q .
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In Section 3 below, we first reformulate this scheme as a Galerkin method. In Propositions 1 and 2
of Section 3.2, we then give two different sufficient stability conditions on K̃(σ)

q , which are verified
when θ(k) = 0.
Last in Section 4, we prove our main result: the scheme is convergent if θ(k) → 0 and is of L2-
order 1 in time and H1-order 1 in space if θ(k) = 0. This is Theorem 1. Furthermore, with
additional regularity assumptions, these orders of convergence can be improved. This is Theorem
2 and Corollary 1.

2 Continuous problem on the graph

In this section, we get results on the continuous problem (1.2) that are used in the proof of Theorem
1.

2.1 Vector spaces and notations

To avoid summations, let us denote:∫
B
f(x)dx =

M∑
j=1

∫ |ej |
0

f(Oi +Rj(0̂, xd))dxd. (2.13)

The operators L(σj) and
∂

∂x(ej)
will be applied to functions which are defined on B. To shorten

notations and to be able to use the previous notation, let us denote σ(x) = σj and e(x) = ej when

x ∈ ej and x is not a vertex, so that
∂f

∂x(e)
(x) =

∂f

∂x(ej)
(x) and L(σj)g(x, t) = L(σ)g(x, t).

Define the norms and the vector spaces:

‖f‖2L2(B) =

∫
B
|f |2dx,

‖f‖2Hk
dc(B)

=

∫
B
|f |2 +

∣∣∣∣ ∂f∂x(e)

∣∣∣∣2 + . . .+

∣∣∣∣∣ ∂kf(
∂x(e)

)k
∣∣∣∣∣dx,

L2(B) = {f : B → R | ‖f‖L2(B) < +∞},

H1(B) = {f : B → R | f(O1) = 0, f continuous, ‖f‖H1
dc(B) < +∞},

∀k ∈ N∗, Hk
dc(B) = {f : B → R | ‖f‖2Hk

dc(B)
< +∞}.

Notice that a function of Hk
dc(B) may be discontinuous at the junctions O1, O2, . . . , O`.

For any Banach space E and r ∈ N∗, let us define:

Hr(0, T, E) =

{
f : [0, T ]→ E|

∫ T

0

(
|f(t)|2E + |f ′(t)|2E + . . .+ |f (r)(t)|2E

)
dt < +∞

}
,

Hr
00(0, T, E) =

{
f ∈ Hr(0, T, E)|f(0) = 0, . . . , f (r−1)(0) = 0

}
,

Hr(0, T ) = Hr(0, T,R), Hr
00(0, T ) = Hr

00(0, T,R).

2.2 Weak form

Let us assume that F ∈ H1
00(0, T, L2(B)) and that Ψ1, . . . ,ΨN ∈ H1

00(0, T ) and satisfy the compat-
ibility condition(1.5).
The well-posedness in L2(0, T,H1(B)) of system (1.2) was proved by means of the Lax-Milgram
lemma in [20, 21]. The weak form of (1.2) is as follows: find P ∈ L2(0, T,H1(B)) such that:

∀ψ ∈ L2(0, T,H1(B)), aT (P,ψ) = bT (ψ) (2.14)
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where

aT (P,ψ) =

∫ T

0

∫
B

∂2(L(σ)P )

∂τ∂x(e)
∂ψ

∂x(e)
dxdt, (2.15)

bT (ψ) =

∫ T

0

∫
B

∂F

∂τ
ψdxdt+

∫ T

0

N∑
`=1

∂Ψ`

∂τ
ψ(O`, t)dt.

According to [19], bT is continuous on L2(0, T,H1(B)), aT is continuous and coercive on L2(0, T,H1(B)),
with a coercivity constant which is larger than C min{1, T−2}. Hence, the Lax-Milgram prob-
lem (2.14) admits a unique solution.

2.3 Regularity of the solution

2.3.1 Regularity with respect to the space variable

Using (2.14), we see that
∂

∂t

(
L(σ) ∂P

∂x(e)

)
∈ L2(0, T,H1

dc(B)). Integrating with respect to t yields

L(σ) ∂P

∂x
∈ H1

00(0, T,H1
dc(B)).

As a consequence, since L(σ) : L2(0, T )→ H1
00(0, T ) is invertible for σ ∈ {σ1, . . . , σM}, we have:

∂P

∂x(e)
∈ L2(0, T,H1

dc(B)).

Hence:
P ∈ L2(0, T,H2

dc(B)). (2.16)

2.3.2 Regularity with respect to the time variable

Lemma 1: Let k ≥ 1. Let us assume that F ∈ Hk+1
00 (0, T, L2(B)) and that Ψ` ∈ Hk+1

00 (0, T ).
Then:

P ∈ Hk
00(0, T,H2

dc(B)).

Proof:
Let 0 ≤ s ≤ k and bT,s be the linear form defined by:

bT,s(ψ) =

∫ T

0

∫
B

∂s+1F

∂τs+1
ψdxdt+

∫ T

0

N∑
`=1

∂s+1Ψ`

∂τs+1
ψ(O`, t)dt.

Now let Ps be the solution of aT (Ps, .) = bT,s(.). Then, using the uniqueness of the solution to

Problem (2.14), we get that Ps(., t) =

∫ t

0

Ps+1(., τ)dτ whenever 0 ≤ s < k.

Indeed, for any f ∈ L1(0, T ), letting F (t) =

∫ t

0

f(τ)dτ , using integration by parts and F (0) = 0,

we get, for any σ ∈ {σ1, . . . , σM}:

L(σ)F (t) =

∫ t

0

L(σ)f(τ)dτ.

Since Pk ∈ L2(0, T,H2
dc(B)), we conclude that P ∈ Hk

00(0, T,H2
dc(B)).

3 Galerkin method

In this section, we reformulate the scheme (3.4.2) as a Galerkin method in order to prove the
convergence result.
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3.1 Time discretization

Let k > 0 be a time step, such that Q =
T

k
is an integer. Let us denote tq = qk for q ∈ {0, 1, . . . , Q},

Vk = P0
k(0, T,H1(B)) ⊂ L2(0, T,H1(B)) where P0

k(0, T ) denotes the set of piecewise constant func-

tions over the subdivision (t0 = 0, . . . , tQ = T ). In the sequel the funtions K(σ), L(σ)(φq), L(σ)(φq
′
)

are extended by zero on R∗− for σ ∈ {σ1, . . . , σM}.
A numerical scheme on the graph is then defined as follows: find p ∈ Vk such that:

∀ψ ∈ Vk, aT,k(p, ψ) = bT (ψ) (3.17)

where aT,k is an approximation of aT to be specified below.
We use separation of space and time variables. Let us denote φq = 1[tq,tq+1[. Then, for any

u, v ∈ H1(B), q, q′ ∈ {0...Q}, We get:

aT (uφq
′
, vφq) =

∫ tq+1

tq

∫
B

∂(L(σ)φq
′
)

∂τ

∂u

∂x(e)
∂v

∂x(e)
dxdτ

=

∫
B

(
(L(σ)φq′)(tq+1)− (L(σ)φq′)(tq)

) ∂u

∂x(e)
∂v

∂x(e)
dxdτ

=

∫ tq′+1

tq′

∫
B

(
K(σ)(tq+1 − τ)−K(σ)(tq − τ)

) ∂u

∂x(e)
∂v

∂x(e)
dxdτ

Denoting for any σ ∈ {σ1, . . . , σM}: K(σ)
q =

1

k

∫ tq+1

tq

K(σ)(t)dt for q ≥ 0 and K(σ)
q = 0 for q ≤ 0,

then:

aT (uφq
′
, vφq) = k

∫
B

(K
(σ)
q−q′ −K

(σ)
q−q′−1)

∂u

∂x(e)
∂v

∂x(e)
dx.

Note that:

• K(σ)
q −K(σ)

q−1 = k

∫ 1

−1
(K(σ))′(k(q + t))(1− |t|)dt if q > 1,

• K(σ)
0 −K(σ)

−1 = K
(σ)
0 ,

• K(σ)
q −K(σ)

q−1 = 0 if q < −1.

Now, the approximation aT,k of aT is any bilinear form defined on Vk by:

aT,k(uφq, vφq
′
) = k

∫
B

(K̃
(σ)
q−q′ − K̃

(σ)
q−q′−1)

∂u

∂x(e)
∂v

∂x(e)
dx (3.18)

such that the K̃(σ)
q are approximations of the K(σ)

q satisfying K̃(σ)
q = 0 for q ≤ 0. Note in addition

that:

bT (vφq) =

∫
B

(F (x, tq+1)− F (x, tq))v(x)dx+

N∑
`=1

(Ψ`(tq+1)−Ψl(tq))v(O`).

The time discretized problem (3.17) has a unique solution if aT,k is continuous and coercive.

3.2 Continuity and coercivity of the approximate bilinear form

We give two different sufficient conditions for aT,k to be continuous and coercive: one which relies

on the smallness of θ(k) defined in (1.12); and another one which relies on properties of (K̃(σ)
q ) only.

These conditions can be seen as stability conditions for the numerical scheme and will be used to
prove Theorems 1 and 2.

Lemma 2. Let (Aq)0≤q≤Q−1 be given real numbers, and a be a bilinear form defined by:

a :


P0
k(0, T )× P0

k(0, T )→ R

(b, c) =

(
Q−1∑
q=0

bqφ
q,

Q−1∑
q=0

cqφ
q

)
7→ k

Q−1∑
q=0

bq

q∑
q̃=0

Aq̃cq−q̃
.

9



Then: |a(b, c)| ≤ ‖b‖L2‖c‖L2

Q−1∑
q=0

|Aq|.

Proof: Let a, b, c be as in the lemma. Using a change of variable and Cauchy-Schwarz inequality,
we get:

|a(b, c)| =

∣∣∣∣∣∣
Q−1∑
q̃=0

Aq̃k

Q−1∑
q=q̃

bqcq−q̃

∣∣∣∣∣∣ ≤ k
Q−1∑
q̃=0

|Aq̃|

(
Q−1∑
q=0

b2q

)1/2(Q−1∑
q=0

c2q

)1/2

=

Q−1∑
q̃=0

|Aq̃|‖b‖L2‖c‖L2 .

Lemma 3. The bilinear form aT,k defined above is continuous and satisfies, for any u, v in
P0(0, T,H1(B)):

|aT,k(u, v)| ≤ max
1≤i≤M

Q−1∑
q′=0

|K̃(σi)
q′ − K̃

(σi)
q′−1|‖u‖L2(0,T,H1(B))‖v‖L2(0,T,H1(B)).

