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Predictive models of visual recognition state that
predictions based on the rapid processing of low spatial
frequencies (LSF) may guide the subsequent processing
of high spatial frequencies (HSF). While the HSF signal
necessarily comes from central vision, most of the LSF
signal comes from peripheral vision. The present study
aimed at understanding how LSF in peripheral vision may
be used to generate predictive signals that guide visual
processes in central vision. In two experiments,
participants performed an object categorization task in
central vision while a semantically congruent or
incongruent scene background was displayed in
peripheral vision. In Experiment 1, results showed a
congruence effect when the peripheral scene was
displayed before the object onset. In Experiment 2,
results showed a congruence effect only when the
peripheral scene was intact, thus carrying a semantic
meaning, but not when it was phase-scrambled, thus
carrying only low-level information. The study suggests
that the low resolution of peripheral vision facilitates the

processing of foveated objects in the visual scene, in line
with predictive models of visual recognition.

Introduction

Visual recognition in humans is considerably effi-
cient and fast. Complex stimuli such as objects and
natural scenes are robustly processed and categorized
despite their infinite variability. Data on the functional
neuroanatomy of visual pathways (Van Essen &
DeYoe, 1995) and neurophysiological recordings in
primates (De Valois, Albrecht, & Thorell, 1982; Shams
& Von Der Malsburg, 2002; Shapley & Lennie, 1985)
suggest that the visual system is able to rapidly extract
the low spatial frequencies (LSF) from a visual scene
through fast magnocellular pathways. LSF signals
convey coarse information about the global shape and
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structure of the scene. The processing of this informa-
tion precedes the processing of a high spatial frequency
(HSF) signal, which conveys finer information about
the scene such as edges and object details through
slowest parvocellular pathways. Accordingly, theories
of visual perception have proposed that visual infor-
mation is integrated in a coarse-to-fine manner (Bar,
2003; Hegdé, 2008; Kauffmann, Ramanoël, & Peyrin,
2014; Schyns & Oliva, 1994).

In this theoretical framework, it was also hypothe-
sized that the brain uses the rapidly available LSF to
predict visual inputs, especially within the orbitofrontal
cortex (Bar & Aminoff, 2003; Kauffmann et al., 2014;
Kveraga, Boshyan, & Bar, 2007; Peyrin et al., 2010).
The predictive signal would be back-projected, via top-
down connections, to occipito-temporal visual areas to
guide bottom-up processes. Predictions could then
influence the subsequent processing of HSF. As
experimental evidence, a combined magnetoencepha-
lography (MEG) and functional magnetic resonance
imaging (fMRI) study (Bar et al., 2006) demonstrated
earlier activations in the orbitofrontal cortex than in
the occipito-temporal cortex during recognition of
object images, this early activity depending on the
presence of LSF in the image. Recent fMRI studies
investigating the effective connectivity between these
regions using dynamic causal modeling showed that a
magnocellular signal (e.g., achromatic and low-lumi-
nance contrast drawings, LSF-filtered scenes) increases
the connectivity strength from the orbitofrontal cortex
to the inferotemporal cortex (Kauffmann, Chauvin,
Pichat, & Peyrin, 2015; Kveraga et al., 2007). Petras,
ten Oever, Jacobs, and Goffaux (2019) used a classifier
trained to discriminate between EEG scalp patterns
evoked by LSF inputs and EEG scalp patterns evoked
by HSF inputs in order to tease apart LSF and HSF
contribution to the neural response evoked by broad-
band stimuli. They then tested the classifier on EEG
scalp patterns evoked by intact and phase-scrambled
broadband faces. Results showed an early LSF
dominance followed by a reduced HSF dominance in
response to intact, but not to scrambled, face stimuli.
Given the fact that LSF was informative about HSF
only in intact images, the reduction in the late
contribution of HSF suggests that the first LSF parsing
elicits a robust representation of the face that
subsequently reduces (unnecessary) HSF processing.

However, these studies often use small stimuli
displayed in central vision and therefore miss the
selectivity of peripheral vision for LSF processing.
Indeed, the processing of spatial frequencies is nonho-
mogeneous throughout the visual field (Curcio & Allen,
1990; Curcio, Sloan, Kalina, & Hendrickson, 1990). In
the retina, the density of midget ganglion cells, tuned to
HSF, is greater in the fovea, while the density of
parasol ganglion cells, tuned to LSF, increases with

retinal eccentricity. Therefore, the receptive fields in
peripheral vision are too large to capture HSF signals.
The counterpart is that the visual system has a
considerable amount of LSF information rapidly
available in peripheral vision that can contribute to the
generation of predictive signals. In this view, the
processing of details in central vision could benefit from
predictive signals originating from both the overlap-
ping central LSF signal and the eccentric LSF signal.

