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High gain observer for a class of nonlinear systems with coupled structure and sampled output measurements: application to a quadrotor

This paper proposes a new high gain observer for a class of non-uniformly observable nonlinear systems with coupled structure driven by sampled outputs. The considered class of systems is par-ticularly constituted by several subsystems where each subsystem is associated to a subset of the output variables. The observer design is carried out through two steps. First, a high-gain observer is proposed in the continuous-time output case under the assumption that an adequate persistent excitation condition is satisfied by each subsystem. Then, the proposed observer is redesigned to handle the case of sampled outputs leading thereby to a continuous-discrete time observer. The latter property is achieved thanks to the approach pursued along the convergence analysis. The effectiveness of the proposed observer is emphasised in a realistic simulation framework involving a mathematical model of a quadrotor which is diffeomorphic to the proposed class of considered systems.

Introduction

The observer design problem for nonlinear systems has been widely investigated over the last years, leading thereby to appropriate estimation algorithms that have been used in system control design as well as in fault detection and isolation that are commonly encountered in power systems. Several approaches have been proposed for the observer design of nonlinear systems, namely those based on canonical and normal observability forms. A well known contribution within this framework is the one proposed in [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF] where a necessary and sufficient condition for characterising the uniformly observable single output control affine systems. This canonical form is then used for the design of a high gain observer under some mild conditions as the global Lipschitz property of the nonlinearities. The gain of the proposed observer is derived from the resolution of an algebraic Lyapunov equation which expression has been given explicitly (see e.g. [START_REF] Besançon | An immersion-based observer design for rank-observable nonlinear systems[END_REF][START_REF] Busawon | A nonlinear observer for induction motors[END_REF]Deza, Busvelle, & Gauthier, 1992;[START_REF] Dufour | Observer design for mimo non-uniformly observable systems[END_REF][START_REF] Farza | Observer design for a class of mimmo nonlinear systems[END_REF][START_REF] Gauthier | Deterministic observation theory and applications[END_REF][START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF][START_REF] Hou | Observer design for a class of MIMO nonlinear systems[END_REF].

The observer design problem for multi-output nonlinear systems that are observable for any input has been comprehensively investigated in [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF] and [START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF] where several observability normal forms have been proposed according to the nature of the output decomposition. These contributions have been further alleviated, bearing in mind the observer design requirements, in [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF]; [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF] where other observability normal forms for nonlinear uniformly observable systems have been proposed. In [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF], the observer design is carried out thanks to adequate sufficient conditions on the structure of the nonlinearities. This fundamental contribution has been further alleviated in [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF], where the observer design is naturally performed thanks to the structure of the involved normal from. On other aspects, a particular emphasis has been put on the challenging observer design problem for nonlinear systems that are not observable for any input thanks to specific persistent excitation conditions. These conditions characterise the input sequence for which the observability Gramian is positive definite on a sliding window with a fixed given width. This concept has been particularly used in [START_REF] Besançon | An immersion-based observer design for rank-observable nonlinear systems[END_REF], where the class of locally regular inputs has been introduced to design highgain observers for classes of state-affine systems assuming that the state-affine property depends on the inputs and outputs of the system. Nevertheless, there are two fundamental issues that have not been addressed yet, namely how to exhibit a canonical form for the whole set of nonlinear systems that observable for any input? and how to to characterise the class of persistently exciting input sequences for nonlinear systems that are not observable for any input?.

On other aspects, since the output measurements are generally transmitted through digital communication networks and are therefore available only at discrete-time instants t κ , an important research activity has been devoted to the observer design problem for nonlinear systems with sampled output measurements [START_REF] Dinh | Continuous-discrete time observer design for lipschitz systems with sampled measurements[END_REF][START_REF] Zhao | Continuous-discrete-time adaptive observers for nonlinear systems with sampled output measurements[END_REF][START_REF] Zhao | Reset observers for linear timevarying delay systems: Delay-dependent approach[END_REF]. Two approaches have been considered in these contributions. The first one is based on an exact or approximate discrete-time descriptions of the systems dynamics [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF][START_REF] Krener | Discrete-time nonlinear observer design using functional equations[END_REF], while the second consists in a combination of a high gain observer together with an appropriate prediction between the sampling times (see for instance [START_REF] Deza | High gain estimation for nonlinear systems[END_REF][START_REF] Hammouri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF][START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF][START_REF] Nadri | Observer design for continuous-discrete time state affine systems up to output injection[END_REF]. A comprehensive approach providing an appropriate reformulation of the continuous gain with a genuine adaptation to the sampling constraints has been proposed in Farza et al. (2014) and further alleviated in [START_REF] Farza | Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs[END_REF] and [START_REF] Bouraoui | Observer design for a class of uncertain nonlinear systems with sampled outputs: Application to the estimation of kinetic rates in bioreactors[END_REF] to handle the case of uncertain systems and simultaneous state and parameter estimation.

The observer design for quadrotors has been investigated in many works and has been the subject of active research and development for many years. The recent heavy application demands in quadrotors let to apply the robust control of UAVs through the use of high gain observers via output control. For instance: in [START_REF] Castillo | Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers[END_REF] a disturbance observer-based quadrotor attitude controller is presented. The controller is capable to carry out precise and aggressive attitude maneuvers in the presence of high disturbances. The controller is made up of the cascade connection between two control-loops: an outer quaternion-based attitude control-loop and an inner disturbance observer-based angular velocity tracking control-loop. The disturbance observer is designed to estimate and compensate for the Coriolis term and the external disturbances. In Castañeda, Salas-Peña, and de Leon-Morales (2017) an attitude and airspeed controllers for a fixed wing unmanned aerial vehicle is designed. An adaptive super twisting controller for flight control of a fixed wing UAV under external disturbances is proposed for improving performance under different operating conditions and is robust in presence of external disturbances. Also, an extended state observer is used to estimate unmeasurable states of the system as well as external disturbances. In Rosaldo-Serrano, SantiaguilloSalinas, and Aranda-Bricaire (2019) an implementation of a time-varying version of the backstepping technique combined with suitable Luenberger observers to achieve trajectory tracking control for an UAV is presented. In [START_REF] Shao | Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[END_REF] a robust back-stepping output feedback trajectory tracking controller for quadrotors subject to parametric uncertainties and external disturbances is proposed. Also, a high-order ESO with special structure that relies only on position measurements is employed to estimate the unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. In [START_REF] Wang | Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[END_REF] a disturbance observer-based adaptive sliding mode control strategy for a quadrotor helicopter subject to multiple actuator faults, parametric uncertainties, and external disturbances is presented.

