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ABSTRACT
This paper proposes a new high gain observer for a class of non-uniformly observable nonlinear systems with coupled 
structure driven by sampled outputs. The considered class of systems is par-ticularly constituted by several subsystems where 
each subsystem is associated to a subset of the output variables. The observer design is carried out through two steps. First, a 
high-gain observer is proposed in the continuous-time output case under the assumption that an adequate persistent excitation
condition is satisfied by each subsystem. Then, the proposed observer is redesigned to handle the case of sampled outputs 
leading thereby to a continuous-discrete time observer. The latter property is achieved thanks to the approach pursued along 
the convergence analysis. The effectiveness of the proposed observer is emphasised in a realistic simulation framework involving 
a mathematical model of a quadrotor which is diffeomorphic to the proposed class of considered systems.

1. Introduction

The observer design problem for nonlinear systems has
been widely investigated over the last years, leading
thereby to appropriate estimation algorithms that have
been used in system control design as well as in fault
detection and isolation that are commonly encountered
in power systems. Several approaches have been pro-
posed for the observer design of nonlinear systems,
namely those based on canonical and normal observ-
ability forms. A well known contribution within this
framework is the one proposed in Gauthier, Hammouri,
andOthman (1992)where a necessary and sufficient con-
dition for characterising the uniformly observable sin-
gle output control affine systems. This canonical form
is then used for the design of a high gain observer
under somemild conditions as the global Lipschitz prop-
erty of the nonlinearities. The gain of the proposed
observer is derived from the resolution of an algebraic
Lyapunov equation which expression has been given
explicitly (see e.g. Besançon & Ticlea, 2007; Busawon,
Farza, & Hammouri, 1998; Deza, Busvelle, & Gau-
thier, 1992; Dufour, Flila, & Hammouri, 2012; Farza,

M’Saad, & Rossignol, 2004; Gauthier, 2001; Hammouri,
Bornard, & Busawon, 2010; Hou, Busawon, & Saif, 2000).

The observer design problem formulti-output nonlin-
ear systems that are observable for any input has been
comprehensively investigated in Hammouri and Farza
(2003) and Shim, Son, and Seo (2001) where several
observability normal forms have been proposed accord-
ing to the nature of the output decomposition. These
contributions have been further alleviated, bearing in
mind the observer design requirements, in Farza, Triki,
M’Saad, and Maatoug (2011); Hammouri et al. (2010)
where other observability normal forms for nonlinear
uniformly observable systems have been proposed. In
Hammouri et al. (2010), the observer design is carried
out thanks to adequate sufficient conditions on the struc-
ture of the nonlinearities. This fundamental contribu-
tion has been further alleviated in Farza et al. (2011),
where the observer design is naturally performed thanks
to the structure of the involved normal from. On other
aspects, a particular emphasis has been put on the chal-
lenging observer design problem for nonlinear systems
that are not observable for any input thanks to specific
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persistent excitation conditions. These conditions char-
acterise the input sequence for which the observability
Gramian is positive definite on a sliding window with
a fixed given width. This concept has been particularly
used in Besançon and Ticlea (2007), where the class of
locally regular inputs has been introduced to design high-
gain observers for classes of state-affine systems assuming
that the state-affine property depends on the inputs and
outputs of the system. Nevertheless, there are two funda-
mental issues that have not been addressed yet, namely
how to exhibit a canonical form for the whole set of non-
linear systems that observable for any input? and how
to to characterise the class of persistently exciting input
sequences for nonlinear systems that are not observable
for any input?.

On other aspects, since the output measurements
are generally transmitted through digital communi-
cation networks and are therefore available only at
discrete-time instants tκ , an important research activ-
ity has been devoted to the observer design problem
for nonlinear systems with sampled output measure-
ments (Dinh, Andrieu, Nadri, & Serres, 2015; Zhao
&Hua, 2017; Zhao &Wang, 2014). Two approaches have
been considered in these contributions. The first one is
based on an exact or approximate discrete-time descrip-
tions of the systems dynamics (Arcak & Nesic, 2004;
Krener & Kravaris, 2001), while the second consists in
a combination of a high gain observer together with
an appropriate prediction between the sampling times
(see for instance Deza, Busvelle, Gauthier, & Rako-
topara, 1992; Hammouri, Nadri, &Mota, 2006; Karafyllis
& Kravaris, 2009; Nadri, Hammouri, & Astorga, 2004). A
comprehensive approach providing an appropriate refor-
mulation of the continuous gain with a genuine adap-
tation to the sampling constraints has been proposed
in Farza et al. (2014) and further alleviated in Farza,
Bouraoui, Ménard, Abdennour, and M’Saad (2014) and
Bouraoui et al. (2015) to handle the case of uncertain sys-
tems and simultaneous state and parameter estimation.

The observer design for quadrotors has been investi-
gated in many works and has been the subject of active
research and development for many years. The recent
heavy application demands in quadrotors let to apply
the robust control of UAVs through the use of high gain
observers via output control. For instance: in Castillo
et al. (2019) a disturbance observer-based quadrotor atti-
tude controller is presented. The controller is capable to
carry out precise and aggressive attitude maneuvers in
the presence of high disturbances. The controller is made
up of the cascade connection between two control-loops:
an outer quaternion-based attitude control-loop and an
inner disturbance observer-based angular velocity track-
ing control-loop. The disturbance observer is designed to

estimate and compensate for the Coriolis term and the
external disturbances. In Castañeda, Salas-Peña, and de
Leon-Morales (2017) an attitude and airspeed controllers
for a fixed wing unmanned aerial vehicle is designed. An
adaptive super twisting controller for flight control of a
fixed wing UAV under external disturbances is proposed
for improving performance under different operating
conditions and is robust in presence of external distur-
bances. Also, an extended state observer is used to esti-
mate unmeasurable states of the system as well as exter-
nal disturbances. In Rosaldo-Serrano, SantiaguilloSali-
nas, and Aranda-Bricaire (2019) an implementation of a
time-varying version of the backstepping technique com-
bined with suitable Luenberger observers to achieve tra-
jectory tracking control for an UAV is presented. In Shao,
Liu, andWang (2018) a robust back-stepping output feed-
back trajectory tracking controller for quadrotors subject
to parametric uncertainties and external disturbances is
proposed. Also, a high-order ESO with special structure
that relies only on position measurements is employed to
estimate the unmeasurable states and the lumped distur-
bances in rotational subsystem simultaneously. In Wang,
Yu, Mu, and Zhang (2019) a disturbance observer-based
adaptive sliding mode control strategy for a quadrotor
helicopter subject to multiple actuator faults, parametric
uncertainties, and external disturbances is presented.

The aim of this paper is to extend the high gain
observer design proposed in Farza et al. (2011) for uni-
formly observable nonlinear systems with coupled struc-
ture to a class of multi-output non-uniformly observ-
able systems with sampled output measurements. More
specifically, the involved class of systems is composed
by several non-uniformly observable subsystems where
each subsystem is associated to all or a part of the output
components, allowing thereby each subsystem dynam-
ics to depend on every state variable of the system. Two
design features are worth to be pointed out:

• Firstly, an observer is designed by assuming that the
outputs are available in a continuous manner. The
underlying observer gain associated to each subsystem
is determined through the resolution of an appropri-
ate Lyapunov Ordinary Differential Equation (ODE)
involving a single design parameter up to a suitable
persistent excitation condition. Such a feature allows
to handle the high gain observer design for nonlinear
systems that are not necessarily uniformly observ-
able and the overall system does not assume a tri-
angular structure, unlike in previous works (Farza
et al., 2011; Hernández-González et al., 2016), which
only addresses to uniformly observable systems and
assumes a triangular structure for each subsystem,
respectively.