The objective of the present study is to test whether
LSF information in peripheral vision can be used to
generate predictive signals that guide visual processes in
central vision. In real-life conditions, observers often
foveate relevant elements (e.g., a face during a social
interaction, an object while performing an action) while
these are embedded within a coherent context encom-
passing the whole visual field. Central vision is thus
more suited for object perception and peripheral vision
for scene perception. This distinction is found in the
visual cortex where object-selective areas (in the lateral
occipito-temporal cortex) respond more strongly to
central rather than peripheral visual input, while scene-
selective areas (in the medial occipito-temporal cortex)
respond more strongly to peripheral rather than central
visual input (Arcaro, McMains, Singer, & Kastner,
2009; Baldassano, Fei-Fei, & Beck, 2016; Levy,
Hasson, Avidan, Hendler, & Malach, 2001; Malach,
Levy, & Hasson, 2002). In the present study, we asked
participants to categorize an object in central vision
while a semantically related (predictive/congruent) or
unrelated (nonpredictive/incongruent) scene back-
ground was presented in peripheral vision. We did not
filter out the spatial frequency content from the scene,
since peripheral vision acts as a natural low-pass filter.
We expected that LSF information available in the
broadband scene displayed in peripheral vision would
influence the explicit categorization of the object in
central vision (resulting in better performance in
congruent than in incongruent trials). A large number
of studies investigated the interactions between objects
and context (Bar & Ullman, 1993; Boucart, Moroni,
Szaffarczyk, & Tran, 2013; Davenport, 2007; Daven-
port & Potter, 2004; Joubert, Fize, Rousselet, & Fabre-
Thorpe, 2008; Joubert, Rousselet, Fize, & Fabre-
Thorpe, 2007; Rémy et al., 2013; Sun, Simon-Dack,
Gordon, & Teder, 2011). Typically, categorization
performance is better when objects are within a
congruent rather than incongruent context. A congru-
ent context can also facilitate object processing in
patients with age-related macular degeneration, a
retinal disease causing central vision loss due to the
destruction of macular photoreceptors (Boucart et al.,
2013). However, because the distinction between
central and peripheral vision was not the aim of these
studies, authors did not control either the position of
the object on the background scene, or the retinal size
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of the object and the scene (resulting in rather small
scenes and big objects).

Here, we examined how scene information influences
object categorization when object information is
restricted to central vision and scene information to
peripheral vision. We manipulated the time during
which the scene was processed before object onset
(Experiment 1). We expected that if information in
peripheral vision is used to generate a predictive signal
that shapes visual processing in central vision, the
peripheral influence on object categorization (i.e., the
congruence effect) would be greater when peripheral
information can be accumulated and result in a sharper
representation of the scene—that is, when the scene is
presented longer before object onset. To test whether
low-level aspects of scene processing are sufficient to
influence visual processing in central vision, or whether
achieving a semantic representation of the scene is
needed (Bar, 2003; Kauffmann, Bourgin, Guyader, &
Peyrin, 2015), we presented the scenes in two versions:
intact and phase-scrambled (Experiment 2). The phase-
scrambled version of the scene is made by disrupting
the phase of the scene image while preserving low-level
(spatial frequency and orientation distribution) infor-
mation. We expected that if the semantic representation
of the scene is used to generate predictions, the
peripheral scene would influence object categorization
when it is intact more than when its phase is scrambled.

Experiment 1

Methods

Participants

Fifty right-handed participants (43 women; M 6 SD
¼ 21 6 4 years, range: 18–26 years) with normal or
corrected-to-normal vision participated in the experi-
ment. Most of them were psychology students who
received course credits for their participation. They
gave their informed written consent before participat-
ing in the study, which was carried out in accordance
with the Code of Ethics of the World Medical
Association (Declaration of Helsinki), and approved by
the local ethics committee (Grenoble-Alps Research
Ethics Committee, Community University Grenoble
Alps, IRB00010290).