Proof:

Let u =

Q−1∑
q=0

uqφ
q, v =

Q−1∑
q=0

vqφ
q ∈ P0(0, T,H1(B)). Then,

|aT,k(u, v)| ≤
M∑
i=1

k

Q−1∑
q=0

q∑
q′=0

|K̃(σi)
q′ − K̃

(σi)
q′−1|

∫
ei

∣∣∣∣ ∂uq∂x(ei)
∂vq−q′

∂x(ei)

∣∣∣∣dx
≤

M∑
i=1

k

Q−1∑
q=0

q∑
q′=0

|K̃(σi)
q′ − K̃

(σi)
q′−1|‖uq‖H1(ei)‖vq−q′‖H1(ei).

Using Lemma 2 and Cauchy-Schwarz inequality, we get:

|aT,k(u, v)| ≤
M∑
i=1

Q−1∑
q′=0

|K̃(σi)
q′ − K̃

(σi)
q′−1|‖u‖L2(0,T,H1(ei))‖v‖L2(0,T,H1(ei))

≤ max
1≤i≤M

Q−1∑
q′=0

|K̃(σi)
q′ − K̃

(σi)
q′−1|

M∑
i=1

‖u‖L2(0,T,H1(ei))‖v‖L2(0,T,H1(ei))

≤ max
1≤i≤M

Q−1∑
q′=0

|K̃(σi)
q′ − K̃

(σi)
q′−1|‖u‖L2(0,T,H1(B))‖v‖L2(0,T,H1(B)).

As a direct application of the lemma, we get the following estimate on the approximation of aT .

Proposition 1. The following estimate holds :

‖aT,k − aT ‖ ≤ θ(k)

where the norm is the norm for bilinear forms on L2(0, T,H1(B)). In addition, if aT is α-coercive
with α > θ(k), then aT,k is (α− θ(k))-coercive, and continuous.

In Proposition 1, α depends on T . Hence, for a given k, aT,k may not be coercive for large T . The
following lemma gives a condition under which aT,k is coercive for any k and T . It is a refinement
of the Lemma 4.2 of [14].

Lemma 4. Let k,C,E, Tm ∈ R+∗ and (Kq)q∈Z such that:

• k < min{Tm, T},

• 0 ≤ Kq ≤ C if q ≥ 0,

• Kq = 0 if q < 0,
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• Kq+1 − 2Kq +Kq−1 ≥ 0 if q ≥ 1,

• E ≤ Kq+1 − 2Kq +Kq−1

k2
if Tm ≤ qk ≤ 2Tm.

Let a be the bilinear form defined as in Lemma 2 with Aq = Kq −Kq−1. Then{
|a(b, c)| ≤ C‖b‖L2‖c‖L2 ,

a(b, b) ≥ αT ‖b‖2L2 ,

where:

αT =
1

2
T 2
mEmin

{
T 2
m

16T 2
,

1

40

}
.

Remark: The assumptions on (Kq) are discrete analogues of the fact that the (K(σ)) are nonneg-

ative and bounded, (K(σ))′′ are nonnegative and the (K(σ))′′ is larger than some constant E > 0
on an interval [Tm, 2Tm], for any σ ∈ {σ1, . . . , σM}. This fact arises straightforwardly from the
generalized Dirichlet series expression in Lemma 2 in [10] (see also the forthcoming second part of
this article).

Proof: (Kq+1 − Kq)q≥0 is increasing and bounded by 2C and therefore convergent. Its limit is
zero, otherwise (Kq) would not be bounded. Thus, (Kq+1 −Kq)q≥0 is negative and so (Kq)q≥0 is
decreasing. We have, from Proposition 1 that

|a(b, c)| ≤ ‖b‖L2‖c‖L2(K0 +

Q−1∑
q=1

|Kq −Kq−1|)

≤ ‖b‖L2‖c‖L2(K0 +K0 −KQ−1) ≤ 2C‖b‖L2‖c‖L2 .

Let b =

Q−1∑
q=0

bqφ
q, c =

Q−1∑
q=0

cqφ
q. Let b̂, ĉ, G be the discrete Fourier transform of (kbq)q, (kcq)q,

(Kq −Kq−1)q:

b̂(ξ) = k

Q−1∑
q=0

bqe
−2πiqkξ, ĉ(ξ) = k

Q−1∑
q=0

cqe
−2πiqkξ, G(ξ) =

∑
q∈Z

(Kq −Kq−1)e−2πiqkξ.

Then, according to Parseval equality for Fourier series, we have:∫ T

0

b(t)2dt = k

Q−1∑
q=0

b2q =

∫ 1
2k

− 1
2k

|b̂(ξ)|2dξ, a(b, c) =

∫ 1
2k

− 1
2k

G(ξ)b̂(ξ)ĉ(ξ)dξ.

Let Dn(x) = 1+2

n∑
q=1

cos(qx) be the Dirichlet kernel. By summing by parts, and using the decrease

of (Kq)q≥0, we obtain:

ReG(ξ) =

∞∑
q=1

(Kq −Kq−1)(cos(2πqkξ)− 1) + lim
q→∞

(K0 −Kq)

≥ (K1 −K0)(1− 1) +

∞∑
q=1

(Kq+1 − 2Kq +Kq−1)

q∑
q̃=0

(1− cos(2πq̃kξ))

≥
∞∑
q=1

(Kq+1 − 2Kq +Kq−1)

(
q +

1

2
− 1

2
Dq(2πkξ)

)
.

• For x ∈] − π

4n
,
π

4n
[ \ {0}, D′′n(x) ≤ −

n∑
q=1

q2 cos
π

4
= −

√
2

2

n(n+ 1)(2n+ 1)

6
≤ −n

3

6
. By

integrating twice, we get that Dn(x) ≤ 2n+ 1− n3

12
x2.
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• For x ∈ ]−π, π[ \ ]
−π
2n

,
π

2n
[, we have | sin x

2
| ≥ | sin π

4n
| =

π

4n
| sinc

π

4n
| ≥ π

4n
| sinc

π

4
| ≥ 2

3n
,

and then |Dn(x)| =

∣∣∣∣ sin(n+ 1
2 )x

sin x
2

∣∣∣∣ ≤ 1

| sin x
2 |
≤ 3n

2
(sin, sinc are monotone on [0,

π

4
], where

sinc is defined by: sinc(x) =
sinx

x
).

• For x ∈]− π

2n
,
π

2n
[ \ ]
−π
4n

,
π

4n
[, D′n(x) has the same sign as −x. Hence

Dn(x) ≤ 2n+ 1− n3

12
(
π

4n
)2 ≤ 2n+ 1− n

20
,

q +
1

2
− 1

2
Dq(2πkξ) ≥ min

{
1

24
q3(2πkξ)2,

q

40
, q +

1

2
− 3q

4

}
for ξ ∈]

−1

2k
,

1

2k
[.

Then

ReG(ξ) ≥
∑

Tm≤qk≤2Tm

(Kq+1 − 2Kq +Kq−1) min

{
1

24
q3(2πkξ)2,

q

40

}
,

ReG(ξ) ≥ Tm
k
k2Emin

{
1

24

(
Tm
k

)3

(2πkξ)2,
1

40

Tm
k

}
,

ReG(ξ) ≥ T 2
mEmin

{
T 2
mξ

2,
1

40

}
.

Using Cauchy-Schwarz inequality, we also have:

‖b̂‖∞ ≤
√
T‖b‖L2 .

Hence,

∫ 1
4T

− 1
4T

|b̂(ξ)|2dξ ≤ 1

2T
‖b̂‖2∞ ≤

1

2
‖b‖2L2 and

1

2
‖b‖2L2 ≤

∫
]− 1

2k ,
1
2k [ \ ] 1

4T ,−
1

4T [

|b̂(ξ)|2dξ, and there-

fore:

a(b, b) ≥
∫
]− 1

2k ,
1
2k [ \ ]− 1

4T ,
1

4T [

ReG(ξ)|b̂(ξ)|2dξ ≥
∫
]− 1

2k ,
1
2k [ \ ]− 1

4T ,
1

4T [

2αT |b̂(ξ)|2dξ ≥ αT ‖b‖2L2 .

Proposition 2. Assume that (K̃(σ)
q )q∈Z satisfies the hypotheses of Lemma 4 for each σ ∈ {σ1, . . . , σM}.

Let D =

M∑
i=1

|ei|. Then aT,k, as defined in (3.18), is continuous and coercive:

∀p, c ∈ L2(0, T,H1(B)), |aT,k(p, c)| ≤ 2C‖p‖L2(0,T,H1(B))‖c‖L2(0,T,H1(B)),

∀p ∈ L2(0, T,H1(B)), aT,k(p, p) ≥ αT√
1 +D2

‖p‖2L2(0,T,H1(B)).

Proof:
Continuity is a direct consequence of Proposition 1 and Lemma 4.

For c ∈ H1(B), |c(M)− c(O1)| ≤
∫
B

∣∣∣∣ ∂c

∂x(e)

∣∣∣∣dx ≤
√∫
B

dx

∫
B

∣∣∣∣ ∂c

∂x(e)

∣∣∣∣2 dx.

It follows that the Poincaré inequality: ‖p‖2H1(B) ≤ (D2 + 1)

∫
B

∣∣∣∣ ∂p

∂x(e)

∣∣∣∣2 dx holds true.

Then, using Lemma 4 with a = aT,k, for p ∈ L2(0, T,H1(B)), we have that

aT,k(p, p) ≥ αT
∫
B

∫ T

0

∣∣∣∣ ∂p

∂x(e)

∣∣∣∣2 dxdt

≥ αT
∫ T

0

1√
D2 + 1

‖p(., t)‖2H1(B)dt

≥ αT√
D2 + 1

‖p‖2L2(0,T,H1(B)).
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3.3 Total discretization on the graph

Let h be a space step, h > 0.

For each edge e, let us denote h(e) the largest space step such that h(e) ≤ h and S(e) =
|e|
h(e)

is an

integer.

Let 0 = x
(e)
0 , x

(e)
1 = h(e) . . . , x

(e)

S(e) = S(e)h(e) = |e| be the subdivision [0, |e|] with step h(e). For

s ∈ {0, . . . , S(e)}, let X(e)
s designates the point of e with last local coordinate equal to x(e)s (so that

if the local coordinate system has Oi as origin then X(e)
s = Oi +R(e)(0̂, x(e)s )).