• Secondly, the provided observer is redesigned in order
to account for the sampling process of the outputs.
The approach pursued through the redesign bor-
rows from the one proposed in Farza et al. (2014).
Of fundamental interest,the convergence of the pro-
posed observer is established throughout a com-
prehensive convergence analysis approach allowing
a reasonable sampling process for the output mea-
surements, namely the maximum value of the sam-
pling partition diameter is lower than a certain given
bound. This continuous-discrete observer will in turn
serve to propose new continuous control schemes
where required of large sampling rates, this neces-
sarily implies of the sensors and controllers more
expensive.

In addition, the control designs for the quadrotor have
presented some of the following restrictions with respect
to the proposed observer in this work:

• The existing observer design results present com-
plexity in its calibration. The proposed algorithm is
a continuous-discrete time observer for a quadrotor
with simplicity in its calibration, which through the
choice of a single real positive design parameter is
achieved.

• Problems in the exponential convergence of the state
error to zero for reasonably long sampling periods,
since the output measurements are generally available
only at discrete-time instants. The proposed observer
works for relatively large sampling times. This is
a main contribution because the existing observer
design results fail to provide a good behaviour when
the sample time is large.

Motivated by the aforementioned considerations, in
this paper, we offer an alternative approach helps to
improve the performance of the system.

The paper is organised as follows. The observer design
problem statement is presented in Section 2 with a par-
ticular emphasis on the involved modeling and design
assumptions for the underlying continuous time observer
design. The latter is provided in Section 3 with its perti-
nent properties. Section 4 is devoted to the main contri-
bution of the paper, namely the proposed observer for the
considered class of nonlinear systems with sampled out-
put measurements together with the fundamental result
on its convergence property. Simulation results involving
a realistic physical model of an unmanned aerial vehicle
are given in Section 5 to show the performance of the
proposed observer. Section 6 overviews the motivation
of the paper with a particular emphasis on the interest of
its fundamental result.

Throughout the paper, for any positive integer k, Ik
and 0k denote the k-dimensional identity and null matri-
ces respectively, ‖.‖ denotes the euclidian norm and for
any Symmetric Definite Positive time varying matrix
Q(t), λm(Q(t)) (respectively λM(Q(t))) will be used
to denote the smallest (respectively the largest) eigen-
value of Q(t) and λm(Q) = inf t≥to λm(Q(t)), λM(Q) =
supt≥to λM(Q(t))where to is any fixed non-negative time
instant. Furthermore, the function arguments will be
omitted when clear from the context.

2. Problem statement

One aims at alleviating the available high gain observer
design contributions by further enlarging the involved
class of systems. More specifically, one shall consider
the following class of multivariable state affine nonlinear
systems

SYS
{
ẋ(t) = A (u(t)) x(t)+ ϕ (u(t), x(t))
y(tk) = Cx (tk)

(1)

x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote, respectively,
the state, the input and the output of the system that are
particularly partitioned as follows

x(t) =

⎡
⎢⎢⎢⎢⎣
x1

xκ

xq

⎤
⎥⎥⎥⎥⎦ ∈ R

n with xκ =

⎡
⎢⎢⎢⎢⎣
xκ1

xκi

xκλκ

⎤
⎥⎥⎥⎥⎦ ∈ R

nκ ,

xκi =

⎡
⎢⎢⎢⎢⎣
xκi,1

xκi,j

xκi,pκ

⎤
⎥⎥⎥⎥⎦ ∈ R

pκ and xκi,j ∈ R,

y(t) = [ cy1 yκ yq ]T ∈ Rp with yκ ∈ Rpκ , and pκ ≥ 1, λκ
≥ 2,

∑q
κ=1 nκ =∑q

κ=1 pκλk = n with
∑q
κ=1 pκ = p.

The system output is only available at the sampling
times 0 ≤ to < · · · < tk < tk+1 < · · · with limk→∞ tk
= +∞, where τk = tk+1 − tk are time-varying inter-
vals such that there exists τmax > 0 such that 0 < τk ≤
τmax ∀k ≥ 0. The matrices A(u) and C are respectively
given by

A(u) =

⎡
⎢⎢⎢⎢⎣
A1(u) 0 · · · 0

0
. . . . . . 0

...
. . . . . . 0

0 0 0 Aq(u)

⎤
⎥⎥⎥⎥⎦ with



Aκ(u) =

⎡
⎢⎢⎢⎢⎣
0 Aκ ,1(u) 0 0
...

. . . . . . 0

0
. . . Aκ ,λκ−1(u)

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

and

C =

⎡
⎢⎣
C1 0 0

0
. . . 0

0 0 Cq

⎤
⎥⎦ with Cκ = [Ipκ 0 · · · 0

]
,

where the functions Aκ ,i for κ = 1, . . . , q and i =
1, . . . , λκ − 1 are continuous with respect to u. And ϕ :
Rn × Rm 	→ Rn is a nonlinear function given by

ϕ(u, x) = [ϕ1(u, x) ϕ2(u, x) . . . ϕq(u, x)]T ∈ R
n

with

ϕκ(u, x) = [ϕκ1 (u, x) ϕκ2 (u, x) . . . ϕκλκ (u, x)]T ∈ R
nκ ,
(2)

where ϕκi : Rn × Rn 	→ Rpκ is differentiable w.r.t. x for
κ = 1, . . . , q and i = 1, . . . , λκ , measurable with respect
to u and assumes the following structural dependence on
the state variables for κ = 1, . . . , q and i = 1, . . . λκ − 1

ϕκi (u, x) = ϕκi (u, x
1, x2, . . . , xκ−1,

xκ1 , x
κ
2 , . . . , x

κ
i , x

κ+1
1 , xκ+2

1 , . . . , xq1) (3)

ϕκλκ (u, x) = ϕκλκ (u, x
1, x2, . . . , xq). (4)

More specifically, the high gain observer design is well
posed provided that the following usual assumptions are
satisfied (see for instance Besançon, Bornard, & Ham-
mouri, 1996; Farza et al., 2011)

A1 The state x(t) and the control u(t) are bounded, i.e.
x(t) ∈ X and u(t) ∈ U where X ⊂ Rn and U ⊂ Rm

are compact sets.
A2 The function ϕ(., .) is Lipschitz w.r.t. x ∈ X uni-

formly w.r.t. u ∈ U.