Stimuli

Stimuli were images consisting of a combination of
an object and a scene background. All images used to
create the stimuli (scenes and objects) were downloaded
from the image bank Pixabay (https://pixabay.com/)
under Creative Commons Zero license, or from Google

Images searches of copyright-free pictures. The scenes
used as backgrounds were photographs representing
either outdoor natural landscapes (e.g., savannah, field,
park ice), or indoor views (e.g., living room, corridor).
They were converted into 256-level grayscale and
rescaled to 10243 768 pixels. Stimuli were displayed on
a 30-in. monitor (Dell Ultrasharp) with a resolution of
2560 3 1600 pixels and a refresh rate of 60 Hz. We
estimated the gamma function of the monitor by
measuring the luminance values of the display for
different values of uniform gray-level stimuli generated
in MATLAB (MathWorks, Natick, MA) with a
calibration tool (Spyder5ELITE, Datacolor, Rotkreuz,
Switzerland). Based on the estimated function, we
gamma-corrected luminance values of each scene to
linearize indirectly the gamma function. Mean lumi-
nance and root mean square (RMS) contrast (standard
deviation of the luminance) of the scenes were then
equalized to obtain a mean luminance of 0.51 for
luminance values ranging from 0 to 1 (i.e., mean
luminance of 130 on a gray-level scale) and a mean
RMS of 0.24 (i.e., 61 on a gray-level scale). These
values correspond to the average values of luminance
and RMS contrast of all scene images (landscapes and
indoor views). Objects were photographs of animals
(e.g., cow, penguin) and pieces of furniture (e.g.,
armchair, coffee table) that were cut out of natural
images using Adobe Photoshop. Each object was
rescaled to 128 pixels on its larger side (either width or
height, depending on the object).

We created 20 groups of four object-scene stimuli (80
stimuli) by combining one scene background with one
object. The four combinations resulted in two congruent
(animalþ outdoor context and furnitureþ indoor
context) and two incongruent (animalþ indoor context
and furnitureþ outdoor context) object-scene associa-
tions (Figure 1). Scenes and objects forming congruent
associations were combined based on their real-world
congruency (e.g., cowþ field, penguinþ park ice). Each
object was pasted on the corresponding congruent and
incongruent backgrounds, at the center on the horizon-
tal axis, but in the lower part on the vertical axis
(centered at 576 pixels from the top of the image) in
order to respect the usual position of an object in a
photograph. The object was isolated from the back-
ground scene by a circular gray patch (diameter of about
250 pixels) whose edges were smoothly blended into the
scene. This allowed us to restrict contextual information
to peripheral vision only, and to control for possible
local contrast effects on the perception of the object.
Stimuli can be download from https://osf.io/mfhx5/.

Procedure

The experiment was programmed on E-Prime 2.0
software (E-Prime Psychology Software Tools Inc.,
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Pittsburgh, PA). Participants viewed stimuli at a
distance of 50 cm. At this distance, the background
scenes subtended 248 of visual angle horizontally and
188 vertically. The larger side of the objects (either the
width or the height) subtended 38 and the gray circular
patch subtended about 68 in diameter and was centered
at ;138 from the top of the image. The participant’s
head was supported by a chinrest in order to maintain
distance.

Participants were instructed to maintain their
fixation on a little white fixation cross, centered on
the screen location at which the object was presented
(i.e., at the center of the screen horizontally and in
the lower part vertically). Each trial began with the
fixation cross presented for 500 ms, followed by a
stimulus sequence, and by a backward mask (1/f
noise) for 30 ms. Interstimulus interval was of 2,500
ms. The stimulus sequence depended on the exper-
imental condition. In the stimulus onset asynchrony
(SOA)-0 condition, the scene-object stimulus was
presented for 150 ms. In the SOA-30 condition, the
scene-object stimulus was also presented for 150 ms,
but was preceded by the scene image alone (including
a circular gray patch masking central visual infor-
mation) for 30 ms. Similarly, in the SOA-150
condition, the scene-object stimulus was presented
for 150 ms, and was preceded by the scene image
alone for 150 ms. The three scene SOA conditions
were blocked and block order was counterbalanced
across participants by a Latin square procedure.
Participants had to categorize the object as animal or
furniture by pressing two keys on a keyboard. They
received no special instruction about the back-
ground, but if they questioned it, they were told that
the background did not matter. Response keys were

counterbalanced across participants. Accuracy and
response time (RT) were recorded at each trial. There
were 240 trials (2 Congruence 3 3 Scene-SOA 3 20
Stimuli Groups 3 2 Object Categories). Participants
could pause between scene SOA blocks, and the
experiment lasted about 20 min. Prior to completing
the experimental trials, participants underwent a
short training session (12 trials) to be familiarized
with the stimuli and the task.