Let P1
h(B) be the subset of continuous functions ψ : B → R such that ψ is affine on [X(e)

r , X
(e)
r+1] for

each r ∈ {0, . . . , S(e) − 1} (i.e., in local coordinates, ψ(Oi +R(e)(0̂, x(e))) is affine on [x(e)s , x
(e)
s+1]).

Assume that aT,k is continuous coercive. Let us define ph,k ∈ P0
k(0, T,P1

h(B)) by:

∀ψ ∈ P0
k(0, T,P1

h(B)), aT,k(ph,k, ψ) = bT,h(ψ) (3.19)

where bT,h is an approximation of bT defined below.

Let Ph be the set of all X(e)
s , with e an edge of the graph and s ∈ {0, . . . , S(e)}, with O1 excluded.

For X ∈ Ph, let us define ψX ∈ P1
h(B) by ψX(X) = 1 and ψX(Y ) = 0 if Y ∈ Ph and Y 6= X.

We approximate the integral on B in bT by the trapezoidal rule. So, we define bT,h by:

bT,h(ψXφq) = (F (X, tq+1)− F (X, tq))

∫
B
ψX(x)dx+

N∑
`=1

ψX(O`)(Ψ`(O`, tq+1)−Ψ`(O`, tq)),

for every X ∈ Ph and q ∈ {0, . . . , Q − 1}. Note that if F = 0, then bT,h = bT , and that for any
ψ ∈ P1

h(B) and f ∈ Hr
dc(B), r ∈ {1, 2}, we have:∣∣∣∣∣

∫
B
fψdx−

∑
X∈Ph

f(X)ψ(X)

∫
B
ψXdx

∣∣∣∣∣ ≤ hr
∫
B

∣∣∣∣ ∂r(fψ)

(∂x(e))r

∣∣∣∣dx.
In the right handside,

∫
B

is to be understood as a sum of integrals on each step of the space

subdivision: over these intervals, ψ is smooth and the rth-derivative of fψ is in L1. Furthermore:∫
B

∣∣∣∣∂(fψ)

∂x(e)

∣∣∣∣dx ≤ h(‖f‖H1
dc(B)‖ψ‖L2(B) + ‖f‖L2(B)‖ψ‖H1

dc(B)).∫
B

∣∣∣∣ ∂2(fψ)

(∂x(e))2

∣∣∣∣ dx ≤ h2(‖f‖H2
dc(B)‖ψ‖L2(B) + 2‖f‖H1

dc(B)‖ψ‖H1
dc(B) + 0) if r = 2.

Hence, if F ∈ H1(0, T,Hr
dc(B)), then, by using Cauchy-Schwarz inequality:

|(bT,h − bT )(ψφq)| ≤ 3hr
√
k‖F‖H1([tq,tq+1],Hr

dc(B))‖ψ‖H1(B),

and therefore, for ψ ∈ P0
k(0, T,P1

h(B)) and F ∈ H1(0, T,Hr
dc(B)), r ∈ {1, 2}, we have:

|(bT,h − bT )(ψ)| ≤ 3hr‖F‖H1(0,T,Hr
dc(B))‖ψ‖L2(0,T,H1(B)). (3.20)

Now, rewriting

ph,k =
∑

X∈Ph,0≤q≤Q−1

PX,qψ
Xφq,

and introducing the notations

Kq,X,Y =

∫
B
K̃(σ)
q

∂ψX

∂x(e)
∂ψY

∂x(e)
dx,

RX,q = bT,h

ψX q−1∑
q̃=0

φq̃

 = bT,h(ψX1[t0,tq ]),
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the totally discretized problem (3.19) is equivalent to solve for the coordinates Pq,X of ph,k the
following system:

∀r ∈ {0, ..., Q−1}, X ∈ Ph :
∑
Y ∈Ph

K0,X,Y PY,r +

r−1∑
q̃=0

(Kr−q̃,X,Y −Kr−q̃−1,X,Y )PY,q̃

 = RX,r+1−RX,r.

(3.21)
Since R0,X = 0, by summation over r this can be reformulated as:

∀q ∈ {0, ..., Q− 1}, X ∈ Ph :

q∑
q̃=0

∑
Y ∈Ph

Kq−q̃,X,Y PY,q̃ = RX,q+1.

Note that

RX,q =


Ψ`(tq) +

1

2

∑
1≤j≤M,O`∈ej

h(ej)F (O`, tq) if X = O`,

h(e)F (X(e)
s , tq+1) if X = X(e)

s , s ∈ {1, . . . , S(e) − 1},

and

Kq,X,Y =



∑
1≤j≤M,O`∈ej

K̃
(σj)
q

h(ej)
if X = Y = O`,

2K̃
(σj)
q

h(ej)
if X = Y = X(ej)

s , s ∈ {1, . . . , S(ej) − 1},

−K̃(σj)
q

h(ej)
if {X,Y } = {X(ej)

s , X
(ej)
s+1}, s ∈ {0, . . . , S(ej) − 1},

0 otherwise.

Hence, we have the same scheme as described in the introduction, Section 1.2.

3.4 Discretization in the cross-section

If we want to use Theorem 1 and 2 of Section 4, we must determine an approximation of K(σ)
q such

that θ(k) is small.
In Section 5, we test the scheme on the graph with the exact value of the kernel when known, and
with the three different approximations for the kernel, described below: (3.26),(3.29),(3.30).

3.4.1 Exact kernels

When the cross-section σ is a rectangle, an equilateral triangle or a disc, we express in[8] K(σ) as
a computable generalized Dirichlet series:

K(σ)(t) =

∞∑
k=−∞

4

(2k + 1)2π2
e−π

2(2k+1)2t if σ =]0, 1[, (3.22)

K(σ)(t) = abK(]0,1[)(a−2t)K(]0,1[)(b−2t) if σ =]0, a[×]0, b[, (3.23)

K(σ)(t) = 4π

+∞∑
i=1

1

µ 2
i

e−µ
2

i t if σ =
{
x ∈ R2; ‖x‖2 < 1

}
, (3.24)

K(σ)(t) =
3
√

3

2π2

+∞∑
k=1

1

k2
exp

(
−16π2

3
k2t

)
if σ = T (3.25)

where µi denotes the i-th zero of the zero-th Bessel function J0 and T denotes the triangle with

vertices (0, 0), (0, 1), (
1

2
,

√
3

2
).
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If these exact expressions are used, then θ(k) = 0. For the square and the triangle cross section, we
obtain series expansions for the kernels that converge rapidly for small times, by using the Poisson
summation formula.
Furthermore, one can show that (K(σ)

q ) satisfies the hypotheses of Proposition 2. Hence, with this
choice, the scheme on the graph is unconditionally stable.

3.4.2 Numerical approximation of the kernels

For an arbitrary smooth domain σ, let us consider a quasi-uniform triangulation of σ and denote by

H the diameter of its largest triangle. Let S
(σ)
H ⊂ L2(σ) be the space of Pr−1 finite elements where

r ≥ 2. Let T
(σ)
H : L2(σ)→ S

(σ)
H be the operator discretizing the inverse of the Dirichlet Laplacian,

using Nitsche method for the boundary conditions. Then, (T
(σ)
H − τI) : S

(σ)
H → S

(σ)
H is invertible

whenever τ ≥ 0.
Consider the following numerical scheme which use the implicit Euler method as time integrator:

V 0
H,k = W (σ),

T
(σ)
H

V q+1
H,k − V

q
H,k

k
= V q+1

H,k ,

K(σ)
q =

∫
σ

V qH,kdx̂,

(3.26)

where W (σ) is an approximation of 1. Note that there is a special method of resolution which is
presented in Section 3.5.3.

In the present paper, we test the case where W (σ) is the interpolant of (I − k∆)−11 and can be
computed explicitly.

If W = 1, then we show in [8] that (K̃(σ)
q ) satisfies the hypotheses of Proposition 2. Hence, with this

choice, the scheme on the graph is unconditionally stable. Using techniques in Thomée’s book [30]
we also prove that when h = kγ , γ > 0, and k small enough, the scheme is convergent with:

θ(k) ≤ C max{H2, k} 1
3 . (3.27)

The numerical experiments in [8] indicate that the power 1/3 may be improved and replaced by 1/2
and the use of L-stable higher-order methods do not improve the accuracy, unless an approximation
for small times is used as in the next paragraph.

3.4.3 Corrected approximation

When the numerical approximation is used, most of the error is done for small time. Hence, if an
asymptotic expansion near t = 0+ is known, one can use it to obtain a more accurate approximation
of the kernel.
When σ is smooth and simply connected, using the boundary layer theory presented in Gie, Jung
& Temam [12], we obtain in [8] an asymptotic expansion of K.
Let us denote γ : [0, |∂σ|] → ∂σ, a parametrization by the arclength of ∂σ (i.e. ‖γ′‖ = 1),
κ(s) = det(γ′(s), γ′′(s)) the curvature. Then:

K(σ)(t) = |σ| − 2√
π
|∂σ|t 1

2 + πt+
1

6
√
π
t
3
2

∫ |∂σ|
0

κ(s)2ds+Ot→0+(t2). (3.28)

Let us consider a modified version of scheme (3.26), and take the BDF2 time integrator (see [30])
and P1-elements in space.

V 0
H,k = 1,

T
(σ)
H

V 1
H,k − V 0

H,k

k
= V 1

H,k,

T
(σ)
H

3V q+2
H,k − 4V q+1

H,k + V qH,k
3k

= V q+2
H,k if q ≥ 0

K̃(σ)
q,num =

∫
σ

V qH,k + V q+1
H,k

2
dx.

(3.29)
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Let us use the asymptotic expansion (3.28) to correct the previous approximation for small times.

From (3.28),

∫ τ

0

K(σ)dt = χ(t) +Ot→0+(t
5
2 ), with χ(t) = |σ|t− 4

3
√
π
|∂σ|t 3

2 +
π

2
t2. We take K̃(σ)

q,cor

to be such that:
K(σ)
q,cor = K(σ)

q,num if Q
1
3 ≤ q ≤ Q− 1,

K
(σ)
q,cor −K(σ)

q−1,cor

k
=
χ((q + 1)k)− 2χ(qk) + χ((q − 1)k)

k2
if 1 ≤ q ≤ Q 1

3 .
(3.30)

In this case, the hypotheses of Proposition 2 are not automatically satisfied, but we can refine (3.27)

and get, when H = kγ , γ ≥ 1

2
and k small enough:

θ(k) ≤ C max{k,H} 2
3 . (3.31)

Numerical experiments suggest that the power 2/3 may be replaced by 1, or more if all the terms
from (3.28) are used.