The aim of this paper is to extend the high gain observer design proposed in [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF] for uniformly observable nonlinear systems with coupled structure to a class of multi-output non-uniformly observable systems with sampled output measurements. More specifically, the involved class of systems is composed by several non-uniformly observable subsystems where each subsystem is associated to all or a part of the output components, allowing thereby each subsystem dynamics to depend on every state variable of the system. Two design features are worth to be pointed out:

• Firstly, an observer is designed by assuming that the outputs are available in a continuous manner. The underlying observer gain associated to each subsystem is determined through the resolution of an appropriate Lyapunov Ordinary Differential Equation (ODE) involving a single design parameter up to a suitable persistent excitation condition. Such a feature allows to handle the high gain observer design for nonlinear systems that are not necessarily uniformly observable and the overall system does not assume a triangular structure, unlike in previous works [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF][START_REF] Hernández-González | A cascade observer for a class of mimo non uniformly observable systems with delayed sampled outputs[END_REF], which only addresses to uniformly observable systems and assumes a triangular structure for each subsystem, respectively.

• Secondly, the provided observer is redesigned in order to account for the sampling process of the outputs. The approach pursued through the redesign borrows from the one proposed in Farza et al. (2014).

Of fundamental interest,the convergence of the proposed observer is established throughout a comprehensive convergence analysis approach allowing a reasonable sampling process for the output measurements, namely the maximum value of the sampling partition diameter is lower than a certain given bound. This continuous-discrete observer will in turn serve to propose new continuous control schemes where required of large sampling rates, this necessarily implies of the sensors and controllers more expensive.

In addition, the control designs for the quadrotor have presented some of the following restrictions with respect to the proposed observer in this work:

• The existing observer design results present complexity in its calibration. The proposed algorithm is a continuous-discrete time observer for a quadrotor with simplicity in its calibration, which through the choice of a single real positive design parameter is achieved. • Problems in the exponential convergence of the state error to zero for reasonably long sampling periods, since the output measurements are generally available only at discrete-time instants. The proposed observer works for relatively large sampling times. This is a main contribution because the existing observer design results fail to provide a good behaviour when the sample time is large.

Motivated by the aforementioned considerations, in this paper, we offer an alternative approach helps to improve the performance of the system.

The paper is organised as follows. The observer design problem statement is presented in Section 2 with a particular emphasis on the involved modeling and design assumptions for the underlying continuous time observer design. The latter is provided in Section 3 with its pertinent properties. Section 4 is devoted to the main contribution of the paper, namely the proposed observer for the considered class of nonlinear systems with sampled output measurements together with the fundamental result on its convergence property. Simulation results involving a realistic physical model of an unmanned aerial vehicle are given in Section 5 to show the performance of the proposed observer. Section 6 overviews the motivation of the paper with a particular emphasis on the interest of its fundamental result.

Throughout the paper, for any positive integer k, I k and 0 k denote the k-dimensional identity and null matrices respectively, . denotes the euclidian norm and for any Symmetric Definite Positive time varying matrix Q(t), λ m (Q(t)) (respectively λ M (Q(t))) will be used to denote the smallest (respectively the largest) eigenvalue of

Q(t) and λ m (Q) = inf t≥t o λ m (Q(t)), λ M (Q) = sup t≥t o λ M (Q(t))
where t o is any fixed non-negative time instant. Furthermore, the function arguments will be omitted when clear from the context.

Problem statement

One aims at alleviating the available high gain observer design contributions by further enlarging the involved class of systems. More specifically, one shall consider the following class of multivariable state affine nonlinear systems

SYS ẋ(t) = A (u(t)) x(t) + ϕ (u(t), x(t)) y(t k ) = Cx (t k ) (1)
x(t) ∈ R n , u(t) ∈ R m and y(t) ∈ R p denote, respectively, the state, the input and the output of the system that are particularly partitioned as follows

x(t) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x 1 x κ x q ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ∈ R n with x κ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x κ 1 x κ i x κ λ κ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ∈ R n κ , x κ i = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ x κ i,1 x κ i,j x κ i,p κ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ∈ R p κ and x κ i,j ∈ R, y(t) = [ cy 1 y κ y q ] T ∈ R p with y κ ∈ R p κ , and p κ ≥ 1, λ κ ≥ 2, q κ=1 n κ = q κ=1 p κ λ k = n with q κ=1 p κ = p. The system output is only available at the sampling times 0 ≤ t o < • • • < t k < t k+1 < • • • with lim k→∞ t k = +∞
, where τ k = t k+1t k are time-varying intervals such that there exists τ max > 0 such that 0 < τ k ≤ τ max ∀k ≥ 0. The matrices A(u) and C are respectively given by

A(u) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ A 1 (u) 0 • • • 0 0 . . . . . . 0 . . . . . . . . . 0 0 0 0 A q (u) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ with A κ (u) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 A κ,1 (u) 0 0 . . . . . . . . . 0 0 . . . A κ,λ κ-1 (u) 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ,
and

C = ⎡ ⎢ ⎣ C 1 0 0 0 . . . 0 0 0 C q ⎤ ⎥ ⎦ with C κ = I p κ 0 • • • 0 ,
where the functions A κ,i for κ = 1, . . . , q and i = 1, . . . , λ κ -1 are continuous with respect to u. And ϕ :

R n × R m → R n is a nonlinear function given by ϕ(u, x) = ϕ 1 (u, x) ϕ 2 (u, x) . . . ϕ q (u, x) T ∈ R n with ϕ κ (u, x) = ϕ κ 1 (u, x) ϕ κ 2 (u, x) . . . ϕ κ λ κ (u, x) T ∈ R n κ , (2) 
where

ϕ κ i : R n × R n → R p κ is differentiable w.r.t.
x for κ = 1, . . . , q and i = 1, . . . , λ κ , measurable with respect to u and assumes the following structural dependence on the state variables for κ = 1, . . . , q and i = 1, . . . λ κ -1

ϕ κ i (u, x) = ϕ κ i (u, x 1 , x 2 , . . . , x κ-1 , x κ 1 , x κ 2 , . . . , x κ i , x κ+1 1 , x κ+2 1 , . . . , x q 1 ) (3) ϕ κ λ κ (u, x) = ϕ κ λ κ (u, x 1 , x 2 , . . . , x q ). ( 4 
)
More specifically, the high gain observer design is well posed provided that the following usual assumptions are satisfied (see for instance [START_REF] Besançon | Observer synthesis for a class of nonlinear control systems[END_REF][START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF] A1 The state x(t) and the control u(t) are bounded, i.e.

x(t) ∈ X and u(t) ∈ U where X ⊂ R n and U ⊂ R m are compact sets. A2 The function ϕ(., .) is Lipschitz w.r.t. x ∈ X uni- formly w.r.t. u ∈ U.
According to A1, the matrices A κ (u(t)) and A(u(t)) are upper bounded, i.e. there exists positive scalars āκ and ā such that

āκ = sup t≥0 A κ (u(t))
and ā = sup A(u(t)) . ( 5)

Remark 2.1: There are three features that have to be pointed out to appreciate how large is the considered class of systems with respect to the open literature. Firstly, the coupling structure (3)-( 4) is borrowed from the available results on the high gain observer design for uniformly observable nonlinear systems [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF][START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF]. Recall that the main motivation of these contributions was to circumvent the triangular structure since the problem of sampled output measurements was not considered. Secondly, the extension from uniformly observable systems to non-uniformly observable systems is carried out thanks to the comprehensive high gain observer design approaches proposed in [START_REF] Besançon | Observer synthesis for a class of nonlinear control systems[END_REF] and [START_REF] Hammouri | Nonlinear observers for locally uniformly observable systems[END_REF] for triangular systems assuming that the output measurements are continuously available. Such an extension is feasible thanks to an appropriate persistent excitation condition on the input sequence which will be naturally stated in the following section. Thirdly, the problem of sampled output measurements is addressed in the high gain observer design framework provided in Farza et al. (2014).