According to A1, the matrices Aκ(u(t)) and A(u(t))
are upper bounded, i.e. there exists positive scalars āκ and
ā such that

āκ = sup
t≥0

‖Aκ(u(t))‖ and ā = sup
t≥0

‖A(u(t))‖ . (5)

Remark 2.1: There are three features that have to be
pointed out to appreciate how large is the considered class
of systems with respect to the open literature. Firstly, the
coupling structure (3)–(4) is borrowed from the available
results on the high gain observer design for uniformly
observable nonlinear systems (Farza et al., 2011; Shim
et al., 2001). Recall that the main motivation of these
contributions was to circumvent the triangular struc-
ture since the problem of sampled output measurements
was not considered. Secondly, the extension from uni-
formly observable systems to non-uniformly observable
systems is carried out thanks to the comprehensive high
gain observer design approaches proposed in Besançon
et al. (1996) and Hammouri and Farza (2003) for trian-
gular systems assuming that the output measurements
are continuously available. Such an extension is feasible
thanks to an appropriate persistent excitation condition
on the input sequencewhichwill be naturally stated in the
following section. Thirdly, the problem of sampled out-
put measurements is addressed in the high gain observer
design framework provided in Farza et al. (2014).

Remark 2.2: It is worth noting that the state xκi can
be further decomposed, since, the output of each block
may be a vector and is not necessary a single signal.
In order to illustrate this issue, the following example
is given: consider the state vector x = [x1 x2]T, where
the first system is constituted as follows x1 = [x11 x12 x13]T,
x11 =

[
x11,1=x1
x11,2=x2

]
, x12 =

[
x12,1=x3
x12,2=x4

]
, x13 =

[
x13,1=x5
x13,2=x6

]
; and the

second system is constituted as follows x2 =
[
x21=x7
x22=x8

]
;

finally, the following overall output is expressed as
y = [ȳ1 ȳ2]T, where ȳ1 = x11 = [ y1=x1

y2=x2
]
and ȳ2 = x21 =

[y3 = x7]. Thus, this notation is in the form (1) with
q=2, p1 = 2 and p2 = 1.

For clarity purposes, let us introduce a specific matrix
for high gain observer design together with technical
results that will be used throughout the observer conver-
gence analysis. The involved matrix is given by

�κ(θ) = diag
[
Ipκ θ−δκ Ipκ · · · θ−δκ (λκ−1)Ipκ

]
,
(6)

where θ ≥ 1 is a real number and the powers δκ are
determined as follows

δκ = 2q−κ
( q∏
i=κ+1

(
λi − 3

2

))
forκ = 1, . . . , q − 1,

δq = 1.
(7)



Then, one has

δκ

2
=
(
λκ+1 − 3

2

)
δκ+1 for κ = 1, . . . , q − 1. (8)

Note that since λκ ≥ 2, one has (λκ+1 − 3
2 ) ≥ 1

2 and
therefore {δκ}1≤κ≤q constitutes a non-increasing sequence
of positive real numbers, i.e.

δ1 ≥ δ2 ≥ · · · ≥ δq = 1. (9)

Now, one shall recall a technical lemma given in Farza
et al. (2011)which provide a sequence of reals that reflects
in some sense the interconnections between the subsys-
tems nonlinearities. The sequence {δκ} is related to the
interconnections between the subsystem nonlinearities.

Lemma 2.1 (Farza et al., 2011): Let

χ
κ ,i
l,j =

⎧⎪⎨
⎪⎩
0 if

∂ϕκi

∂xlj
(u, x) ≡ 0,

1 otherwise,
(10)

for κ , l = 1, . . . , q, i = 1, . . . , λκ and j = 2, . . . , λl, and
consider the sequence of real numbers

σκi = σκ1 + (i − 1)δκ , (11)

with

σκ1 = −(λκ − 1)δκ + (λ1 − 1)δ1 + η

(
1 − 1

2κ−1

)
,

(12)
where 0 < η ≤ 1 can be chosen arbitrarily small, and the
sequence {δκ}1≤κ≤q are given by (9). Then, one has

if χκ ,il,j = 1 then σ l
j − σκi − δl

2
− δκ

2
≤ − η

2q
. (13)

Note that it has been shown in Farza et al. (2011) that
σκi ≤ 0, for κ = 1, . . . , q and i = 1, . . . , λκ . Now, sim-
ilarly to the matrices �κ(θ), one defines the diagonal
matrices
κ as follows


κ(θ) = θ−σκ1 �κ(θ) for κ = 1, . . . , q. (14)

Taking into account the structures of 
κ(θ), �κ(θ), Aκ
and Cκ , one can easily check the following equalities


κ(θ)Aκ(u)
−1
κ (θ) = �κ(θ)Aκ(u)�−1

κ (θ)

= θδκAκ(u), (15)

θ−σκ1 Cκ
−1
κ (θ) = Cκ�−1

κ = Cκ . (16)

Now, oneneeds the following technical resultwhen inves-
tigating the problem of continuous-time estimation of
the state from sampled outputs. Such a result has been
established in Bouraoui et al. (2015).

Lemma 2.2: Consider a differentiable function v : t ∈
R+ 	→ v(t) ∈ R+ satisfying the following inequality

v̇(t) = −av(t)+ b
∫ t

tκ
v(s) ds

∀t ∈ [tk, tk+1[ with k ∈ N, (17)

where 0 < tk+1 − tk ≤ τmax, thus a and b are positive reals
satisfying

b
a
τmax < 1. (18)

Then, the function v converges exponentially to zero, i.e.

v(t) ≤ e−η(t−to)v(to) with

0 < η = (a − bτmax) e−aτmax . (19)

In the following section, one shall design a high gain
observer for the class of systems (1) in the case where the
output measurements are continuously available. Then,
the underlying observer shall be appropriately redesigned
in order to account for the output sampling process.

3. The underlying continuous-time observer

Let us first point out that the κ-th block, κ = 1, . . . , q, of
system (1) can be expressed as follows

ẋκ(t) = Aκ (u(t)) xκ(t)+ ϕκ (u(t), x(t))

yk(t) = Cκxκ (t) .
(20)

Bearing in mind the available results on the high gain
observer design, the following dynamical system would
be a suitable candidate observer.

˙̂xκ(t) = Aκ(u(t))x̂κ(t)+ ϕκ(u(t), x̂(t))

− θσκ�κ(θ)
−1S−1

κ (t)C
T
κ

(
Cκ x̂κ(t)− yκ(t)

)
Ṡκ(t) = θδκ

(
−Sκ(t)− Aκ(u(t))TSκ(t)

− Sκ(t)Aκ(u(t))+ CT
κCκ
)
,

(21)
where u(t) ∈ Rm and y(t) ∈ Rp are, respectively, the
input and the output of system (1), the matrix �κ(θ) is
given by (7), Sκ(0) = STκ (0) > 0, θ ≥ 1 is a scalar design
parameter; x̂ ∈ IRn denotes the state estimate given by
x̂ = (x̂1 . . . x̂q)T ∈ IRn with x̂κ = (x̂κ1 . . . x̂

κ
1 )

T ∈ IRpκ ,
x̂κ denotes a state estimate up to an output injection, i.e.

x̂κi =
{
xκ1 for i = 1,
x̂κi for i = 2, . . . , λκ .