3.5 Remarks on the solving of the scheme

Let us describe three methods to solve the scheme (3.21) on the graph. The first two methods can
be used for any type of kernel approximation but the last one will only work for (3.26).
Let S be the number of elements of Ph.

3.5.1 Using the block triangular structure

The first computational strategy uses the block-triangular structure of the matrix with respect
to the time variable and solves the corresponding system of equations by the method of forward
substitution. In this case, only the sparse matrix (K0,X,Y )X,Y ∈Ph

needs to be inverted. It is
tridiagonal, except for the junctions. Hence, its Choleski factorisation takes O(NS + N3) flops.
The Choleski factor has O(NS + N2) nonzero elements. The computation of (PX,q)X∈Ph

at the
time step number q, when values (PX,0)X∈Ph

, . . ., (PX,q−1)X∈Ph
are known, costs O(q(NS +N2))

flops.
Hence, the total computational cost is O

(
NS +N3 +Q2(NS +N2)

)
.

3.5.2 Using the Fast Fourier Transform

Let us describe the second strategy. Denote (Aq)0≤q≤Q−1?(Bq)0≤q≤Q−1 =

 q∑
q̃=0

AqBq−q̃


0≤q≤Q−1

.

This discrete convolution can be computed by using the Discrete Fourier Transform with only
O(Q log(Q)) multiplications. First, let us solve the equation:

(K ? Z)q,X,Y =

{
δX,Y if q = 0,

0 if q 6= 0.

The solution Z can be computed by dlog2Qe Newton’s iterations:

Z = Φdlog2Qe(A), Aq =

{
((K0,X,Y )X,Y ∈Ph

)−1 if q = 0

0 if q 6= 0
, Φ(B) = B ? (2I −B ? K ? B).

Then PX,q is given by:

∀q ∈ {0, ..., Q− 1}, X ∈ Ph : PX,q =
∑
Y ∈Ph

q∑
q̃=0

Zq,X,YRq+1,Y .

The computational cost is here O(Q log(Q)2S3).

Remark: When there is no forcing along the pipe (F = 0), the second method is more efficient for
large Q since one can take one space step per pipe without loss of precision, which implies S = N .
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3.5.3 Coupling with the cross-section

The following formulation of the scheme is of interest when we want to recover the velocity inside
the tubes. Besides, contrary to the two previous methods, its complexity scales linearly with the
number of time steps.
For x ∈ B, x̂ ∈ σ̄(x), let U(x, x̂, t) such that:

∂U

∂t
(x, x̂, t)−∆x̂U(x, x̂, t) = − ∂P

∂xe
(x), x̂ ∈ σ, t > 0,

U(x̂, t) = 0, x̂ ∈ ∂σ, t > 0,

U(x̂, 0) = 0, x̂ ∈ σ.

Then [20, 21], at some distance from the junctions:

uε(Oij +R(ej)(εx̂, xd), tε
2) ' R(ej)(0̂, U(x̂, Oij +R(ej)(0̂, xd), t).

In the sequel, U
(ej)

s+ 1
2 ,q

designates an approximation of U
(
·, X(ej)

s+ 1
2

, tq+1/2

)
, withX

(ej)

s+ 1
2

=
X

(ej)
s+1 +X

(ej)
s

2
.

Let K̃(σ)
q as defined in (3.26). Then, the finite difference scheme is equivalent to the continuity

condition (1.10) and Dirichlet condition for the pressure (1.11) coupled with following equations:

U
(ej)

s+ 1
2 ,q
∈ S(σj)

H ⊂ L2(σj) if 1 ≤ j ≤M, 0 ≤ s < S(ej), 0 ≤ q < Q,

U
(ej)
s,0 = 0 if 1 ≤ j ≤M, 0 ≤ s < S(ej),

U
(ej)

s+ 1
2 ,q+1

= (I − k(T
(σj)
H )−1)−1U

(ej)

s+ 1
2 ,q+1

− k
P

(ej)
s+1,q+1 − P

(ej)
s,q+1

h(ej)
W (σj) if


1 ≤ j ≤M,

0 ≤ s < S(ej),

0 ≤ q < Q,

f
(ej)
s,q+1 =

∫
σj

U
(ej)

s+ 1
2 ,q+1

− U (ej)

s− 1
2 ,q+1

h(ej)
dx if 1 ≤ j ≤M, 1 < s < S(ej), 0 ≤ q < Q,

Ψ`,q+1 =
∑

1≤j≤M,O`∈ej

(
−h

(ej)

2
f
(ej)
s,q+1 + α`,j

∫
σj

U
(ej)

s+ 1
2α`,j ,q+1

dx

)
if 1 ≤ ` ≤ N, 0 ≤ q < Q,

where, in the sum, s is such that X(ej)
s = O`.

This formulation can be solved in the following way. When the U (ej)
s,q are known for a given q ∈

{0, 1 . . . , Q− 2}, P (ej)
s,q+1 is the unique solution to (1.10)-(1.11) coupled with the system:

kK̃
(σ)
0

P
(ej)
s+1,q+1 − 2P

(ej)
s,q+1 + P

(ej)
s−1,q+1

(h(ej))2
= −f (ej)s,q+1 −

∫
σj

(I − k(T
(σj)
H )−1)−1

U
(ej)

s+ 1
2 ,q
− U (ej)

s− 1
2 ,q

h(ej)
dx

if 1 ≤ j ≤M, 0 ≤ s < S(ej), 0 ≤ q < Q,

Ψ`,q+1 =
∑

1≤j≤M,O`∈ej

−h(ej)
2

f
(ej)
s,q+1 − kK̃

(σj)
0

P
(ej)
s+α`,j ,q+1 − P

(ej)
s,q+1

h(ej)

+α`,j

∫
σj

(I − k(T
(σj)
H )−1)−1U

(ej)

s+ 1
2α`,j ,q

dx

)
, if 1 ≤ ` ≤ N, 0 ≤ q < Q,

where in the sum, s is such that X(ej)
s = O`.

Once (P
(ej)
s,q+1) are known, (U

(ej)

s+ 1
2 ,q+1

) are straightforward to compute.

Note that the system to inverse is the same as for the block triangular approach.

If we denoteR the time to compute the Choleski factorization of (I − k(T
(σ)
H )−1) and r the number of

non-zero elements of the corresponding factors, then the total cost isO
(
NS +N3 +NR+QS(NS +N2)r

)
.
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4 Convergence of the scheme

The following theorem is the main result of this paper. It proves that the proposed scheme on
the graph is convergent with order one in space and time, provided the discretization in the cross-
section is well-chosen: either θ(k) = 0 (exact kernels) or the order is limited by the accuracy of the
approximations of the kernels discussed above (3.27), (3.31).
With additional assumptions, we improve the order of convergence in Theorem 2.

Theorem 1. Let θ(k) = max
1≤j≤M

|K(σj)
0 − K̃(σj)

0 |+
Q−1∑
q=1

|K(σj)
q −K(σj)

q−1 − K̃(σj)
q + K̃

(σj)
q−1 |.

Let ph,k ∈ L2(0, T,H1(B)) be the function such that:

• ph,k is affine on [X(ej)
s , X

(ej)
s+1 ]× {t} for t ∈ [0, T ], 1 ≤ j ≤M , s ∈ {0, . . . , S(ej) − 1}.

• ph,k(X(ej)
s , t) = P (ej)

s,q for t ∈]tq, tq+1[, 1 ≤ j ≤M , s ∈ {0, . . . , S(ej)}, q ∈ {0, . . . , Q− 1}.

Assume that

θ(k)→ 0 as k → 0, F ∈ H1
00(0, T,H1

dc(B)),Ψ1, . . . ,ΨN ∈ H1
00(0, T ).

Then:
ph,k → P in L2(0, T,H1(B)) when (h, k)→ (0, 0).

Furthermore, there exists C1, C2 such that if:

θ(k) < C2, F ∈ H2
00(0, T,H2

dc(B)),Ψ1, . . . ,ΨN ∈ H2
00(0, T ),

then P ∈ H1(0, T,H2
dc(B)) and:

‖ph,k − P‖L2(0,T,H1(B)) ≤C1

(
h‖P‖L2(0,T,H2

dc(B)) +
h

C2 − θ(k)
‖F‖H1(0,T,H1

dc(B))

+k‖P‖H1(0,T,H1(B)) + ‖P‖L2(0,T,H1(B))
θ(k)

C2 − θ(k)

)
.

Proof: We use the following lemma.

Lemma 5. There exists C > 0 such that, for every u ∈ H1(0, T,H1(B) ∩H2
dc(B)):

inf
ψ∈P0

k(0,T,P
1
h(B))

‖ψ − u‖L2(0,T,H1(B)) ≤ C
(
h‖u‖L2(0,T,H2

dc(B)) + k‖u‖H1(0,T,H1(B))

)
Proof of the Lemma: If u ∈ H1(B)∩H2

dc(B) and Ph is the continuous piecewise linear interpolant
in P1

h(B) at the points of the subdivision, then:

‖u− Phu‖H1(B) ≤ Ch‖u‖H2
dc(B), ‖Phu‖H1(B) ≤ C‖u‖H1(B).

Now, let v ∈ H1(0, T ) and let Qk be the L2-projector on P0
k(0, T ). Then:

‖v −Qkv‖L2(B) ≤ Ck‖v‖H1(B)

and

‖p− PhQkp‖L2(0,T,H1(B)) ≤ ‖p−Qkp‖L2(0,T,H1(B)) + ‖Qkp− PhQkp‖L2(0,T,H1(B))

≤ Ck‖p‖H1(0,T,H1(B)) + Ch‖Qkp‖L2(0,T,H2
dc(B))

≤ Ck‖p‖H1(0,T,H1(B)) + Ch‖p‖L2(0,T,H2
dc(B)).

This proves the lemma.

Now, we prove the convergence theorem.
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Let α be the coercivity constant of aT . From Proposition 1 in Section 3.2, we know that:

‖aT,k − aT ‖ ≤ θ(k).

Thus, for k small enough, aT,k is (α− θ(k))-coercive. Let α(k) be the constant of coercivity of aT,k.
Let ph,k ∈ P0

k(0, T,P1
h(B)) be the unique solution of:

∀ψ ∈ P0
k(0, T,P1

h(B)), aT (ph,k, ψ) = bT (ψ).