Remark 2.2: It is worth noting that the state x κ i can be further decomposed, since, the output of each block may be a vector and is not necessary a single signal. In order to illustrate this issue, the following example is given: consider the state vector x = [x 1 x 2 ] T , where the first system is constituted as follows

x 1 = x 1 1 x 1 2 x 1 3 T , x 1 1 = x 1 1,1 =x 1 x 1 1,2 =x 2 , x 1 2 = x 1 2,1 =x 3 x 1 2,2 =x 4 , x 1 3 = x 1 3,1 =x 5 x 1 3,2 =x 6
; and the second system is constituted as follows

x 2 = x 2 1 =x 7 x 2 2 =x 8 ;
finally, the following overall output is expressed as

y = [ȳ 1 ȳ2 ] T , where ȳ1 = x 1 1 = y 1 =x 1 y 2 =x 2 and ȳ2 = x 2 1 = [y 3 = x 7 ].
Thus, this notation is in the form (1) with q = 2, p 1 = 2 and p 2 = 1.

For clarity purposes, let us introduce a specific matrix for high gain observer design together with technical results that will be used throughout the observer convergence analysis. The involved matrix is given by

κ (θ ) = diag I p κ θ -δ κ I p κ • • • θ -δ κ (λ κ -1) I p κ , ( 6 
) where θ ≥ 1 is a real number and the powers δ κ are determined as follows

δ κ = 2 q-κ q i=κ+1 λ i - 3 2 forκ = 1, . . . , q -1, δ q = 1. (7)
Then, one has

δ κ 2 = λ κ+1 - 3 2 δ κ+1 for κ = 1, . . . , q -1. (8)
Note that since λ κ ≥ 2, one has (λ κ+1 -3 2 ) ≥ 1 2 and therefore {δ κ } 1≤κ≤q constitutes a non-increasing sequence of positive real numbers, i.e.

δ 1 ≥ δ 2 ≥ • • • ≥ δ q = 1. (9)
Now, one shall recall a technical lemma given in [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF] which provide a sequence of reals that reflects in some sense the interconnections between the subsystems nonlinearities. The sequence {δ κ } is related to the interconnections between the subsystem nonlinearities.

Lemma 2.1 (Farza et al., 2011):

Let

χ κ,i l,j = ⎧ ⎪ ⎨ ⎪ ⎩ 0 if ∂ϕ κ i ∂x l j (u, x) ≡ 0, 1 otherwise, ( 10 
)
for κ, l = 1, . . . , q, i = 1, . . . , λ κ and j = 2, . . . , λ l , and consider the sequence of real numbers

σ κ i = σ κ 1 + (i -1)δ κ , (11) 
with

σ κ 1 = -(λ κ -1)δ κ + (λ 1 -1)δ 1 + η 1 - 1 2 κ-1 , ( 12 
) where 0 < η ≤ 1 can be chosen arbitrarily small, and the sequence {δ κ } 1≤κ≤q are given by (9). Then, one has

if χ κ,i l,j = 1 then σ l j -σ κ i - δ l 2 - δ κ 2 ≤ - η 2 q . ( 13 
)
Note that it has been shown in [START_REF] Farza | High gain observer for a class of non-triangular systems[END_REF] that σ κ i ≤ 0, for κ = 1, . . . , q and i = 1, . . . , λ κ . Now, similarly to the matrices κ (θ ), one defines the diagonal matrices κ as follows

κ (θ ) = θ -σ κ 1 κ (θ ) for κ = 1, . . . , q. ( 14 
)
Taking into account the structures of κ (θ ), κ (θ ), A κ and C κ , one can easily check the following equalities

κ (θ )A κ (u) -1 κ (θ ) = κ (θ )A κ (u) -1 κ (θ ) = θ δ κ A κ (u), ( 15 
)
θ -σ κ 1 C κ -1 κ (θ ) = C κ -1 κ = C κ . ( 16 
)
Now, one needs the following technical result when investigating the problem of continuous-time estimation of the state from sampled outputs. Such a result has been established in [START_REF] Bouraoui | Observer design for a class of uncertain nonlinear systems with sampled outputs: Application to the estimation of kinetic rates in bioreactors[END_REF].

Lemma 2.2: Consider a differentiable function v : t ∈ R + → v(t) ∈ R + satisfying the following inequality v(t) = -av(t) + b t t κ v(s) ds ∀t ∈ [t k , t k+1 [ with k ∈ N, ( 17 
)
where 0 < t k+1t k ≤ τ max , thus a and b are positive reals satisfying b a τ max < 1. ( 18)

Then, the function v converges exponentially to zero, i.e.

v(t) ≤ e -η(t-t o ) v(t o ) with 0 < η = (a -bτ max ) e -aτ max . ( 19 
)
In the following section, one shall design a high gain observer for the class of systems (1) in the case where the output measurements are continuously available. Then, the underlying observer shall be appropriately redesigned in order to account for the output sampling process.

The underlying continuous-time observer

Let us first point out that the κ-th block, κ = 1, . . . , q, of system (1) can be expressed as follows

ẋκ (t) = A κ (u(t)) x κ (t) + ϕ κ (u(t), x(t)) y k (t) = C κ x κ (t) . ( 20 
)
Bearing in mind the available results on the high gain observer design, the following dynamical system would be a suitable candidate observer.