Now, one assumes the following additional assumption



A3 The input sequence u(t) is persistently exciting, i.e.
satisfies the following property ∃θ∗ > 0, ∃δo > 0
and ∀θ ≥ θ∗, one has

∫ t

t−1/θδκ

(
�κu(s, t)

)T CT
κCκ�

κ
u(s, t) ds

≥ δo

θδκ α(θ)
�2
κ (θ) , ∀ κ ,≥ 1

θδκ
, (22)

where α(θ) ≥ 1 is a function satisfying

lim
θ→∞

α(θ)

θ
η

2q−1
= 0, (23)

and where �κu(t, s) denotes the state transition
matrix of the state affine system

ξ̇κ (t) = Aκ(u(t))ξκ(t). (24)

Recall that�κu(t, s) as follows

�̇κu(t, s) = Aκ(u(t))�κu(t, s) ∀t ≥ s ≥ 0 with

�κu(t, t) = Inκ ∀t ≥ 0. (25)

Note that AssumptionA3, which is similar to that con-
sidered in Dufour et al. (2012), is of primary importance
for the stability of the observer. Indeed, this assump-
tion is satisfied for uniformly observable systems, i.e.
systems which are observable for any input. For non-
uniformly observable systems, the characterisation of
the class of inputs which satisfy Assumption A3 is
still an open problem. Indeed, the authors in Besançon
and Ticlea (2007) and Dufour et al. (2012), respectively,
introduced the notion of local regular inputs and regular
inputs. Assumption A3 extends the definition of regu-
lar inputs given in Dufour et al. (2012) to the class of
cascaded systems (1). One now states the following.

Theorem 3.1: Consider system (1) subject to assump-
tionsA1 and A2. Then, for every bounded input satisfying
assumption A3, there exists a constant θ∗ such that for
every θ > θ∗, the system (21) is a state observer for sys-
tem (1)with an exponential error convergence to the origin
for sufficiently high values of θ , namely for any initial con-
ditions (x(0), x̂(0)) ∈ X × X, the observation error x̂(t)−
x(t) converges exponentially to zero.

Proof of Theorem 3.1: Let us first derive a lower bound
for the smallest eigenvalue of each SPD matrix Sκ(t)
appearing in the observer (21). This property can be eas-
ily established by remarking that the transition matrix of

the following state affine system

ξ̇κ = θδκAκ(u)ξκ , (26)

is given by

�̃κu = �κ(θ)�
κ
u(t, s)�κ(θ)

−1, (27)

where �κu is the transition matrix defined by Equation
(25). Indeed, the matrix Sκ(t) can be expressed as

Sκ(t) = e−θ
δκ t(�̃κu)

T(0, t)Sκ(0)�̃κu(0, t)

+ θδκ
∫ t

o
e−θ

δκ (t−s)(�̃κu)
T(s, t)CT

κCκ�̃
κ
u(s, t) ds.

(28)

Taking into account the second identity in (16), i.e.
Cκ�κ(θ) = Cκ , and the fact that Sκ(0) = STκ (0) > 0, one
gets

Sκ(t) ≥ θδκ
∫ t

o
e−θ

δκ (t−s)�κ(θ)
−1(�κu)

T(s, t)

× CT
κCκ�

κ
u(s, t)�κ(θ)

−1 ds ≥ e−1 δto
α(θ)

Inκ ,

(29)

where δo and α(θ) are given by assumption A3. One can
hence easily conclude that

λm(Sκ) ≥ e−1δo

α(θ)
. (30)

Let us now show that greater eigenvalue of each SPD
matrix Sκ , i.e. λM(Sκ), is bounded with an upper bound
independent of θ . To this end, one shall show that this
property is satisfied for each (block) entry (Sκ)i,j of the
matrix Sκ . According to the first equation of (21), one has

(Ṡκ)1,1 = −θδκ ((Sκ)1,1 − Ipκ ) (31)

(Ṡκ)1,j = −θδκ ((Sκ)1,j
+ (Sκ)1,j−1(t)Aκ , j−1(u)) for j = 2, . . . , n

(32)

(Ṡκ)i,j = −θδκ ((Sκ)i,j + (Sκ)i,j−1(t)Aκ , j−1(u)

+ AT
κ , i−1(u)(Sκ)i−1,j) for

i = 2, . . . , n, j = i, . . . , n. (33)

It is clear from Equation (31) that∥∥(Sk)1,1(t)∥∥ ≤ ∥∥(Sk)1,1(0)∥∥+ 1.

and for j ≥ 2, one can proceed by induction in order to
show that (Sκ)1,j is bounded with a bound independent



of θ . Indeed, assume that (Sk)1,j−1 is bounded and set

SM = sup
t≥0

∥∥(Sk)1,j−1
∥∥ . (34)

Taking into account (32), one gets

‖(Sκ)1,j(t)‖
≤ e−θ t‖(Sκ)1,j(0)‖

+ θ

∫ t

0
e−θ(t−s)‖(Sκ)1,j−1(s)Aκ ,j−1(u(s))‖ ds

≤ ‖(Sκ)1,j(0)‖ + θSMãκ
∫ t

0
e−θ(t−s) ds

≤ ‖(Sκ)1,j(0)‖ + SMãκ ,

where ãκ is the upper bound of ‖Ãκ‖. And using a simi-
lar induction procedure, one can show that every entries
of ‖Sκ(t)‖ are upper bounded independently of θ . In the
following, one shall prove the exponential convergence
to zero of the κ th subcomponent of the observation error,
i.e. ẽ(t) = x̂(t)− x(t) ∈ Rnκ . One has

˙̃eκ =
(
Aκ(u)− θδκ�−1

κ (θ)S
−1
κ CT

κCκ
)
ẽκ + ϕ̃κ (u, x̂, x),

(35)
with ϕ̃κ (u, x̂, x) = ϕκ(u, x̂)− ϕ(u, x), and set

ēκ (t) = 
κ(θ)ẽκ (t) for κ = 1, . . . , q, (36)

where 
κ(θ) is given by (14). Using Equations (16)
and (36), Equation (35) becomes

˙̄eκ = θδκAκ (u)− S−1
κ CκCκ ēκ +
κ (θ) ϕ̃

κ
(
u, x̂, x

)
.

(37)
This makes it possible to show the exponential conver-
gence to zero of the estimation error using an adequate
approach based on the following Lyapunov candidate
function

V (ē(t)) = ēT(t)S(t)ē(t), (38)

with S(t) = diag[ S1(t) ··· Sκ (t) ··· Sq(t) ]. Indeed, one has

Vκ
(
ēκ
) =

q∑
i=1

(
ēκ
)T Sκ ēκ , (39)

where Sκ is given by (21). Differentiating Vκ(ēκ) along
the trajectories of system (37) yields

V̇κ
(
ēκ
) = 2

(
ēκ
) TSκ ˙̄eκ + (ēκ) TṠκ ēκ . (40)

Combining (21) and (37) with (40) yields

V̇κ
(
ēκ
) = −θδκ ēκSκ ēκ − θδκ ēκCT

κCκ ē
κ

+ 2
(
ēκ
)T Sκ
κ (θ) ϕ̃κ (u, x̂, x)

≤ −θδκ (ēκ)T Sκ ēκ + 2
√
λM(Sκ)

√
Vκ
(
ēκ
)

×
λκ∑
i=1

1
θσ

κ
i

∥∥ϕ̃κi (u, x̂, x)∥∥ , (41)

where σκi = σκ1 + (i − 1)δκ . And taking into account
assumptions A1–A2, one has

V̇κ
(
ēκ
) ≤ −θδκVκ

(
ēκ
)+ 2Lϕ̃κ

√
λM (Sκ)