According to Céa’s lemma, we have:

‖P − ph,k‖L2(0,T,H1(B)) ≤
‖aT ‖
α

inf
ψ∈P0

k(0,T,P
1
h(B))

‖P − ψ‖L2(0,T,H1(B)). (4.32)

Let us now estimate ph,k − ph,k. Using (3.19), we have:

aT,k(ph,k − ph,k, ψ) = aT (ph,k, ψ)− aT,k(ph,k, ψ) + bT,h(ψ)− bT (ψ).

By taking ψ = ph,k−ph,k and using coercivity on the left-hand side and continuity on the right-hand
side, we get:

α(k)‖ph,k − ph,k‖L2(0,T,H1(B)) ≤ θ(k)‖ph,k‖+ ‖bT,h − bT ‖L2(0,T,H1(B))′ .

Hence, we have:

‖P − ph,k‖L2(0,T,H1(B))

≤ ‖aT ‖
α

inf
ψ∈P0

k(0,T,P
1
h(B))

‖P − ψ‖L2(0,T,H1(B))

+
θ(k)

α(k)
‖ph,k‖L2(0,T,H1(B)) +

1

α(k)
‖bT,h − bT ‖L2(0,T,H1(B))′ .

(4.33)

Let us now show that lim
(h,k)→(0,0)

‖P −ph,k‖L2(0,T,H1(B)) = 0. As H1(0, T,H1(B)∩H2
dc((B)) is dense

in L2(0, T,H1((B)), Lemma 5 implies that

lim
(h,k)→(0,0)

inf
ψ∈P0

k(0,T,P
1
h(B))

‖P − ψ‖L2(0,T,H1(B)) = 0.

From equation (3.20), lim
h→0
‖bT,h − bT ‖L2(0,T,H1(B))′ = 0, and, as α(k) ≥ α − θ(k) implies that

lim inf α(k) > 0, we conclude that

lim
(h,k)→(0,0)

‖P − ph,k‖L2(0,T,H1(B)) = 0.

This is the first part of Theorem 1. Now, if we assume in addition that F ∈ H2
00(0, T,H2

dc(B)),

Ψ1, . . . ,ΨN ∈ H2
00(0, T ), then, from the regularity resulsts of Section 2.3, we have that P ∈

H1
00(0, T,H2

dc(B)). Hence, using Lemma 5:

inf
ψ∈P0

k(0,T,P
1
h(B))

‖P − ψ‖L2(0,T,H1(B)) ≤ Ch‖P‖L2(0,T,H2
dc(B)) + Ck‖P‖H1(0,T,H1(B)).

Besides, if ph,k 6= 0, α‖ph,k‖L2(0,T,H1(B)) ≤
1

‖ph,k‖L2(0,T,H1(B))
aT (P, ph,k) ≤ ‖aT ‖‖P‖L2(0,T,H1(B))

and from equation (3.20), we get:

‖bT,h − bT ‖L2(0,T,H1(B))′ ≤ 3h‖F‖H1(0,T,H1
dc(B)).

Also, α(k) ≥ α − θ(k). Combining all these inequalities into (4.33), we get the second part of
Theorem 1.

Let us introduce the following lemma which is used to prove Theorem 2.
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Lemma 6. Let p : [0, T ]→ R a C2 function. Let p̃ =

Q−1∑
q=0

p(tq+1/2)φq, where φq = 1[tq,tq+1[.

Assume that K : [0, T ]→ R is a continuous function, continuously differentiable on ]0, T ], such that

K ≥ 0,K ′ ≤ 0 and that K ′(t) = Ot→0+(t−1/2). Let Lp(t) =

∫ t

0

K(t− s)p(s)ds.

Then, for any φ ∈ Pk(0, T ):∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φ(t)dt

∣∣∣∣∣ ≤ Ck2(‖p′‖∞
√

log(T/k) + ‖p′′‖∞)‖φ‖L2 .

If furthermore p′(0) = 0, then:∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φ(t)dt

∣∣∣∣∣ ≤ Ck2‖p′′‖∞‖φ‖L2 .

Proof:

Let µ(t) =

∫ t

k/2

(p − p̃)(τ)dτ , so that µ is C2 on [0, T ]\{t0, t1, . . . , tQ} and µ′(tq+1/2) = 0 for

q ∈ {0, . . . , Q− 1}.
Besides, for any t ∈]0, T − k[\{t0, t1, . . . , tQ}, there exists q ∈ {0, 1, . . . , Q} such that tq ∈]t, t+ k[.
Then:

|µ′′(t+ k)− µ′′(t)| = |p′(t+ k)− p′(t)| ≤ k‖p′′‖∞.
Integrating from s = tq−1/2 to s = t, we get: |µ′(t+ k)− µ′(t)| ≤ k2‖p′′‖∞.

Integrating from s = tq−1 to s = t, using |µ(tq)−µ(tq−k)| = |
∫ tq

tq−1

p(t)− p(tq+1/2)dt| ≤ k3‖p′′‖∞,

we get:

|µ(t+ k)− µ(t)| ≤ k3‖p′′‖∞ + |µ(tq)− µ(tq − k)| ≤ 2k3‖p′′‖∞
.
Let us now introduce µ in the integral to be bounded:∫ T

0

(L(p− p̃))′(t)φq(t)dt =

∫ tq+1

tq

(
K(0)(p− p̃)(t) +

∫ t

0

K ′(τ)(p− p̃)(t− τ)dτ

)
dt

= K(0)(µ(tq+1)− µ(tq)) +

∫ tq+1

tq

∫ tq

0

K ′(τ)(p− p̃)(t− τ)dτdt

+

∫ tq+1

tq

∫ t

tq

K ′(τ)(p− p̃)(t− τ)dτdt

= K(0)(µ(tq+1)− µ(tq)) +

∫ tq

0

K ′(τ)(µ(tq+1 − τ)− µ(tq − τ))dτ

+

∫ tq+1

tq

∫ t

tq

K ′(τ)(p− p̃)(t− τ)dτdt

Since −Ct− 1
2 ≤ K ′(t) ≤ 0 and thus

∫ T

0

|K ′(t)|dt ≤ K(0), and since ‖p− p̃‖ ≤ k‖p′‖, we get:∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φq(t)dt

∣∣∣∣∣ ≤ K(0)k3‖p′′‖∞ + 2K(0)k3‖p′′‖∞ + k‖p′‖∞
∫ tq+1

tq

∫ t

tq

Ct−
1
2 dτdt

≤ 3K(0)k3‖p′′‖∞ + 2Ck
5
2 (q + 1)−

1
2 ‖p′‖∞.

From this, we conclude that, for φ =

Q−1∑
q=0

aqφq ∈ P0
k(0, T ):

∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φ(t)dt

∣∣∣∣∣ ≤ 2

Q−1∑
q=0

|aq|C(q + 1)−
1
2 k

5
2 ‖p′‖∞ + 3

Q−1∑
q=0

|aq|k3K(0)‖p′′‖∞.
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With Cauchy-Schwarz inequality this yields:

∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φ(t)dt

∣∣∣∣∣ ≤ 2C
‖φ‖L2√

k
k

5
2 ‖p′‖∞

(
Q−1∑
q=0

(q + 1)−1

)1/2

+ 3
‖φ‖L2√

k

√
T

k
K(0)k3‖p′′‖∞,

∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φ(t)dt

∣∣∣∣∣ ≤ (2Ck2‖p′‖∞(log(T/k))1/2 + 3
√
TK(0)k2‖p′′‖∞

)
‖φ‖L2 .

If furthermore p′(0) = 0, then, for t ∈ [0, k], |(p− p̃)(t)| ≤ k2‖p′′‖∞. We conclude that, in this case:∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φq(t)dt

∣∣∣∣∣ ≤ 3K(0)k3‖p′′‖∞ + k2‖p′′‖∞
∫ tq+1

tq

∫ t

tq

|K ′(τ)|dτdt

≤ 3K(0)k3‖p′′‖∞ +K(0)k3‖p′′‖∞

Hence: ∣∣∣∣∣
∫ T

0

(L(p− p̃))′(t)φ(t)dt

∣∣∣∣∣ ≤ 4K(0)
√
Tk2‖φ‖L2 .

This ends the proof of Lemma 6. Now, we prove Theorem 2 below.

Theorem 2. Let θ(k) and ph,k be defined as in Theorem 1.
Let p̃h,k ∈ L2(0, T,H1(B)) be the function such that:

• p̃h,k is affine on [X(ej)
s , X

(ej)
s+1 ]× {t} for t ∈ [0, T ], 1 ≤ j ≤M , s ∈ {0, . . . , S(ej) − 1}.

• p̃h,k(X(ej)
s , t) = P

(
X(ej)
s , tq+1/2

)
for t ∈]tq, tq+1[, 1 ≤ j ≤ M , s ∈ {0, . . . , S(ej)}, q ∈

{0, . . . , Q− 1}.

Assume that the kernels K(σ) satisfy the hypotheses of Lemma 6; assume that P is a C4 function
on each edge of the graph;
assume that θ(k)→ 0 as k → 0.

Let β(k) be defined by β(k) = k2 if
∂P

∂t
(·, 0) is constant, β(k) = k2

√
log(T/k) otherwise.

Then, there exists two positive constants C1, C2 such that for θ(k) < C2:

‖ph,k − p̃h,k‖L2(0,T,H1(B)) ≤
C1

C2 − θ(k)
(β(k) + h2 + θ(k))m(P ),

where m(P ) =

∥∥∥∥ ∂2P∂x∂t

∥∥∥∥
∞

+

∥∥∥∥ ∂3P

∂x∂t2

∥∥∥∥
∞

+

∥∥∥∥∂4P∂x4
∥∥∥∥
∞

.

Remark The fact that K(σ) satisfies the assumptions of Lemma 6 for any smooth σ and also for
all the examples given in Section 3.4.1 is proven in [8].

Proof
Let p̃h(t, x) =

∑
X∈Ph

P (X, t)ψX . Since from equation (1.2)

∂F

∂t
(x, t) = −K(σ)(0)

∂2P

(∂x(e))2
(x, t)−

∫ t

0

(K(σ))′(t− τ)
∂2P

(∂x(e))2
(x, τ)dτ,

we have that F ∈ H1
00(0, T,H2

dc(B)) and that ‖F‖H1(0,T,H2
dc(B)) ≤ Cm(P ). Similarly, Ψ1, . . . ,Ψn ∈

H1
00(0, T ).