ẋκ (t) = A κ (u(t))x κ (t) + ϕ κ (u(t), x(t)) -θ σ κ κ (θ ) -1 S -1 κ (t)C T κ C κ xκ (t) -y κ (t) Ṡκ (t) = θ δ κ -S κ (t) -A κ (u(t)) T S κ (t) -S κ (t)A κ (u(t)) + C T κ C κ , (21) 
where u(t) ∈ R m and y(t) ∈ R p are, respectively, the input and the output of system (1), the matrix κ (θ ) is given by ( 7), S κ (0) = S T κ (0) > 0, θ ≥ 1 is a scalar design parameter; x ∈ IR n denotes the state estimate given by x = (x 1 . . . xq ) T ∈ IR n with xκ = (x κ 1 . . . xκ 1 ) T ∈ IR p κ , xκ denotes a state estimate up to an output injection, i.e.

xκ i = x κ 1 for i = 1, xκ i for i = 2, . . . , λ κ .
Now, one assumes the following additional assumption A3 The input sequence u(t) is persistently exciting, i.e.

satisfies the following property ∃θ * > 0, ∃δ o > 0 and ∀θ ≥ θ * , one has

t t-1/θ δκ κ u (s, t) T C T κ C κ κ u (s, t) ds ≥ δ o θ δ κ α(θ) 2 κ (θ) , ∀ κ, ≥ 1 θ δ κ , ( 22 
)
where α(θ) ≥ 1 is a function satisfying

lim θ→∞ α(θ) θ η 2 q-1 = 0, ( 23 
)
and where κ u (t, s) denotes the state transition matrix of the state affine system

ξκ (t) = A κ (u(t))ξ κ (t). ( 24 
)
Recall that κ u (t, s) as follows

˙ κ u (t, s) = A κ (u(t)) κ u (t, s) ∀t ≥ s ≥ 0 with κ u (t, t) = I n κ ∀t ≥ 0. ( 25 
)
Note that Assumption A3, which is similar to that considered in [START_REF] Dufour | Observer design for mimo non-uniformly observable systems[END_REF], is of primary importance for the stability of the observer. Indeed, this assumption is satisfied for uniformly observable systems, i.e. systems which are observable for any input. For nonuniformly observable systems, the characterisation of the class of inputs which satisfy Assumption A3 is still an open problem. Indeed, the authors in [START_REF] Besançon | An immersion-based observer design for rank-observable nonlinear systems[END_REF] and [START_REF] Dufour | Observer design for mimo non-uniformly observable systems[END_REF], respectively, introduced the notion of local regular inputs and regular inputs. Assumption A3 extends the definition of regular inputs given in [START_REF] Dufour | Observer design for mimo non-uniformly observable systems[END_REF] to the class of cascaded systems (1). One now states the following.

Theorem 3.1: Consider system (1) subject to assumptions A1 and A2. Then, for every bounded input satisfying assumption A3, there exists a constant θ * such that for every θ > θ * , the system (21) is a state observer for system (1) with an exponential error convergence to the origin for sufficiently high values of θ , namely for any initial conditions (x(0), x(0)) ∈ X × X, the observation error x(t)x(t) converges exponentially to zero.

Proof of Theorem 3.1:

Let us first derive a lower bound for the smallest eigenvalue of each SPD matrix S κ (t) appearing in the observer (21). This property can be easily established by remarking that the transition matrix of the following state affine system

ξκ = θ δ κ A κ (u)ξ κ , (26) 
is given by

˜ κ u = κ (θ ) κ u (t, s) κ (θ ) -1 , ( 27 
)
where κ u is the transition matrix defined by Equation (25). Indeed, the matrix S κ (t) can be expressed as

S κ (t) = e -θ δκ t ( ˜ κ u ) T (0, t)S κ (0) ˜ κ u (0, t) + θ δ κ t o e -θ δκ (t-s) ( ˜ κ u ) T (s, t)C T κ C κ ˜ κ u (s, t) ds. ( 28 
)
Taking into account the second identity in ( 16), i.e. C κ κ (θ ) = C κ , and the fact that S κ (0) = S T κ (0) > 0, one gets

S κ (t) ≥ θ δ κ t o e -θ δκ (t-s) κ (θ ) -1 ( κ u ) T (s, t) × C T κ C κ κ u (s, t) κ (θ ) -1 ds ≥ e -1 δt o α(θ) I n κ , (29) 
where δ o and α(θ) are given by assumption A3. One can hence easily conclude that

λ m (S κ ) ≥ e -1 δ o α(θ) . ( 30 
)
Let us now show that greater eigenvalue of each SPD matrix S κ , i.e. λ M (S κ ), is bounded with an upper bound independent of θ . To this end, one shall show that this property is satisfied for each (block) entry (S κ ) i,j of the matrix S κ . According to the first equation of ( 21), one has

( Ṡκ ) 1,1 = -θ δ κ ((S κ ) 1,1 -I p κ ) (31) ( Ṡκ ) 1,j = -θ δ κ ((S κ ) 1,j + (S κ ) 1,j-1 (t)A κ, j-1 (u)) for j = 2, . . . , n (32) ( Ṡκ ) i,j = -θ δ κ ((S κ ) i,j + (S κ ) i,j-1 (t)A κ, j-1 (u) + A T κ, i-1 (u)(S κ ) i-1,j ) for i = 2, . . . , n, j = i, . . . , n. ( 33 
)
It is clear from Equation ( 31) that

(S k ) 1,1 (t) ≤ (S k ) 1,1 (0) + 1.
and for j ≥ 2, one can proceed by induction in order to show that (S κ ) 1,j is bounded with a bound independent of θ. Indeed, assume that (S k ) 1,j-1 is bounded and set

S M = sup t≥0 (S k ) 1,j-1 . ( 34 
)
Taking into account (32), one gets

(S κ ) 1,j (t)
≤ e -θ t (S κ ) 1,j (0)

+ θ t 0 e -θ(t-s) (S κ ) 1,j-1 (s)A κ,j-1 (u(s)) ds ≤ (S κ ) 1,j (0) + θS M ãκ t 0 e -θ(t-s) ds ≤ (S κ ) 1,j (0) + S M ãκ ,
where ãκ is the upper bound of Ãκ . And using a similar induction procedure, one can show that every entries of S κ (t) are upper bounded independently of θ. In the following, one shall prove the exponential convergence to zero of the κ th subcomponent of the observation error, i.e.