√
Vκ (ēκ)

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
k,i
l,j θ

−σκi
∥∥∥ēlj∥∥∥, (42)

where Lϕ̃κ denotes the Lipschitz constant of the function
ϕ̃κ , which exists according to assumptionA2, and theχκ ,il,j
are defined as in Lemma 2.1. Moreover, one can rewrite
(42) as follows

V̇κ
(
ēκ
) ≤ −θδκVκ

(
ēκ
)+ 2Lϕ̃κ

√
λM (Sκ)

√
Vκ (ēκ)

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj − σκi

∥∥∥ēlj∥∥∥ . (43)

This yields to

V̇κ
(
ēκ
) ≤ −θδκVκ

(
ēκ
)+ 2Lϕ̃κ μs

√
Vκ (ēκ)

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi √Vl (ēl)

= −θδκVκ
(
ēκ
)+ 2Lϕ̃κ μs

√
θδκVκ (ēκ)

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi − δl
2 − δκ

2
√
θδlVl (ēl),

(44)

where μs =
√
λS/λS with

λS = max
κ=1,...,q

λM(Sκ)andλS = min
κ=1,...,q

λm(Sκ). (45)

Otherwise, according to Lemma 2.1, one has:

σ l
j − σκi − δl

2
− δκ

2
≤ − η

2q
ifχκ ,il,j = 1. (46)

And using (46) together with (44) yields

V̇κ
(
ēκ
) ≤ −θδκVκ

(
ēκ
)+ 2Lϕ̃κ μsθ

−η/2q√θδκVκ (ēκ)
×

λκ∑
i=1

q∑
l=1

λl∑
j=2

√
θδlVl (ēl). (47)



Furthermore, let

V∗
κ

(
ēκ
) = θδκVκ

(
ēκ
)

and V∗ (ē) =
q∑
κ=1

V∗
κ

(
ēκ
)
,

(48)
and using (9), one has: V∗(ē) ≥ θδqV(ē) = θV(ē). This
allows to rewrite inequality (47) as follows

V̇κ
(
ēκ
) ≤ −V∗

κ (ē)+ 2Lϕ̃κ μsθ
−η/2q√V∗

κ (ēκ)

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

√
V∗
l (ē

κ)

= −V∗
κ

(
ēκ
)+ 2Lϕ̃κ μsλκθ

−η/2q√V∗
κ (ē) (ēκ)

×
q∑

l=1

λl∑
j=2

√
V∗
l (ēl)

≤ −V∗
κ

(
ēκ
)+ 2Lϕ̃κ μsλκθ

−η/2q√V∗
κ (ēκ) (ēκ)

×
q∑

l=1

λl∑
j=2

√
V∗ (ēκ)

≤ −V∗
κ

(
ēκ
)

+ 2nLϕ̃κ μsλκθ
−η/2q√V∗

κ (ēκ)
√
V∗ (ē)

≤ −V∗
κ

(
ēκ
)+ 2nLϕ̃κ μsλκθ

−η/2qV∗ (ē) .

This leads to

V̇ (ē) ≤ −V∗ (ē)+ 2n2Lϕ̃μsθ
− η

2q V∗ (ē)

= −
(
1 − 2n2Lϕ̃μsθ

− η

2q
)
V∗ (ē) , (49)

where Lϕ̃ = max{Lϕ̃κ for 1 ≤ κ ≤ q} And according
to (30) and (49), one gets

V̇ (ē) ≤ −θ
⎛
⎝1 −

√
α(θ)

θ
η

2q−1

√
n4eλM (S)

δo
Lϕ̃

⎞
⎠V (ē) .

(50)
From (23), it is easy to check that for values of θ suffi-
ciently large,V(ē) exponentially converges to zero and so
does ē. This ends the proof of Theorem 3.1. �

4. The continuous-discrete time observer

In this section, one aims at providing a continuous-
discrete time observer for the considered class of sys-
tems in the spirit of the design approach proposed in
Farza et al. (2014). This consists in performing an accu-
rate continuous-time estimation of the system state when
the output measurements are available only at sam-
pling time instants {tk}k∈IN by appropriately redesign-
ing continuous-time observer proposed in Section 3 as

follows:

˙̂xκ (t) = Aκ (u(t)) x̂κ(t)+ ϕκ
(
u(t), x̂(t)

)
− θδ

κ

�−1
κ (θ) S−1

κ (t)CT
κ ηκ (t)

Ṡκ (t) = θδκ
(
−Sκ (t)− AT

κ (u(t)) Sκ (t)

− Sκ (t)Aκ (u(t))+ CT
κCκ

)
η̇κ (t) = −θδκCκS−1

κ (t)CT
κ ηκ (t) for t ∈ [tk, tk+1[

ηκ (tk) = Cκ x̂κ (tk)− yκ (tk) ,
(51)

where x̂κ(t) denotes the estimate of the block state
xκ(t) ∈ Rnκ for κ = 1, . . . , q and �κ(θ) is the block-
diagonal matrix defined in (6) with θ > 1.

It is worth noticing that the function ηκ is continu-
ous over the time horizon [tk, tk+1[ and is updated at
each sampling instant tk using only the sampled output
measurement yκ(tκ). The dynamical system (51) per-
forms hence a continuous-time estimation of the system
state from the sampled output measurements. And the
involved estimation is accurate as pointed out by the
following result.

Theorem 4.1: Consider system (1) subject to assump-
tions A1 and A2 with an input sequence {u(t)} satisfying
assumption A3. Then, there exists θo > 1 such that for
every θ ≥ θo, there exists χθ > 0 such that if the upper
bound of the sampling partition parameter τmax is chosen
such that

τmax < χθ , (52)

then the state of the continuous time observer with sam-
pled measurements (51)converges exponentially toward
the state of the nonlinear system (1).

Proof of Theorem 2: Set ēκ =
κ(θ)ẽκ where ẽκ = x̂κ −
xκ . Using (1) and (51), one gets

˙̄eκ(t) = θδκ
(
Aκ(u)− S−1

κ CT
κCκ

)
ēκ

+ θδκ S−1
κ CT

κ zκ(t)+
κ (θ) ϕ̃
κ
(
u, x̂, x

)
, (53)

withzκ(t) = Cκ ēκ(t)− ηκ(t) and ϕ̃κ (u(t), x̂(t), x(t)) =
ϕκ(u(t), x̂(t))− ϕ(u(t), x(t)).

The exponential convergence of the observation error
can be proven using the following Lyapunov function
candidate

V(ē) =
q∑

k=1

Vκ
(
ēκ
)

with

Vκ
(
ēκ(t)

) = (ēκ(t))T Sκ(t)ēκ(t). (54)



Differentiating the Lyapunov function candidate, tak-
ing into account the normalised observation error
equation (53) yields

V̇κ
(
ēκ
) = −θδκVκ

(
ēκ
)− θδκ

(
ēκ
)T CT

κCκ ē
κ

+ 2θδκ
(
ēκ
)T CT

κ zκ

+ 2
(
ēκ
)T Sκ
κ (θ) ϕ̃κ (u, x̂, x) . (55)

And using the ODE proving ηκ(t) in the observer (51),
one can show that

żκ
(
ēκ
) = Cκ

(
θδκAκ (u) ēκ (t)+
κ (θ) ϕ̃

κ
(
u, x̂, x

))
.