Let φ ∈ P0
k(0, T ) and ψ ∈ P1

h(B). From the previous lemma, it follows that:

|aT (ph,k − p̃h, φψ)| ≤ C‖φ‖H1‖ψ‖L2β(k)m(P )
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where aT is defined in (2.15). Let us compute now aT (P − p̃h, φψ). As∫
[X

(e)
s ,X

(e)
s+1]

∂2L(σ)(P − p̃h)

∂t∂x(e)
∂ψ

∂x(e)
dx =

(
∂(LσP )

∂t
(X

(e)
s+1, t)−

∂(LσP )

∂t
(X(e)

s , t)

−∂(L(σ)p̃h)

∂t
(X

(e)
s+1, t) +

∂(L(σ)p̃h)

∂t
(X(e)

s , t)

)
∂ψ

∂x(e)
(X

(e)

s+ 1
2

)h(e),

= 0

we get that aT (P − p̃h, φψ) = 0, so that

|aT (P − p̃h,k, φψ)| ≤ Cβ(k)‖φ‖H1‖ψ‖L2m(P ).

Hence, for any ψ ∈ P0
k(0, T,P1

h(B)):

|aT (P − p̃h,k, ψ)| ≤ Cβ(k)‖ψ‖L2(0,T,H1(B))m(P ).

We have:

aT,k(ph,k − p̃h,k, ψ) = aT,k(ph,k, ψ) + (aT − aT,k)(p̃h,k, ψ) + aT (P − p̃h,k, ψ)− aT (P,ψ)

= (bT,h − bT )(ψ) + (aT − aT,k)(p̃h,k, ψ) + aT (P − p̃h,k, ψ)

where aT,k is defined in (3.18). Taking ψ = ph,k − p̃h,k, using the coercivity of aT,k on the left
handside, using continuity of aT , aT − aT,k and the previous inequality on the right handside, and
dividing by the norm of ph,k − p̃h,k, we get:

α(k)‖ph,k − p̃h,k‖2−1L2(0,T,H1(B)) ≤ Ch
2‖F‖H1(0,T,H2

dc(B)) + θ(k)‖p̃h,k‖L2(0,T,H1(B)) + Cβ(k)m(P ).

With ‖F‖H1(0,T,H2
dc(B)) ≤ Cm(P ), ‖ph,k‖H1(0,T,H2

dc(B)) ≤ Cm(P ) and α(k) ≥ ‖aT ‖−θ(k), the proof
is complete.

Corollary 1 If P is of class C4, then:

‖p̃h,k − ph,k‖L∞(0,T,H1(B)) ≤ Cm(P )(θ(k)k−
1
2 + h2k−

1
2 + k

3
2 log(T/k)).

If P is of class C5 and
∂rP

∂tr
(·, 0) = 0 for r ∈ {0, . . . , 5}, then:

‖p̃h,k − ph,k‖L∞(0,T,H1(B)) ≤ Cm(
∂P

∂t
)(θ(k) + h2 + k2)

Proof: The first part is obtained by using that, for φ ∈ P0(0, T ):

√
k‖φ‖L∞(0,T ) ≤ ‖φ‖L2(0,T ).

Hence: √
k‖ph,k − p̃h,k‖L∞(0,T,H1(B)) ≤ ‖ph,k − p̃h,k‖L2(0,T,H1(B)),

and Theorem 2 yields the result.
For the second part of the corollary, let us extend P , ph,k, p̃h,k by zero for negative times. Let us

denote ∆kφ(t) =
φ(t)− φ(t− k)

k
. Then ∆kP is a solution to (1.2) with F,Ψ1, . . . ,ΨN replaced by

∆kF,∆kΨ1, . . . ,∆kΨN . Applying Theorem 2 to ∆kP over [0, T ], we get for sufficiently small k:

‖∆kph,k −∆kp̃h,k‖L2(0,T,H1(B)) ≤ Cm(∆kP )(θ(k) + h2 + k2).

But m(∆kP ) ≤ m(
∂P

∂t
), and for φ ∈ P0(0, T ) extended by zero, ‖φ‖L∞(0,T ) ≤

√
T‖∆kφ‖L2(0,T ).

Hence:

‖ph,k − p̃h,k‖L∞(0,T,H1(B)) ≤ Cm(
∂P

∂t
)(θ(k) + h2 + k2).

This completes the proof of the corollary.

22



5 Numerical results

In Section 5.1, we test the numerical accuracy of the scheme (3.4.2) with the variants in the
cross-sections. In Section 5.2, we then compare the asymptotic model (1.2) with the initial 3D-
Navier-Stokes equations.
Let us assume that an error E converges to 0 when a parameter ε tends to 0 and that E ∼ε→0 Cε

α

for some constants C and α. The parameter α is the order of convergence of E with respect to
ε. Let us consider a strictly decreasing sequence (εn) which converges to 0 and let En be the
corresponding sequence of errors. Then,

α = lim
n→+∞

log(En−1

En
)

log( εn−1

εn
)
.

Hence, in all the tables below, when we report an error (En)n and a varying parameter (εn)n, we

also report
log(En−1

En
)

log( εn−1

εn
)

on a column on the right to estimate the order of convergence.

5.1 Numerical accuracy

To evaluate the numerical accuracy of the scheme (3.4.2), we first build an exact test case solution
to the asymptotic system (1.2).

5.1.1 Test case on a single tube

Let d ∈ {2, 3}. We consider the case of a single tube (M = 1) of length 1 with two extremities

O1 = (0̂, 0), O2 = (0̂, 1) (N1 = N = 2). Let the cross-section of the tube be σ =

]
−1

2
,

1

2

[
if d = 2,

and σ = {x ∈ R2; ‖x‖2 < 1, } if d = 3.

Let us take P ((0̂, x
(e)
3 ), t) = p(x

(e)
3 , t) = exp

(
(1− t)x(e)3 −

β

t

)
where β ∈ {0, 1}. When β = 1, P

and all its time derivatives are zero when t→ 0.
Then, the flow at the left extremity O1 of the pipe is given by:

Ψ1(t) = −
∫ t

0

K(σ)(s)(1− (t− s)) exp

(
− β

t− s

)
ds.

At the right extremity O2 of the pipe, it is given by:

Ψ2(t) =

∫ t

0

K(σ)(s)(1− (t− s)) exp

(
1− β

t− s

)
ds.

The force applied along the pipe is:

F ((0̂, x
(e)
3 ), t) = −

∫ t

0

K(σ)(s)(1− (t− s))2 exp

(
(1− (t− s))x(e)3 −

β

t− s

)
ds.

The theoretical data Ψ1,Ψ2, F can be numerically computed with a high accuracy by using the

change of variable τ = exp(1 − 1

s
)t to remove the singularity at s = 0. The integrand is then

smooth and the Clenshaw-Curtis integration method yields accurate results.
For the sake of completeness, we chose to evaluate the numerical accuracy of the scheme with an
approximate kernel (K̃(σ)

q ) as proposed in Section 3.5.3, in the case d = 2, while for the case d = 3
we consider a tube with a disc cross-section and numerical approximation in the three following
way: with the exact kernel given in Section 1.3, with a numerical approximation based on the
discretization of equation (1.7), and last with this numerical approximation with a correction that
uses the asympotic expansion (3.28).
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Table 1: β = 1, p(x, t) = e(1−t)x−1/(t+ε). In the last three lines, the order is computed with respect
to H.

h k H `∞-error px order `∞-error p order

2−2 4.78504e-06 3.13065e-06
2−3 1.54869e-06 1.63 1.02143e-06 1.62

2−15 0.1 · 2−12 2−4 2.56845e-07 2.59 1.67585e-07 2.61
2−5 5.60860e-08 2.20 3.90747e-08 2.10
2−6 1.10842e-07 -0.98 7.52349e-08 -0.95

0.1 · 2−3 3.96274e-05 2.62084e-05
0.1 · 2−4 2.30104e-05 0.78 1.52338e-05 0.78
0.1 · 2−5 1.24167e-05 0.89 8.22755e-06 0.89

2−13 0.1 · 2−6 2−6 6.45625e-06 0.94 4.28260e-06 0.94
0.1 · 2−7 3.29863e-06 0.97 2.19189e-06 0.97
0.1 · 2−8 1.67424e-06 0.98 1.11614e-06 0.97
0.1 · 2−9 8.50131e-07 0.98 5.70325e-07 0.97
0.1 · 2−10 4.33773e-07 0.97 2.94556e-07 0.95

2−10
1

1000
2−5 4.22920e-06 2.85494e-06

2−12
1

4000
2−6 1.08178e-06 1.97 7.30885e-07 1.97

2−14
1

16000
2−7 2.72432e-07 1.99 1.84098e-07 1.99

5.1.2 Numerical accuracy when d = 2

For d = 2, we test the scheme with the an approximate kernel (K̃(σ)
q ) defined as proposed in

Section 3.5.3.

Let W (x) = 1−
sinh(( 1

2 + x)/
√
k) + sinh(( 1

2 − x)/
√
k)

sinh(1/
√
k)

be the solution of:

{
U − kU ′′ = 1 in σ = ]−1/2, 1/2[ ,

U = 0 on ∂σ = {−1/2, 1/2} .

Let H be a space step for the cross-section such that 1/H is an integer. We consider the following

difference scheme in the cross-section:
V0,r = W

(
−1

2
+ rH

)
if r ∈ {1, . . . , 1/H − 1},

Vq,r − Vq+1

k
=
Vq,r−1 − 2Vq,r + Vq,r−1

H2
if q ∈ {1, . . . , Q}, r ∈ {1, . . . , 1/H − 1},

Vq,0 = Vq,1/H = 0 if q ∈ {1, . . . , Q}.

Then we take K̃(σ)
q = H

1/H−1∑
r=1

Vq,r.