ẽ(t) = x(t) -x(t) ∈ R n κ . One has ėκ = A κ (u) -θ δ κ -1 κ (θ )S -1 κ C T κ C κ ẽκ + φκ (u, x, x), (35) with φκ (u, x, x) = ϕ κ (u, x) -ϕ(u, x), and set ēκ (t) = κ (θ )ẽ κ (t) for κ = 1, . . . , q, ( 36 
)
where κ (θ ) is given by ( 14). Using Equations ( 16) and (36), Equation ( 35) becomes

ėκ = θ δ κ A κ (u) -S -1 κ C κ C κ ēκ + κ (θ) φκ u, x, x .
(37) This makes it possible to show the exponential convergence to zero of the estimation error using an adequate approach based on the following Lyapunov candidate function

V (ē(t)) = ēT (t)S(t)ē(t), ( 38 
)
with

S(t) = diag[ S 1 (t) ••• S κ (t) ••• S q (t)
]. Indeed, one has

V κ ēκ = q i=1 ēκ T S κ ēκ , ( 39 
)
where S κ is given by ( 21). Differentiating V κ (ē κ ) along the trajectories of system (37) yields

Vκ ēκ = 2 ēκ T S κ ėκ + ēκ T Ṡκ ēκ . ( 40 
)
Combining ( 21) and ( 37) with (40) yields

Vκ ēκ = -θ δ κ ēκ S κ ēκ -θ δ κ ēκ C T κ C κ ēκ + 2 ēκ T S κ κ (θ) φκ u, x, x ≤ -θ δ κ ēκ T S κ ēκ + 2 λ M (S κ ) √ V κ ēκ × λ κ i=1 1 θ σ κ i φκ i u, x, x , (41) 
where σ κ i = σ κ 1 + (i -1)δ κ . And taking into account assumptions A1-A2, one has

Vκ ēκ ≤ -θ δ κ V κ ēκ + 2L φκ λ M (S κ ) V κ (ē κ ) × λ κ i=1 q l=1 λ l j=2 χ k,i l,j θ -σ κ i ēl j , (42) 
where L φκ denotes the Lipschitz constant of the function φκ , which exists according to assumption A2, and the χ κ,i l,j are defined as in Lemma 2.1. Moreover, one can rewrite (42) as follows

Vκ ēκ ≤ -θ δ κ V κ ēκ + 2L φκ λ M (S κ ) V κ (ē κ ) × λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i ēl j . (43) 
This yields to

Vκ ēκ ≤ -θ δ κ V κ ēκ + 2L φκ μ s V κ (ē κ ) × λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i V l (ē l ) = -θ δ κ V κ ēκ + 2L φκ μ s θ δ κ V κ (ē κ ) × λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i - δ l 2 -δκ 2 θ δ l V l (ē l ), (44) 
where

μ s = λ S /λ S with λ S = max κ=1,...,q λ M (S κ )andλ S = min κ=1,...,q λ m (S κ ). (45)
Otherwise, according to Lemma 2.1, one has:

σ l j -σ κ i - δ l 2 - δ κ 2 ≤ - η 2 q ifχ κ,i l,j = 1. ( 46 
)
And using (46) together with (44) yields

Vκ ēκ ≤ -θ δ κ V κ ēκ + 2L φκ μ s θ -η/2 q θ δ κ V κ (ē κ ) × λ κ i=1 q l=1 λ l j=2 θ δ l V l (ē l ). ( 47 
)
Furthermore, let

V * κ ēκ = θ δ κ V κ ēκ and V * (ē) = q κ=1 V * κ ēκ ,
(48) and using ( 9), one has: V * (ē) ≥ θ δq V(ē) = θ V(ē). This allows to rewrite inequality (47) as follows

Vκ ēκ ≤ -V * κ (ē) + 2L φκ μ s θ -η/2 q V * κ (ē κ ) × λ κ i=1 q l=1 λ l j=2 V * l (ē κ ) = -V * κ ēκ + 2L φκ μ s λ κ θ -η/2 q V * κ (ē) (ē κ ) × q l=1 λ l j=2 V * l (ē l ) ≤ -V * κ ēκ + 2L φκ μ s λ κ θ -η/2 q V * κ (ē κ ) (ē κ ) × q l=1 λ l j=2 V * (ē κ ) ≤ -V * κ ēκ + 2nL φκ μ s λ κ θ -η/2 q V * κ (ē κ ) V * (ē) ≤ -V * κ ēκ + 2nL φκ μ s λ κ θ -η/2 q V * (ē) .
This leads to

V (ē) ≤ -V * (ē) + 2n 2 L φ μ s θ -η 2 q V * (ē) = -1 -2n 2 L φ μ s θ -η 2 q V * (ē) , (49) 
where L φ = max{L φκ for 1 ≤ κ ≤ q} And according to (30) and ( 49), one gets

V (ē) ≤ -θ ⎛ ⎝ 1 - α(θ) θ η 2 q-1 n 4 eλ M (S) δ o L φ ⎞ ⎠ V (ē) .
(50) From ( 23), it is easy to check that for values of θ sufficiently large, V(ē) exponentially converges to zero and so does ē. This ends the proof of Theorem 3.1.

The continuous-discrete time observer

In this section, one aims at providing a continuousdiscrete time observer for the considered class of systems in the spirit of the design approach proposed in Farza et al. (2014). This consists in performing an accurate continuous-time estimation of the system state when the output measurements are available only at sampling time instants {t k } k∈IN by appropriately redesigning continuous-time observer proposed in Section 3 as follows:

ẋκ (t) = A κ (u(t)) xκ (t) + ϕ κ u(t), x(t) -θ δ κ -1 κ (θ ) S -1 κ (t) C T κ η κ (t) Ṡκ (t) = θ δ κ -S κ (t) -A T κ (u(t)) S κ (t) -S κ (t) A κ (u(t)) + C T κ C κ ηκ (t) = -θ δ κ C κ S -1 κ (t) C T κ η κ (t) for t ∈ [t k , t k+1 [ η κ (t k ) = C κ xκ (t k ) -y κ (t k ) , (51) 
where xκ (t) denotes the estimate of the block state x κ (t) ∈ R n κ for κ = 1, . . . , q and κ (θ ) is the blockdiagonal matrix defined in (6) with θ > 1.

It is worth noticing that the function η κ is continuous over the time horizon [t k , t k+1 [ and is updated at each sampling instant t k using only the sampled output measurement y κ (t κ ). The dynamical system (51) performs hence a continuous-time estimation of the system state from the sampled output measurements. And the involved estimation is accurate as pointed out by the following result.

Theorem 4.1: Consider system (1) subject to assumptions A1 and A2 with an input sequence {u(t)} satisfying assumption A3. Then, there exists θ o > 1 such that for every θ ≥ θ o , there exists χ θ > 0 such that if the upper bound of the sampling partition parameter τ max is chosen such that

τ max < χ θ , ( 52 
)
then the state of the continuous time observer with sampled measurements (51)converges exponentially toward the state of the nonlinear system (1).