(56)
Otherwise, integrating the members of (56) from tκ to t,
using the fact that z(tκ) = 0, one obtains

zκ(t) =
∫ t

tκ
Cκ
(
θδκAκ (u) ēκ (s)

+ 
κ (θ) ϕ̃
κ
(
u, x̂, x

))
ds. (57)

This allows to obtain an over-evaluation of ‖zκ(t)‖
according to the following manipulations

‖zκ‖ ≤
(
θδκ
∫ t

tκ
‖CκAκ(u)‖

∥∥ēκ∥∥ ds

+
∫ t

tκ

λκ∑
i=1

1
θσ

κ
i

∥∥ϕ̃κi (u, x̂, x)∥∥ ds
)

≤
⎛
⎝θδκ ãκ

∫ t

tκ

∥∥ēκ∥∥ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
k,i
l,j θ

−σκi
∥∥∥ēlj∥∥∥ ds

⎞
⎠

≤
⎛
⎝θδκ ãκ

∫ t

tκ

∥∥ēκ∥∥ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi
∥∥∥ēlj∥∥∥ ds

⎞
⎠

≤ 1√
λS

⎛
⎝θδκ ãκ

∫ t

tκ

√
Vκ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi √Vl ds

⎞
⎠ ,

(58)

where ãκ and λS are respectively defined by (5) and (45).

Moreover, one has

‖2θδκ ēκCT
κ zκ‖

≤ 2θδκμS
√
Vκ

⎛
⎝θδκ ãκ

∫
ttκ

√
Vκ ds

+ Lϕ̃κ
∫
ttκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χl,jκ ,iθ
σ lj −σκi √Vl ds

⎞
⎠

≤ 2θδκμs
√
Vκ

⎛
⎝θδκ ãκ

∫ t

tκ

√
Vκ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
k,i
l,j θ

σ lj −σκi √Vl ds

⎞
⎠ , (59)

whereμS =
√
λS/λS where λS and λS are defined by (45).

And substituting (59) into (55) yields

V̇κ ≤ −θδκVκ + 2
√
λS

√
Vκ

(
λκ∑
i=1

θ−σκi
∥∥ϕ̃κi (u, x̂, x)∥∥

)

+ 2θδκμs
√
Vκ

⎛
⎝θδκ ãκ

∫ t

tκ

√
Vκ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi √Vl ds

⎞
⎠ . (60)

Otherwise, according to assumptionA1 and the property
of χk,i

l,j given by Lemma 2.1, one can easily obtain

V̇κ ≤ −θδκVκ

+ 2Lϕ̃κ
√
λS

√
Vκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi
∥∥∥ēlj∥∥∥

+ 2θδκμs
√
Vκ

⎛
⎝θδκ ãκ

∫ t

tκ

√
Vκ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi √Vl ds

⎞
⎠ , (61)

where σ l
j is defined as in (11). And pursuing these devel-

opments, one gets

V̇κ ≤ −θδκVκ

+ 2Lϕ̃κ μs
√
Vκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi √Vl



+ 2θδκμs
√
Vκ

⎛
⎝θδκ ãκ

∫ t

tκ

√
Vκ ds

+ Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi √Vl ds

⎞
⎠

≤ −θδκVκ + 2Lϕ̃κ μs
√
θδκVκ

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi − 1
2 δl− 1

2 δκ
√
θδlVl ds

+ 2θδκμs
√
θδκVκ

⎛
⎝ãκ

∫ t

tκ

√
θδκVκ ds + Lϕ̃κ

∫ t

tκ

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

χ
κ ,i
l,j θ

σ lj −σκi − 1
2 δl− 1

2 δκ
√
θδlVl ds

⎞
⎠ .

(62)

Applying Lemma 2.1 and using Equation (46), one
obtains

V̇κ ≤ −θδκVκ + 2Lϕ̃κ μsθ
− η

2q
√
θδκVκ

×
λκ∑
i=1

q∑
l=1

λl∑
j=2

√
θδlVl

+ 2θδκμs

⎛
⎝ãκ

∫ t

tκ

√
θδκVκ ds + θ

− η

2q Lϕ̃κ

×
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

√
θδlVl ds

⎞
⎠√θδκVκ . (63)

Now, let us consider the functions V∗
κ and V∗ defined

by (48), one has:

V̇κ ≤ −V∗
κ + 2Lϕ̃κ μsθ

− η

2q
√
V∗
κ

λκ∑
i=1

q∑
l=1

λl∑
j=2

√
V∗
l

+ 2θδκμs

⎛
⎝ãκ

∫ t

tκ

√
V∗
κ ds

+ θ
− η

2q Lϕ̃κ
∫ t

tκ

λκ∑
i=1

q∑
l=1

λl∑
j=2

√
V∗
l ds

⎞
⎠√V∗

κ

= −V∗
κ + 2λκLϕ̃κ μsθ

− η

2q
√
V∗
κ

q∑
i=1

λκ∑
l=1

√
V∗
l

+ 2θδκμs

(
ãκ
∫ t

tκ

√
V∗
κ ds

+ λκθ
− η

2q Lϕ̃κ
∫ t

tκ

q∑
i=1

λκ∑
l=1

√
V∗
l ds

)√
V∗
κ

≤ −V∗
κ + 2λκLϕ̃κ μsθ

− η

2q
√
V∗
κ (ēκ)

q∑
i=1

λκ∑
l=1

√
V∗

+ 2θδκμs

(
ãκ
∫ t

tκ

√
V∗
κ ds

+ λκθ
− η

2q Lϕ̃κ
∫ t

tκ

q∑
i=1

λκ∑
l=1

√
V∗
l ds

)√
V∗
κ

≤ −V∗
κ + 2nλκLϕ̃κ μsθ

− η

2q
√
V∗
κ

√
V∗

+ 2θδκμs

(
ãκ
∫ t

tκ

√
V∗
κ ds

+ nλκθ− η

2q Lϕ̃κ
∫ t

tκ

√
V∗ ds

)√
V∗
κ

≤ −V∗
κ + 2nλκLϕ̃κ μsθ

− η

2q V∗
κ (ē

κ)

+ 2θδκμs

(
ãκ
∫ t

tκ

√
Vκ ds

+ nλκθ− η

2q Lϕ̃κ
∫ t

tκ

√
V∗ ds

)√
V∗
κ . (64)

Taking into account (46) and (48), one obtains

V̇κ ≤ −V∗
κ + 2nλκLϕ̃κ μsθ

− η

2q V∗
κ + 2θδ1μs

×
((

ãκλκ + nλκθ− η

2q Lϕ̃κ
) ∫ t

tκ

√
V∗
κ ds
)√

V∗
κ .