We compute the maximum norm of the error of the numerical solution with respect to the exact
solution. The results of the numerical test for different step sizes are listed in Table 1 when β = 1
and in Table 2 when β = 0.
We observe that the numerical order for the time step is 1 when β = 0 and 1/2 when β = 1. Corollary
1 can be applied in both cases, but the accuracy is limited by the precision of the approximation
of the kernel.
When β = 1, we observe that the order of the error with respect to the cross-section space step H
is 2.
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Table 2: β = 0, p(x, t) = e(1−t)x. In the last three lines, the order is computed with respect to H.

h k H `∞-error px order `∞-error p order

0.1 · 2−3 2.23431e-01 1.37143e-01
0.1 · 2−4 1.42094e-01 0.65 8.75474e-02 0.65
0.1 · 2−5 9.28145e-02 0.61 5.73905e-02 0.61
0.1 · 2−6 6.19066e-02 0.58 3.83749e-02 0.58

2−13 0.1 · 2−7 2−6 4.19479e-02 0.56 2.60275e-02 0.56
0.1 · 2−8 2.87599e-02 0.54 1.78284e-02 0.55
0.1 · 2−9 1.98894e-02 0.53 1.22908e-02 0.54
0.1 · 2−10 1.38418e-02 0.52 8.50334e-03 0.53

2−10
1

1000
2−5 4.81106e-02 2.83381e-02

2−12
1

4000
2−6 2.26623e-02 1.09 1.38113e-02 1.04

2−14
1

16000
2−7 1.09880e-02 1.04 6.81782e-03 1.02

5.1.3 Numerical accuracy when d = 3

Since the cross-section is a disc, one could have used the radial symmetry to obtain a faster and more
accurate scheme. However, the goal here is to obtain a benchmark for an arbitrary two-dimensional
cross-section. Hence, we used unregular meshes for the disc.
In this section, we test the scheme (3.4.2) with three different types of choice for (K̃(σ)

q ): the exact

(K(σ)
q ), and two approximations (K(σ)

num,q) and (K(σ)
cor,q) that are defined as in Section 3.4.3.

For these three approximations, we compute the `∞-error on
∂P

∂x
and the results are reported in

Table 4 for the case β = 0, and Table 3 when β = 1. The corresponding error curves are given in
figure 2.
The values of θ(k) for the numerical and corrected approximations will be studied in detail in the
forthcoming second part of this article.
Let us summarize the orders with respect to h, k,H that we have estimated:

Numerical approximation Corrected approximation Exact
h 2 2 2

β = 0 k 0.5 ∼ 1.4 3/2
β = 1 k ∼ 1.6 ∼ 1.8 2
β = 0 H 1 ∼ 1.6
β = 1 H ∼ 1.7 ∼ 1.7

In all cases, the use of the exact kernel is the best option or close to it. When β = 1, the three
schemes yields similar accuracy if the edge space step h in the cross-section space step H is small
enough. When β = 0, the numerical approximation is slowly convergent and the corrected scheme
offers a substantial improvement.

5.2 Comparison with Navier-Stokes equations

The aim of this section is to compare numerically the full 3D-Navier-Stokes equations (1.1) with
the continuous asymptotic model on the graph (1.2).

5.2.1 Geometry and boundary condtions

We do it for two different configurations, one constructed from a simply connected graph and the
other one from a connected graph with a hole (see Figure 3).
In both cases, let Ωε be the interior of {M ∈ R3|∃i, O ∈ ei, OM ⊥ ei, ‖OM‖ < ε}, i.e. the union of
cylinders whose diameters are ε and whose axes are the ei segments. The domain Ωε is not smooth
at the junctions, but we observe the convergence to the asymptotic problem (1.2) anyway.
Let us take the following boundary conditions:
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Table 3: `∞-error on
∂P

∂x(e)
for the disc cross-section, β = 1, p(x, t) = e(1−t)x−1/(t+ε).

kernel Numerical Corrected Exact
h k H `∞-error px order `∞-error px order `∞-error px order

2−1 1.37116e-06 1.37126e-06 1.37063e-06
2−2 3.98424e-07 1.78 3.98532e-07 1.78 3.97835e-07 1.78
2−3 1.07928e-07 1.88 1.08041e-07 1.88 1.07306e-07 1.89
2−4 2.85134e-08 1.92 2.86301e-08 1.92 2.78745e-08 1.94
2−5 0.1 · 2−14 2−10π 7.75301e-09 1.88 7.87126e-09 1.86 7.10518e-09 1.97
2−6 2.44720e-09 1.66 2.56627e-09 1.62 1.79485e-09 1.99
2−7 1.10689e-09 1.14 1.22637e-09 1.07 4.52255e-10 1.99
2−8 7.70502e-10 0.52 8.90184e-10 0.46 1.14715e-10 1.98
2−9 6.86454e-10 0.17 8.06241e-10 0.14 3.00928e-11 1.93
2−10 6.65557e-10 0.04 7.85396e-10 0.04 8.90762e-12 1.76

0.1 · 2−1 1.40603e-05 1.50528e-05 1.70035e-05
0.1 · 2−2 8.23443e-06 0.77 9.36902e-06 0.68 1.16079e-05 0.55
0.1 · 2−3 1.46155e-06 2.49 3.60481e-06 1.38 4.71718e-06 1.30
0.1 · 2−4 7.63423e-07 0.94 1.03297e-06 1.80 1.49344e-06 1.66
0.1 · 2−5 7.67132e-07 -0.01 2.91920e-07 1.82 4.20353e-07 1.83
0.1 · 2−6 4.14515e-07 0.89 6.10037e-08 2.26 1.11756e-07 1.91

2−10 0.1 · 2−7 2−10π 1.82874e-07 1.18 1.23173e-08 2.31 2.88777e-08 1.95
0.1 · 2−8 7.31796e-08 1.32 1.70640e-09 2.85 7.35660e-09 1.97
0.1 · 2−9 2.75420e-08 1.41 4.54956e-10 1.91 1.86343e-09 1.98
0.1 · 2−10 9.73626e-09 1.50 4.85544e-10 -0.09 4.73955e-10 1.98
0.1 · 2−11 3.03157e-09 1.68 6.40152e-10 -0.40 1.24211e-10 1.93
0.1 · 2−12 5.59160e-10 2.44 7.17743e-10 -0.17 3.64187e-11 1.77
0.1 · 2−13 3.40868e-10 0.71 7.60524e-10 -0.08 1.44120e-11 1.34
0.1 · 2−14 6.65557e-10 -0.97 7.85396e-10 -0.05 8.90762e-12 0.69

2−1π 3.69456e-05 3.68546e-05
2−2π 3.36543e-07 6.78 3.85246e-07 6.58
2−3π 2.97071e-06 -3.14 3.01664e-06 -2.97
2−4π 7.43567e-07 2.00 7.86382e-07 1.94

2−10 0.1 · 2−14 2−5π 8.39831e-08 3.15 6.60872e-08 3.57
2−6π 9.45994e-08 -0.17 1.13113e-07 -0.78
2−7π 3.63271e-08 1.38 4.33101e-08 1.38
2−8π 1.13907e-08 1.67 1.22260e-08 1.82
2−9π 3.07604e-09 1.89 3.17743e-09 1.94
2−10π 6.65557e-10 2.21 7.85396e-10 2.02
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Table 4: `∞-error on
∂P

∂x(e)
for the disc cross-section, β = 0, p(x, t) = e(1−t)x.

kernel Numerical Corrected Exact
h k H `∞-error px order `∞-error px order `∞-error px order

2−1 4.65502e-02 4.65403e-02 4.64901e-02
2−2 1.36905e-02 1.77 1.36707e-02 1.77 1.36146e-02 1.77
2−3 3.77399e-03 1.86 3.75018e-03 1.87 3.69076e-03 1.88
2−4 2.42701e-03 0.64 1.02249e-03 1.87 9.61254e-04 1.94
2−5 0.1 · 2−14 2−10π 3.19538e-03 -0.40 3.07484e-04 1.73 2.45304e-04 1.97
2−6 3.40548e-03 -0.09 1.24617e-04 1.30 6.19574e-05 1.99
2−7 3.46538e-03 -0.03 7.84674e-05 0.67 1.55663e-05 1.99
2−8 3.48384e-03 -0.01 6.69214e-05 0.23 3.89957e-06 2.00
2−9 3.49017e-03 -0.00 6.40570e-05 0.06 9.74829e-07 2.00
2−10 3.49261e-03 -0.00 6.33551e-05 0.02 2.43051e-07 2.00

0.1 · 2−1 3.74748e-01 2.51838e-01 1.02594e-02
0.1 · 2−2 2.51240e-01 0.58 1.67151e-01 0.59 3.50858e-03 1.55
0.1 · 2−3 1.70551e-01 0.56 5.48469e-02 1.61 1.21113e-03 1.53
0.1 · 2−4 1.17002e-01 0.54 1.84214e-02 1.57 4.20822e-04 1.53
0.1 · 2−5 8.09255e-02 0.53 4.56308e-03 2.01 1.46833e-04 1.52
0.1 · 2−6 5.63137e-02 0.52 1.82718e-03 1.32 5.13093e-05 1.52

2−10 0.1 · 2−7 2−10π 3.93576e-02 0.52 6.16791e-04 1.57 1.78715e-05 1.52
0.1 · 2−8 2.75894e-02 0.51 2.57248e-04 1.26 6.13280e-06 1.54
0.1 · 2−9 1.93776e-02 0.51 8.02652e-05 1.68 2.00335e-06 1.61
0.1 · 2−10 1.36270e-02 0.51 1.50374e-05 2.42 5.48597e-07 1.87
0.1 · 2−11 9.59438e-03 0.51 3.52991e-05 -1.23 2.20105e-07 1.32
0.1 · 2−12 6.77321e-03 0.50 4.65737e-05 -0.40 2.35100e-07 -0.10
0.1 · 2−13 4.81817e-03 0.49 5.50126e-05 -0.24 2.40775e-07 -0.03
0.1 · 2−14 3.49261e-03 0.46 6.33551e-05 -0.20 2.43051e-07 -0.01

2−1π 1.53506e+00 1.37410e+00
2−2π 2.89715e-01 2.41 2.13087e-01 2.69
2−3π 1.26877e-01 1.19 1.26814e-01 0.75
2−4π 7.56310e-02 0.75 7.59343e-02 0.74

2−10 0.1 · 2−14 2−5π 4.20970e-02 0.85 5.09920e-02 0.57
2−6π 2.21178e-02 0.93 8.15857e-03 2.64
2−7π 1.14523e-02 0.95 1.85572e-03 2.14
2−8π 6.01148e-03 0.93 8.35024e-04 1.15
2−9π 4.15333e-03 0.53 2.39586e-04 1.80
2−10π 3.49261e-03 0.25 6.33551e-05 1.92
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Figure 2: `∞-error on
∂P

∂x(e)
curves obtained from the data presented in Table 4 (top: β = 0) and

Table 3 (bottom: β = 1). On each graph, only one parameter varies, the two others are set by
default to h = 2−10, k = 0.1 · 2−14, H = π2−10.
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Figure 3: The full dimension Navier-Stokes simulations were run on two geometries. On the left,
the simply connected one (N1 = 3,N = 4, M = 3), and on the right, the multiply connected one
(N1 = 3,N = 6, M = 6).
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• p = 0 and v(M, t) colinear to e1 at the beginning O1 of e1.