Proof of Theorem 2:

Set ēκ = κ (θ )ẽ κ where ẽκ = xκx κ . Using (1) and ( 51), one gets

ėκ (t) = θ δ κ A κ (u) -S -1 κ C T κ C κ ēκ + θ δ κ S -1 κ C T κ z κ (t) + κ (θ ) φκ u, x, x , (53) withz κ (t) = C κ ēκ (t) -η κ (t) and φκ (u(t), x(t), x(t)) = ϕ κ (u(t), x(t)) -ϕ(u(t), x(t)).
The exponential convergence of the observation error can be proven using the following Lyapunov function candidate

V(ē) = q k=1 V κ ēκ with V κ ēκ (t) = ēκ (t) T S κ (t)ē κ (t). ( 54 
)
Differentiating the Lyapunov function candidate, taking into account the normalised observation error equation ( 53) yields

Vκ ēκ = -θ δ κ V κ ēκ -θ δ κ ēκ T C T κ C κ ēκ + 2θ δ κ ēκ T C T κ z κ + 2 ēκ T S κ κ (θ) φκ u, x, x . (55) 
And using the ODE proving η κ (t) in the observer (51), one can show that

żκ ēκ = C κ θ δ κ A κ (u) ēκ (t) + κ (θ) φκ u, x, x .
(56) Otherwise, integrating the members of (56) from t κ to t, using the fact that z(t κ ) = 0, one obtains

z κ (t) = t t κ C κ θ δ κ A κ (u) ēκ (s) + κ (θ) φκ u, x, x ds. ( 57 
)
This allows to obtain an over-evaluation of z κ (t) according to the following manipulations

z κ ≤ θ δ κ t t κ C κ A κ (u) ēκ ds + t t κ λ κ i=1 1 θ σ κ i φκ i (u, x, x) ds ≤ ⎛ ⎝ θ δ κ ãκ t t κ ēκ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ k,i l,j θ -σ κ i ēl j ds ⎞ ⎠ ≤ ⎛ ⎝ θ δ κ ãκ t t κ ēκ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i ēl j ds ⎞ ⎠ ≤ 1 λ S ⎛ ⎝ θ δ κ ãκ t t κ √ V κ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i V l ds ⎞ ⎠ , ( 58 
)
where ãκ and λ S are respectively defined by ( 5) and ( 45).

Moreover, one has

2θ δ κ ēκ C T κ z κ ≤ 2θ δ κ μ S √ V κ ⎛ ⎝ θ δ κ ãκ t t κ √ V κ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ l,j κ,i θ σ l j -σ κ i V l ds ⎞ ⎠ ≤ 2θ δ κ μ s √ V κ ⎛ ⎝ θ δ κ ãκ t t κ √ V κ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ k,i l,j θ σ l j -σ κ i V l ds ⎞ ⎠ , ( 59 
)
where μ S = λ S /λ S where λ S and λ S are defined by ( 45).

And substituting ( 59) into ( 55) yields

Vκ ≤ -θ δ κ V κ + 2 λ S √ V κ λ κ i=1 θ -σ κ i φκ i u, x, x + 2θ δ κ μ s √ V κ ⎛ ⎝ θ δ κ ãκ t t κ √ V κ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i V l ds ⎞ ⎠ . ( 60 
)
Otherwise, according to assumption A1 and the property of χ k,i l,j given by Lemma 2.1, one can easily obtain

Vκ ≤ -θ δ κ V κ + 2L φκ λ S √ V κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i ēl j + 2θ δ κ μ s √ V κ ⎛ ⎝ θ δ κ ãκ t t κ √ V κ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i V l ds ⎞ ⎠ , ( 61 
)
where σ l j is defined as in (11). And pursuing these developments, one gets

Vκ ≤ -θ δ κ V κ + 2L φκ μ s √ V κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i V l + 2θ δ κ μ s √ V κ ⎛ ⎝ θ δ κ ãκ t t κ √ V κ ds + L φκ t t κ λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i V l ds ⎞ ⎠ ≤ -θ δ κ V κ + 2L φκ μ s θ δ κ V κ × λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i -1 2 δ l -1 2 δ κ θ δ l V l ds + 2θ δ κ μ s θ δ κ V κ ⎛ ⎝ ãκ t t κ θ δ κ V κ ds + L φκ t t κ × λ κ i=1 q l=1 λ l j=2 χ κ,i l,j θ σ l j -σ κ i -1 2 δ l -1 2 δ κ θ δ l V l ds ⎞ ⎠ . ( 62 
)
Applying Lemma 2.1 and using Equation ( 46), one obtains

Vκ ≤ -θ δ κ V κ + 2L φκ μ s θ -η 2 q θ δ κ V κ × λ κ i=1 q l=1 λ l j=2 θ δ l V l + 2θ δ κ μ s ⎛ ⎝ ãκ t t κ θ δ κ V κ ds + θ -η 2 q L φκ × t t κ λ κ i=1 q l=1 λ l j=2 θ δ l V l ds ⎞ ⎠ θ δ κ V κ . (63)
Now, let us consider the functions V * κ and V * defined by ( 48), one has:

Vκ ≤ -V * κ + 2L φκ μ s θ -η 2 q V * κ λ κ i=1 q l=1 λ l j=2 V * l + 2θ δ κ μ s ⎛ ⎝ ãκ t t κ V * κ ds + θ -η 2 q L φκ t t κ λ κ i=1 q l=1 λ l j=2 V * l ds ⎞ ⎠ V * κ = -V * κ + 2λ κ L φκ μ s θ -η 2 q V * κ q i=1 λ κ l=1 V * l + 2θ δ κ μ s ãκ t t κ V * κ ds + λ κ θ -η 2 q L φκ t t κ q i=1 λ κ l=1 V * l ds V * κ ≤ -V * κ + 2λ κ L φκ μ s θ -η 2 q V * κ (ē κ ) q i=1 λ κ l=1 √ V * + 2θ δ κ μ s ãκ t t κ V * κ ds + λ κ θ -η 2 q L φκ t t κ q i=1 λ κ l=1 V * l ds V * κ ≤ -V * κ + 2nλ κ L φκ μ s θ -η 2 q V * κ √ V * + 2θ δ κ μ s ãκ t t κ V * κ ds + nλ κ θ -η 2 q L φκ t t κ √ V * ds V * κ ≤ -V * κ + 2nλ κ L φκ μ s θ -η 2 q V * κ (ē κ ) + 2θ δ κ μ s ãκ t t κ √ V κ ds + nλ κ θ -η 2 q L φκ t t κ √ V * ds V * κ . ( 64 
)
Taking into account ( 46) and ( 48), one obtains

Vκ ≤ -V * κ + 2nλ κ L φκ μ s θ -η 2 q V * κ + 2θ δ 1 μ s × ãκ λ κ + nλ κ θ -η 2 q L φκ t t κ V * κ ds V * κ . ( 65 
)
And henceforth

V = -1 -2n 2 L φ μ s θ -η 2 q V * + 2θ δ [ l] μ s ã + n 2 θ -η 2 q L φ t t κ √ V * ds √ V * ,
where ã = max 1≤k≤q ãκ .