(65)

And henceforth

V̇ = −
(
1 − 2n2Lϕ̃μsθ

− η

2q
)
V∗

+ 2θδ[l]μs

((
ã + n2θ− η

2q Lϕ̃
) ∫ t

tκ

√
V∗ ds

)√
V∗,

where ã = max1≤k≤q ãκ .
The above equation can be written as follows

d
√
V

dt
= −

(
1 − 2n2Lϕ̃μsθ

−η/2q
)√

V∗

+ 2θδ1μs

(
ã + n2θ− η

2q Lϕ̃
) ∫ t

tκ

√
V∗ ds, (66)

where the argument of the functionsV andV∗ have been
omitted. And using (30) and V∗(ē), it follows that:

d
dt

(√
V
)

= −
√
θ

⎛
⎝1 − 2

√
α(θ)

θ
η

2q−1

√
n4eλM(S)

δo
Lϕ̃

⎞
⎠√

V



+ 2θδ1
√
θα(θ)eλM

δo

×
(
ã + n2θ− η

2q Lϕ̃
) ∫ t

tκ

√
V ds. (67)

Finally, using Lemma 2.2 with

aθ =
⎛
⎝1 − 2

√
α(θ)

θ
η

2q−1

√
n4eλM(S)

δo
Lϕ̃

⎞
⎠ and

bθ = 2θδ1
√
θα(θ)eλM

δo

(
ã + n2θ− η

2q Lϕ̃
)
,

and defining χθ = aθ /bθ , on gets the result. �

5. Application to an unmanned aerial vehicle

In the following, one shall show that the proposed
continuous-discrete time observer can be used to provide
an accurate estimation of the quadrotor state variables,
namely the position and Euler angles together with their
respective speeds, using only sampled measurements of
the position and the yaw angle. Such an estimation is car-
ried out using a realistic simulation framework involving
a quadrotor dynamical model describing its barycen-
tre movements and angular motions, namely the three
translation and three rotation motions provided by the
six degree of freedom of the quadrotor. This model is
obtained using the inertial coordinate frame and amobile
reference frame united with the quadrotor barycentre as
shown in Figure 1. The rotation from the mobile refer-
ence frame to the inertial position frame is described by
the following rotational matrix

R =
⎡
⎣ cψ cθ −sψ cθ sθ

cψ sθ sφ + sψ cφ −sψ sθ sφ + cψ cφ −cθ sφ
−cψ sθ cφ + sψ sφ sψ sθ cφ + cψ sφ cθ cφ

⎤
⎦

with sη = sin(η) and cη = cos(η) for η = θ ,φ,ψ , where
θ , φ andψ denote the Euler angles, i.e. the roll, pitch and
yaw, respectively.

The configuration variables are then given by the posi-
tion of the quadrotor centre of mas in the inertial refer-
ence frame and the space quadrotor orientation and are
hence given by v = [� θ] ∈ R6 with � = [x y z] ∈ R3

and ϑ = [φ θ ψ] ∈ R3.
Otherwise, the control inputs of the quadrotor are the

force resulting from the forces provided by the each rotor
and the torques applied to each axis, i.e. u = [ f τ ]T ∈
R4 with τ = [ τφ τθ τψ ]T ∈ R3. The modelling process of
the quadrotor is comprehensively presented in Guisser
and Medromi (2009) where it has been shown that

Figure 1. 3D Quadrotor UAV.

the underlying translational and rotational motions are
described by the dynamical model

�̈ =
⎡
⎣ 0

0
−g

⎤
⎦+

⎡
⎣ sin(θ)

− cos(θ) sin(φ)
cos(θ) cos(φ)

⎤
⎦ f

m

ϑ̈ =
⎡
⎣a1θ̇ ψ̇ + b1τφ
a2φ̇ψ̇ + b2τθ
a3θ̇ φ̇ + b3τψ

⎤
⎦ ,

(68)

wherem is themass of the quadrotor system, g is the grav-
ity acceleration and the parameters a1, a2, a3, b1, b2 and
b3 are defined as follows

a1 = Iy − Iz
Ix

, a2 = Iz − Ix
Iy

, a3 = Ix − Iy
Iz

,

b1 = 1
Ix
, b2 = 1

Iy
, b3 = 1

Iz
,

where Ix, Iy and Iz are the mass moments of inertia of the
quadrotor in the inertial coordinate frame.

Otherwise, the choice of the measured output is of
a fundamental interest from the observer design point
of view, namely ensure that the observer design is fea-
sible while avoiding the use of expensive motion cap-
ture systems, such as VICON or OptiTrack systems. As
the position and the raw angle of the quadrotor can be
respectively measured by a Global Positioning System
(GPS) and a digital compass, as was considered in Shao
et al. (2018), they can be used to compose the system
output μ = [μ1 μ2 μ3 μ4]T = [x y z ψ]T ∈ R4.

In the following, one shall show that the quadro-
tor model (68) can be rewritten under the form (20)



up to the following change of coordinates � : ξ ∈
X ⊂ R12 → ζ = �(ξ) ∈ Z ⊂ R12 where X and Z are
respectively compact sets of R12 and ξ ∈ X ⊂ R12

ζ ∈ Z ⊂ R12 respectively denote the original and new
coordinates defined as follows: ξ = [ξ 1 ξ 2 ξ 3 ξ 4]T =
[� �̇ ϑ ϑ̇]T ∈ R12, and ζ = [ζ 1, ζ 2, ζ 3, ζ 4]T ∈ R12

with ζ j = [ζ j1, ζ
j
2, ζ

j
3, ζ

j
4]
T for j=1,2 and ζ i = [ζ i1

ζ i2] for i = 3, 4, with

ζ 1 = [x ẋ sin(θ) θ̇ sin(θ)
]T ,

ζ 2 =

⎡
⎢⎢⎣

y
ẏ

− cos(θ) sin(φ)
θ̇ sin(θ) sin(φ)− φ̇ cos(θ) cos(φ)

⎤
⎥⎥⎦ ,

ζ 3 = [z ż]T and ζ 4 = [ψ ψ̇]T . (69)

Taking into account the above state decomposition of the
vectors ξ and ζ together with the considered measure-
ment output decomposition μ, one can easily show that
the quadrotor model can be rewritten under the form of
the system (20)with the structure values q=4, p1 = p2 =
p3 = p4 = 1, λ1 = λ2 = 4 and λ3 = λ4 = 2, namely

ζ̇ κ (t) = Aκ (u(t))κ (t)+ ϕκ (u(t), ζ(t))

μk(t) = Cκζ κ (t) (70)

with

A1(u) =

⎡
⎢⎢⎢⎣
0 1 0 0

0 0
f
m

0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ ,

ϕ1(ζ , u) =

⎡
⎢⎢⎣

0
0
0

ϕ14(ζ , u)

⎤
⎥⎥⎦ and C1 = [1 0 0 0

]
,

A2(u) =

⎡
⎢⎢⎢⎣
0 1 0 0

0 0
f
m

0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ ,

ϕ2(ζ , u) =

⎡
⎢⎢⎣

0
0
0

ϕ24(ζ , u)

⎤
⎥⎥⎦ and C2 = [1 0 0 0

]
,

A3(u) =
[
0 1
0 0

]
,

ϕ3(ζ , u) =
⎡
⎣ 0

−g + cos(θ) cos(φ)
f
m

⎤
⎦ and

C3 = [1 0
]
,

A4(u) =
[
0 1
0 0

]
,

ϕ4(ζ , u) =
[

0
a3φ̇θ̇ + b3τφ

]
and C4 = [1 0

]
.