• v(M, t) = − e2
|e2|

v0 sin
(
ε−240t

) (
1− 4ε−2‖O2M‖2

)
at the beginning O2 of e2. The flux

through this tube is then
1

8
πv0ε

2 sin
(
ε−240t

)
;

• v(M, t) = 2
e3
|e3|

v0 sin
(
ε−240t

) (
1− 4ε−2‖O3M‖2

)
at the beginning O3 of e3. The flux through

this tube is then
π

4
v0ε

2 sin
(
ε−240t

)
;

• v = 0 on the rest of the boundary.

Using the mass conservation law, we conclude that the flux through this first tube is:
3

8
πv0ε

2 sin(ε−240t).

5.2.2 Results

Simulations with COMSOL software run over the interval [0, 0.0875ε2] for ε ∈ {0.2, 0.1, 0.05, 0.025}.
Let qε be the continuous in space function, affine over each edge, such that qε(O`) = pε(O`) for
` ∈ {1, . . . , N}
We compute the L2(0, T,H1(B))-distance between pε restricted to the graph, qε obtained with these
simulations and the pressure P predicted by the asymptotic model. The results are reported in
Tables 5 and 6.
We also show in Figures 4, 5, 6 and 7 the velocity magnitude and the pressure inside Ωε. In the
figures 6 and 7, the velocity for the asymptotic problem is obtained using the scheme proposed in
Section 3.5.3.
Notice that that the velocity magnitude is not convex in the cross-section, unlike the stationary
Poiseuille profile.
According to [21], the junction boundary layers have a space width of order of ε. Thus, the order
of convergence of pε− qε, pε−P in L2(0, T,H1(B)) norm is 1/2. The order of convergence of qε−P
in L2(0, T,H1(B)) norm is 1.
This is compatible with what we observe. However, we are limited by the accuracy of the numerical
resolution of the Navier-Stokes equations. Anyway, the asymptotic model shows a good agreement
with this numerical solution, with only 6% error when ε = 0.025 in the multiply connected geometry
case and 1% error when ε ≤ 0.1 in the simply connected geometry case.
We also run simulations in the planar case, with a cut of the multiply connected geometry. This
enabled us to use a much smaller space-step and thus to reach a better precision. We take a cut
of the multiply connected geometry in the xy-plane and run a simulation in the interval [0, 0.25ε2]
with the Dirichlet boundary conditions for the velocity at the extremities of the three tubes. We
use a characteristic Galerkin method, with P3 − P2 Taylor-Hood elements in space and BDF2 time
integrator (scheme (12) in [2]). It was implemented with FreeFem++ [13]. Results are reported on
table 7 and match the theoretical results of [21].
For this planar case, we also computed q̃ε the function (not necessarily continuous) affine on each

edge such (q̃ε − pε)(
2

3
Oij +

1

3
Okj ) = 0, (q̃ε − pε)(

1

3
Oij +

2

3
Okj ) = 0 for j ∈ {1, . . . ,M}. We

observed q̃ε converges very rapidly to P on the edges where the flux is prescribed (i.e. e1, e2, e3) in
L2(0, T,H1

dc(e1 ∪ e2 ∪ e3)) norm, with a 0.003% relative error when ε = 0.1. According to [21], the
convergence should be exponential.
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Pressure

Velocity magnitude

Velocity magnitude

Figure 4: Pressure and velocity magnitude in the transversal and longitudinal cuts of the simply
connected geometry at t = 0.0875ε2, ε = 0.1.
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Pressure

Velocity magnitude

Velocity magnitude

Figure 5: Pressure and velocity magnitude in the transversal and longitudinal cuts of the multiply
connected geometry at t = 0.0875ε2, ε = 0.1.
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Figure 6: Comparison between the asymptotic model (dashed lines) and the Navier-Stokes numerical
solution (blue lines) for the simply connected geometry when T = 0.875ε2, ε = 0.1. On the left,
the pressure along tubes. On the right, the velocity magnitude across the middle of the three tubes
with respect to the distance to the axis of the tube

Figure 7: Comparison between the asymptotic model (dashed lines) and the Navier-Stokes numerical
solution (blue lines) for the multiply connected geometry when T = 0.0875ε2, ε = 0.1. On the left,
the pressure along tubes. On the right, the velocity magnitude across the middle of the six tubes
with respect to the distance to the axis of the tube

Table 5: Comparison between Navier-Stokes numerical solution and the asymptotic model in the
case of the simply connected geometry. T = 0.875ε2. In this table, Φεj ,Φj is the flux accross the
j-th tube according to Navier-Stokes numerical solution and the asymptotic model. The last line of
the table is an estimate of the accuracy of the numerical method used to compute the Navier-Stokes
solution.
ε 0.2 0.1 0.05 0.025
‖P − pε‖L2(0,T,H1(B))

‖pε‖L2(0,T,H1(B))
0.0968455 0.0703769 0.46 0.0532979 0.40 0.0418559 0.35

‖pε − qε‖L2(0,T,H1(B))

‖pε‖L2(0,T,H1(B))
0.0940223 0.0688850 0.45 0.0524812 0.39 0.0402638 0.38

‖P − qε‖L2(0,T,H1(B))

‖qε‖L2(0,T,H1(B))
0.0233166 0.0144485 0.69 0.0093076 0.63 0.0114437 -.30∥∥(Φj − Φεj)j

∥∥
L2({1,...,M}×[0,T ])∥∥(Φεj)j

∥∥
L2({1,...,M}×[0,T ])

0.0054451 0.0088381 -.70 0.0166595 -.91 0.0288674 -.79
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Table 6: Comparison between Navier-Stokes numerical solution and the asymptotic model in the
case of the multiply-connected geometry. T = 0.875ε2. In this table, Φεj ,Φj is the flux accross
the j-th tube according to Navier-Stokes numerical solution and the asymptotic model, and Ψε

` =∑
O`∈ej

α`,jΦ
ε
j . The last line of the table is an estimate of the accuracy of the numerical method used

to compute the Navier-Stokes solution.
ε 0.2 0.1 0.05 0.025
‖P − pε‖L2(0,T,H1(B))

‖pε‖L2(0,T,H1(B))
0.144626 0.103521 0.48 0.080028 0.37 0.062730 0.35

‖pε − qε‖L2(0,T,H1(B))

‖pε‖L2(0,T,H1(B))
0.140002 0.101388 0.47 0.073540 0.46 0.056146 0.39

‖P − qε‖L2(0,T,H1(B))

‖qε‖L2(0,T,H1(B))
0.036639 0.021016 0.80 0.031650 -.59 0.028022 0.18∥∥(Φj − Φεj)j

∥∥
L2({1,...,M}×[0,T ])∥∥(Φεj)j

∥∥
L2({1,...,M}×[0,T ])

0.035878 0.030196 0.25 0.056603 -.91 0.053661 0.08

‖(Ψ` −Ψε
`)`‖L2({1,...,N}×[0,T ])

‖(Ψε
`)`‖L2({1,...,N}×[0,T ])

0.035841 0.030109 0.25 0.056649 -.91 0.053275 0.09

Table 7: Multiply connected two-dimensional case. Φεj ,Φj ,Ψ
ε
j denotes the same fluxes as in Table 6.

Notice in column 5 that q̃ε is very accurately predicted by P on edges (j ∈ {1, 2, 3}) on which the
flux is imposed.

ε
‖P − pε‖L2(0,T,H1(B))

‖pε‖L2(0,T,H1(B))

‖pε − qε‖L2(0,T,H1(B))

‖pε‖L2(0,T,H1(B))

‖P − qε‖L2(0,T,H1(B))

‖qε‖L2(0,T,H1(B))
4e-01 1.84158e-01 1.74262e-01 6.04826e-02
3e-01 1.61135e-01 0.46 1.54638e-01 0.42 4.58469e-02 0.96
2e-01 1.33035e-01 0.47 1.29469e-01 0.44 3.08584e-02 0.98
1e-01 9.51649e-02 0.48 9.38936e-02 0.46 1.55718e-02 0.99
7e-02 7.99077e-02 0.49 7.91613e-02 0.48 1.09305e-02 0.99
5e-02 6.76983e-02 0.49 6.72472e-02 0.48 7.82038e-03 1.00
4e-02 6.06171e-02 0.50 6.02939e-02 0.49 6.26215e-03 1.00
3e-02 5.25627e-02 0.50 5.23528e-02 0.49 4.70006e-03 1.00
2e-02 4.29754e-02 0.50 4.28610e-02 0.49 3.13686e-03 1.00
7e-03 2.54107e-02 0.50 2.53871e-02 0.50 1.09576e-03 1.00
5e-03 2.15416e-02 0.49 2.15236e-02 0.49 8.81800e-04 0.65

ε

∥∥(Φj − Φεj)j
∥∥
L2({1,...,M}×[0,T ])∥∥(Φεj)j

∥∥
L2({1,...,M}×[0,T ])

‖P − q̃ε‖L2(0,T,H1
dc(e1∪e2∪e3))

‖q̃ε‖L2(0,T,H1
dc(e1∪e2∪e3))

‖(Ψ` −Ψε
`)`‖L2({1,...,N}×[0,T ])

‖(Ψε
`)`‖L2({1,...,N}×[0,T ])

4e-01 1.61063e-02 1.99512e-04 1.06522e-06
3e-01 1.04089e-02 1.52 3.58527e-05 5.97 4.56238e-09
2e-01 6.08976e-03 1.32 3.34245e-06 5.85 8.20514e-09
1e-01 2.71136e-03 1.17 3.20877e-06 0.06 2.40961e-08
7e-02 1.84568e-03 1.08 4.59828e-06 -1.01 4.19010e-08
5e-02 1.28786e-03 1.07 8.35613e-06 -1.78 1.63812e-07
4e-02 1.02498e-03 1.02 1.21299e-05 -1.67 2.76485e-07
3e-02 7.58649e-04 1.05 1.71698e-05 -1.21 3.57710e-07
2e-02 5.01930e-04 1.02 2.57071e-05 -1.00 8.34215e-07
7e-03 1.74694e-04 1.01 8.98785e-05 -1.19 1.82707e-05
5e-03 1.37612e-04 0.71 3.15042e-04 -3.73 6.95978e-05
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