The above equation can be written as follows

d √ V dt = -1 -2n 2 L φ μ s θ -η/2 q √ V * + 2θ δ 1 μ s ã + n 2 θ -η 2 q L φ t t κ √ V * ds, ( 66 
)
where the argument of the functions V and V * have been omitted. And using (30) and V * (ē), it follows that:

d dt √ V = - √ θ ⎛ ⎝ 1 -2 α(θ) θ η 2 q-1 n 4 eλ M (S) δ o L φ ⎞ ⎠ √ V + 2θ δ 1 θα(θ)eλ M δ o × ã + n 2 θ -η 2 q L φ t t κ √ V ds. (67)
Finally, using Lemma 2.2 with

a θ = ⎛ ⎝ 1 -2 α(θ) θ η 2 q-1 n 4 eλ M (S) δ o L φ ⎞ ⎠ and b θ = 2θ δ 1 θα(θ)eλ M δ o ã + n 2 θ -η 2 q L φ ,
and defining χ θ = a θ /b θ , on gets the result.

Application to an unmanned aerial vehicle

In the following, one shall show that the proposed continuous-discrete time observer can be used to provide an accurate estimation of the quadrotor state variables, namely the position and Euler angles together with their respective speeds, using only sampled measurements of the position and the yaw angle. Such an estimation is carried out using a realistic simulation framework involving a quadrotor dynamical model describing its barycentre movements and angular motions, namely the three translation and three rotation motions provided by the six degree of freedom of the quadrotor. This model is obtained using the inertial coordinate frame and a mobile reference frame united with the quadrotor barycentre as shown in Figure 1. The rotation from the mobile reference frame to the inertial position frame is described by the following rotational matrix

R = ⎡ ⎣ c ψ c θ -s ψ c θ s θ c ψ s θ s φ + s ψ c φ -s ψ s θ s φ + c ψ c φ -c θ s φ -c ψ s θ c φ + s ψ s φ s ψ s θ c φ + c ψ s φ c θ c φ ⎤ ⎦
with s η = sin(η) and c η = cos(η) for η = θ, φ, ψ, where θ, φ and ψ denote the Euler angles, i.e. the roll, pitch and yaw, respectively. The configuration variables are then given by the position of the quadrotor centre of mas in the inertial reference frame and the space quadrotor orientation and are hence given by

v = [ θ] ∈ R 6 with = [x y z] ∈ R 3 and ϑ = [φ θ ψ] ∈ R 3 .
Otherwise, the control inputs of the quadrotor are the force resulting from the forces provided by the each rotor and the torques applied to each axis, i.e. u = [ f τ ] T ∈ R 4 with τ = [ τ φ τ θ τ ψ ] T ∈ R 3 . The modelling process of the quadrotor is comprehensively presented in [START_REF] Guisser | A high gain observer and sliding mode controller for an autonomous quadrotor helicopter[END_REF] where it has been shown that the underlying translational and rotational motions are described by the dynamical model

¨ = ⎡ ⎣ 0 0 -g ⎤ ⎦ + ⎡ ⎣ sin(θ ) -cos(θ ) sin(φ) cos(θ ) cos(φ) ⎤ ⎦ f m θ = ⎡ ⎣ a 1 θ ψ + b 1 τ φ a 2 φ ψ + b 2 τ θ a 3 θ φ + b 3 τ ψ ⎤ ⎦ , (68) 
where m is the mass of the quadrotor system, g is the gravity acceleration and the parameters a 1 , a 2 , a 3 , b 1 , b 2 and b 3 are defined as follows

a 1 = I y -I z I x , a 2 = I z -I x I y , a 3 = I x -I y I z , b 1 = 1 I x , b 2 = 1 I y , b 3 = 1 I z ,
where I x , I y and I z are the mass moments of inertia of the quadrotor in the inertial coordinate frame.

Otherwise, the choice of the measured output is of a fundamental interest from the observer design point of view, namely ensure that the observer design is feasible while avoiding the use of expensive motion capture systems, such as VICON or OptiTrack systems. As the position and the raw angle of the quadrotor can be respectively measured by a Global Positioning System (GPS) and a digital compass, as was considered in [START_REF] Shao | Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[END_REF], they can be used to compose the system output

μ = [μ 1 μ 2 μ 3 μ 4 ] T = [x y z ψ] T ∈ R 4 .
In the following, one shall show that the quadrotor model ( 68) can be rewritten under the form (20) up to the following change of coordinates

: ξ ∈ X ⊂ R 12 → ζ = (ξ ) ∈ Z ⊂ R 12
where X and Z are respectively compact sets of R 12 and ξ ∈ X ⊂ R 12 ζ ∈ Z ⊂ R 12 respectively denote the original and new coordinates defined as follows:

ξ = [ξ 1 ξ 2 ξ 3 ξ 4 ] T = [ ˙ ϑ θ] T ∈ R 12 , and ζ = [ζ 1 , ζ 2 , ζ 3 , ζ 4 ] T ∈ R 12 with ζ j = [ζ j 1 , ζ j 2 , ζ j 3 , ζ j 4 ] T for j = 1,2 and ζ i = [ζ i 1 ζ i 2 ] for i = 3, 4, with ζ 1 = x ẋ sin(θ ) θ sin(θ ) T , ζ 2 = ⎡ ⎢ ⎢ ⎣ y ẏ -cos(θ ) sin(φ) θ sin(θ ) sin(φ) -φ cos(θ ) cos(φ) ⎤ ⎥ ⎥ ⎦ , ζ 3 = z ż T and ζ 4 = ψ ψ T . ( 69 
)
Taking into account the above state decomposition of the vectors ξ and ζ together with the considered measurement output decomposition μ, one can easily show that the quadrotor model can be rewritten under the form of the system (20) with the structure values q = 4,

p 1 = p 2 = p 3 = p 4 = 1, λ 1 = λ 2 = 4 and λ 3 = λ 4 = 2, namely ζ κ (t) = A κ (u(t)) κ (t) + ϕ κ (u(t), ζ(t)) μ k (t) = C κ ζ κ (t) (70) 
with

A 1 (u) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 1 0 0 0 0 f m 0 0 0 0 1 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ , ϕ 1 (ζ , u) = ⎡ ⎢ ⎢ ⎣ 0 0 0 ϕ 1 4 (ζ , u) ⎤ ⎥ ⎥ ⎦ and C 1 = 1 0 0 0 , A 2 (u) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 1 0 0 0 0 f m 0 0 0 0 1 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ , ϕ 2 (ζ , u) = ⎡ ⎢ ⎢ ⎣ 0 0 0 ϕ 2 4 (ζ , u) ⎤ ⎥ ⎥ ⎦ and C 2 = 1 0 0 0 , A 3 (u) = 0 1 0 0 , ϕ 3 (ζ , u) = ⎡ ⎣ 0 -g + cos(θ ) cos(φ) f m ⎤ ⎦ and C 3 = 1 0 , A 4 (u) = 0 1 0 0 , ϕ 4 (ζ , u) = 0 a 3 φ θ + b 3 τ φ and C 4 = 1 0 .
The quadrotor dynamics can be therefore described in the new frame of coordinates as follows