The quadrotor dynamics can be therefore described in
the new frame of coordinates as follows

ζ̇ (t) = A (u(t)) ζ(t)+ ϕ (u(t), ζ(t))

μ(t) = Cζ(t),
(71)

where A(u) = diag{Aκ(u)}κ∈[1,4], C = diag{Cκ}κ∈[1,4]
and ϕT(ζ , u) = [ϕ1(u, ζ ) · · · ϕ4(u, ζ )]. Moreover, it is
worth noticing that the original coordinates can be eas-
ily derived from the new coordinates using ξ = �−1(ζ ).
This leads to

x = ζ 11 , y = ζ 21 , z = ζ 31 , θ = arcsin
(
ζ 13
)
,

φ = arcsin
( −ζ 23
cos(θ)

)
, ψ = ζ 41 ,

ẋ = ζ 12 , ẏ = ζ 22 , ż = ζ 32 , θ̇ = ζ 14
cos(θ)

,

φ̇ = θ̇ sin(θ) sin(φ)− ζ 24
cos(θ) cos(φ)

, ψ̇ = ζ 42 .

(72)

Bearing in mind the fundamental result provided in
the last section, it is possible to perform an accurate
continuous-time estimation of the position and orien-
tation variables of the quadrotor and their respective
translation and angular speeds using only sampled output
measurements provided that the involved sampling par-
tition parameter satisfies the requirement (52) and that
the considered inputs are persistently exciting according
to the assumption A3. Such an estimation problem is an
adequate opportunity to investigate the feasibility of the
proposed observer design framework.

In the following, one shall present a set of simulation
results involving a quadrotor model in closed loop with
a suitable PD controller with gravity compensation. The
involved feedback system is asymptotically stable and
able to maintain the vehicle in the desired position with
admissible attitude dynamics. The proposed observer has
been designed using a quadrotor model which is com-
monly used in real aerial platforms with δ1 = 5 and δ2 =
δ3 = δ4 = 1, according to (7)–(9). Themodel parameters



are given by

m = 0.56Kg, d = 0.21m, Ix = 14.2e−3Kgm2,

Iy = 14.2e−3Kgm2 and Iz = 2Ix,

and the initial conditions for the quadrotor model and
the observer have been respectively specified as follows:
ζ̂ (0) = 0.11×12, ζ(0) = 01×12 and
Sκ(0) = I12×12 for κ ∈ [1, 4].

5.1. Continuous observer for a quadrotor

To illustrate the performance of the proposed continuous
time observer, some simulations have been carried out.
The tuning parameter is setting to θ = 1.2 and a sam-
pling rate 0.005 s. (200Hz) is considered. Figure 2 shows
the evolution of the state, where it is appreciated that the
vehicle estimated position converges quickly to real posi-
tion in less than 5 s, it is also the case of the quadrotor
estimate attitude. It is easy to see that the vehicle position
and attitude converge to the reference trajectory. This
behaviour is that fast thanks to the design of the contin-
uous observer. Notes that the converge is achieved in less
that 8 sec.

In order to compare the proposed continuous observer
with another works, the simulations have been carried
out with the same simulation parameters. Two scenar-
ios are presented with a sampling rate 0.005 s (250Hz),
the first test when the initial conditions for the quadro-
tor model and the proposed observer are specified as
mentioned earlier; and the second test when the ini-
tial conditions are set to be zero and, as was considered
in Shao et al. (2018). Figure 3 shows the performance
of the observer seems similar in both cases, however,
this is not presented in Shao et al. (2018), and it was
only validated when the initial conditions are set to be
zero, this does not allow us to illustrate the conver-
gence of the observation error when tends exponential
to zero.

Now, In order to put forward the influence of the incre-
ment of the sampling rate on the observation error con-
vergence speed, other values of sampled period �κ have
been considered. Indeed,one has compared in Figure 4
the evolutions of the estimation of the positions x and y,
the observation error of the position z and the norms of
the actual observation error, i.e. ‖ ẽ ‖, obtainedwith three
different values of �κ , namely, 0.005, 0.05 and 0.1 s. The
obtained results clearly show that the speed of conver-
gence to the state decreases as the sampled period become
larger in magnitude reflecting the fact that the typical
approach for high gain observer design is inadequate
to estimate the state through available measurements

Figure 2. Estimation of the state UAV in the case continuouswith
a sampling rate�κ = 0.005 s (200 Hz).

provided by larger sampled periods. Therefore, there
is the need to redesign the typical high gain observer
approach.



Figure 3. Evolutionof the continuousobserverwith twodifferent
initial conditions by a sampling rate�κ = 0.004 s (250 Hz).

5.2. Continuous-discrete observer for a quadrotor

To validate the performance of our main contribu-
tion which is the continuous-discrete observer, two case
studies have been considered depending on the allowed
sampling partition bound, namely τmin = 0.05 s. and
τmax = 0.2 s, allowing thereby to appreciate the observer
performance for relatively fast and long sampling pro-
cesses. The observer design parameter has been specified
as follows: θ = 1.2 for low sampling periods and θ = 1.15
for long sampling periods.

Figures 5 and 6 show the state behaviour of the
observer for fast and low sampling respectively. It is worth
mentioning that the state variables of the quadrotor are
accurately estimated. The transient performances are bet-
ter for the fast sampling case in the considered simulation
framework.

Finally, we have compared in Figure 7 two contri-
butions: the continuous observer and the continuous-
discrete observer. The results have been obtained by
using relatively low sampled periods and long sampled
periods, in both observers. It is evident from this results

Figure 4. Evolution of the continuous observer with different
sampling rates �κ = 0.005 s, 0.05 s and 0.1 s (200 Hz, 20 Hz and
10 Hz, respectively).

that the speed of convergence to the state decreases as the
sampled period become larger in magnitude, however,
the continuous-discrete helps to overcome the long sam-
pled periods. This confirms the theoretical results given
in Theorem 4.1.

Remark 5.1: It is worth mentioning that the nonlinear
systems with coupled structure are usually used in the
modelling of quadrotor. In Shao et al. (2018) a struc-
ture with strong coupling between position and attitude
subsystems is presented, where the available state is ζ1 =



Figure 5. Estimation of the state UAVwith sampled period�κ =
0.05 s.

Figure 6. Estimation of the state with sampled period �κ =
0.2 s.



Figure 7. Comparison of the continuous observer and the
continuous-discrete observer with different sampling rates.

[x y z]. Another work (Wang et al., 2019), the nonlinear
dynamic model of the quadrotor is represented as a
integral-chain nonlinear system, where represents two
subsystems and the measured state is ζ1 = [z φ θ ψ]. In
both cases assume continuous-time measurements when
experimental tests, the measurements are available only
at sampling instants.

6. Conclusion

We have presented a new high-gain continuous-discrete
time observer for a quadrotor. The main contribution of
the proposed observer is that it was able to overcome rela-
tively long sampling period. The proposed algorithm has
been further validated with simulations for a quadrotor
nonlinearmodel and the results have showed an excellent
performance of the proposed scheme. We can appreci-
ate that the behaviour of the continuous-discrete time
observer for short sampling times tend to be similar than
the behaviour of the continuous time observer. However,
in the case of long sampling times the performances are
still very good. In our future research we intend to con-
sider a varying sampling time. It would also be interesting
to obtain experimental results.
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