ζ (t) = A (u(t)) ζ(t) + ϕ (u(t), ζ(t)) μ(t) = Cζ(t), ( 71 
)
where

A(u) = diag{A κ (u)} κ∈[1,4] , C = diag{C κ } κ∈[1,4] and ϕ T (ζ , u) = [ϕ 1 (u, ζ ) • • • ϕ 4 (u, ζ )].
Moreover, it is worth noticing that the original coordinates can be easily derived from the new coordinates using ξ = -1 (ζ ). This leads to

x = ζ 1 1 , y = ζ 2 1 , z = ζ 3 1 , θ = arcsin ζ 1 3 , φ = arcsin -ζ 2 3 cos(θ ) , ψ = ζ 4 1 , ẋ = ζ 1 2 , ẏ = ζ 2 2 , ż = ζ 3 2 , θ = ζ 1 4 cos(θ ) , φ = θ sin(θ ) sin(φ) -ζ 2 4 cos(θ ) cos(φ) , ψ = ζ 4 2 . ( 72 
)
Bearing in mind the fundamental result provided in the last section, it is possible to perform an accurate continuous-time estimation of the position and orientation variables of the quadrotor and their respective translation and angular speeds using only sampled output measurements provided that the involved sampling partition parameter satisfies the requirement (52) and that the considered inputs are persistently exciting according to the assumption A3. Such an estimation problem is an adequate opportunity to investigate the feasibility of the proposed observer design framework.

In the following, one shall present a set of simulation results involving a quadrotor model in closed loop with a suitable PD controller with gravity compensation. The involved feedback system is asymptotically stable and able to maintain the vehicle in the desired position with admissible attitude dynamics. The proposed observer has been designed using a quadrotor model which is commonly used in real aerial platforms with δ 1 = 5 and δ 2 = δ 3 = δ 4 = 1, according to (7)-( 9). The model parameters are given by m = 0.56Kg, d = 0.21m, I x = 14.2e -3 Kgm 2 , I y = 14.2e -3 Kgm 2 and I z = 2I x , and the initial conditions for the quadrotor model and the observer have been respectively specified as follows:

ζ (0) = 0.1 1×12 , ζ(0) = 0 1×12 and S κ (0) = I 12×12 for κ ∈ [1, 4].

Continuous observer for a quadrotor

To illustrate the performance of the proposed continuous time observer, some simulations have been carried out. The tuning parameter is setting to θ = 1.2 and a sampling rate 0.005 s. (200 Hz) is considered. Figure 2 shows the evolution of the state, where it is appreciated that the vehicle estimated position converges quickly to real position in less than 5 s, it is also the case of the quadrotor estimate attitude. It is easy to see that the vehicle position and attitude converge to the reference trajectory. This behaviour is that fast thanks to the design of the continuous observer. Notes that the converge is achieved in less that 8 sec.

In order to compare the proposed continuous observer with another works, the simulations have been carried out with the same simulation parameters. Two scenarios are presented with a sampling rate 0.005 s (250 Hz), the first test when the initial conditions for the quadrotor model and the proposed observer are specified as mentioned earlier; and the second test when the initial conditions are set to be zero and, as was considered in [START_REF] Shao | Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[END_REF]. Figure 3 shows the performance of the observer seems similar in both cases, however, this is not presented in [START_REF] Shao | Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[END_REF], and it was only validated when the initial conditions are set to be zero, this does not allow us to illustrate the convergence of the observation error when tends exponential to zero. Now, In order to put forward the influence of the increment of the sampling rate on the observation error convergence speed, other values of sampled period κ have been considered. Indeed,one has compared in Figure 4 the evolutions of the estimation of the positions x and y, the observation error of the position z and the norms of the actual observation error, i.e. ẽ , obtained with three different values of κ , namely, 0.005, 0.05 and 0.1 s. The obtained results clearly show that the speed of convergence to the state decreases as the sampled period become larger in magnitude reflecting the fact that the typical approach for high gain observer design is inadequate to estimate the state through available measurements provided by larger sampled periods. Therefore, there is the need to redesign the typical high gain observer approach. 

Continuous-discrete observer for a quadrotor

To validate the performance of our main contribution which is the continuous-discrete observer, two case studies have been considered depending on the allowed sampling partition bound, namely τ min = 0.05 s. and τ max = 0.2 s, allowing thereby to appreciate the observer performance for relatively fast and long sampling processes. The observer design parameter has been specified as follows: θ = 1.2 for low sampling periods and θ = 1.15 for long sampling periods.

Figures 5 and6 show the state behaviour of the observer for fast and low sampling respectively. It is worth mentioning that the state variables of the quadrotor are accurately estimated. The transient performances are better for the fast sampling case in the considered simulation framework.

Finally, we have compared in Figure 7 two contributions: the continuous observer and the continuousdiscrete observer. The results have been obtained by using relatively low sampled periods and long sampled periods, in both observers. It is evident from this results that the speed of convergence to the state decreases as the sampled period become larger in magnitude, however, the continuous-discrete helps to overcome the long sampled periods. This confirms the theoretical results given in Theorem 4.1.

Remark 5.1: It is worth mentioning that the nonlinear systems with coupled structure are usually used in the modelling of quadrotor. In [START_REF] Shao | Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator[END_REF] a structure with strong coupling between position and attitude subsystems is presented, where the available state is ζ 1 = [x y z]. Another work [START_REF] Wang | Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[END_REF], the nonlinear dynamic model of the quadrotor is represented as a integral-chain nonlinear system, where represents two subsystems and the measured state is

ζ 1 = [z φ θ ψ].
In both cases assume continuous-time measurements when experimental tests, the measurements are available only at sampling instants.

Conclusion

We have presented a new high-gain continuous-discrete time observer for a quadrotor. The main contribution of the proposed observer is that it was able to overcome relatively long sampling period. The proposed algorithm has been further validated with simulations for a quadrotor nonlinear model and the results have showed an excellent performance of the proposed scheme. We can appreciate that the behaviour of the continuous-discrete time observer for short sampling times tend to be similar than the behaviour of the continuous time observer. However, in the case of long sampling times the performances are still very good. In our future research we intend to consider a varying sampling time. It would also be interesting to obtain experimental results.
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 4 Figure 4. Evolution of the continuous observer with different sampling rates κ = 0.005 s, 0.05 s and 0.1 s (200 Hz, 20 Hz and 10 Hz, respectively).
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 5 Figure 5. Estimation of the state UAV with sampled period κ = 0.05 s.Figure6. Estimation of the state with sampled period κ = 0.2 s.
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 7 Figure 7. Comparison of the continuous observer and the continuous-discrete observer with different sampling rates.
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