Results

For each participant, correct RTs (in ms) were log
transformed and then trimmed by removing trials for
which RT was inferior or superior to the condition
average 6 2.5 SDs (1.76% of trials were excluded).
Mean correct RTs (mRT), mean log transformed
correct RTs (mLog[RT]) and mean correct response
rates (mCR), with standard deviations, for each
experimental condition are reported in Table 1. We
conducted two repeated measures ANOVA on mCR
and mLog(RT) with congruence (congruent or incon-
gruent stimuli) and scene SOA (SOA-0, SOA-30, SOA-
150) as within-subject factors. Further pairwise com-
parisons were tested with two-tailed paired-samples t
tests, and trend analyses with polynomial contrasts,
using a Bonferroni adjustment of alpha level to correct
for multiple tests (0.05/8¼ 0.006 for the eight pairwise
tests and trend analyses performed). Effect size was
estimated by calculating Cohen’s d for within subject
design. Statistical analyses were conducted in R.

Analysis of mCR showed that mCR was larger in the
congruent condition (M 6 SD: 0.96 6 0.05) than in the
incongruent condition (0.95 6 0.05; F[1, 49]¼ 6.52, p¼

Figure 1. (A) Example of a group of four sceneþ object stimuli used in Experiment 1. (B) Schematic of the experimental procedure. In

the SOA-0 condition, the scene þ object stimulus appeared directly, without any pre-exposition of the peripheral scene.
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0.014, d¼ 0.36). The main effect of Scene-SOA was not
significant (F[2, 98] ¼ 1.37, p ¼ 0.258), and this factor
did not interact with the congruence of stimuli (F[2, 98]
¼ 2.22, p¼ 0.114; Figure 2). It should be noted that the
global mCR was high (0.96 6 0.20), with distributions
of individual observations reflecting a ceiling effect.

Analysis of mLog(RT) showed that participants
were faster to categorize objects in congruent stimuli
(2.723 6 0.102) than in incongruent stimuli (2.731 6
0.097; F[1, 49]¼ 39.44, p , 0.001, d¼ 0.88). The main
effect of scene SOA was also significant (F[1, 98] ¼
14.40, p , 0.001, d ¼ 0.54). Both linear and quadratic
trends were significant (linear contrast: t[49]¼ 4.22, p ,
0.001, d ¼ 0.60; quadratic contrast: t[49] ¼ 2.83, p¼
0.007, d¼ 0.40), indicating that participants were faster
to categorize the objects in both the SOA-30 (2.721 6
0.010) and SOA-150 (2.719 6 0.095) than in the SOA-0
condition (2.741 6 0.103). Importantly, scene SOA
interacted with the congruence of the stimuli (F[1, 98]¼
12.4, p , 0.001, d¼ 0.50; Figure 2). We tested the
difference between the congruent and incongruent trials
for each scene SOA condition. It was significant for the
SOA-150 condition (congruent: 2.710 6 0.096; incon-
gruent: 2.728 6 0.092; t[49]¼ 7.60, p , 0.001, d¼ 1.08),
but neither for the SOA-30 condition (congruent: 2.718
6 0.104; incongruent: 2.723 6 0.096; t[49] ¼ 2.68, p ¼
0.010) nor for the SOA-0 condition (congruent: 2.740
6 0.103; incongruent: 2.741 6 0.102; t[49] ¼ 0.64, p ¼

0.525). Post hoc trend analyses were conducted to
examine the effect of scene SOA on congruent and
incongruent stimuli separately. For the congruent
condition, the linear trend was significant (t[49]¼ 5.44,
p , 0.001, d ¼ 0.77), but the quadratic trend was not
significant (t[49]¼ 1.89, p¼ 0.064). This suggests that
RT decreases linearly when scene SOA increases in the
congruent condition. In the incongruent condition, the
linear trend was not significant (t[49]¼ 2.42, p¼ 0.019)
but the quadratic trend was (t[49] ¼ 3.36, p , 0.006).
We then tested for a linear modulation of the difference
between incongruent and congruent trials by the scene
SOA factor. The linear contrast was significant (t[49]¼
4.70, p , 0.001, d¼ 0.31) and the quadratic contrast
was not significant (t[49] ¼ 1.24, p¼ 0.223), suggesting
that the peripheral scene influence on object categori-
zation increased linearly with longer scene SOA.

Results of Experiment 1 can be summarized following
two main observations. First, contrary to our hypoth-
esis, no effect of congruence was observed for the SOA-0
and SOA-30 conditions, suggesting that the representa-
tion of the scene was not robust enough to generate
strong predictions in those conditions and thus influence
the object categorization. Second, there was a congru-
ence effect in the SOA-150 condition (on RTs). This
effect suggests that when the scene background was
sufficiently processed before the object onset, partici-
pants automatically processed information in peripheral

Congruent

SOA-0

Incongruent

SOA-0

Congruent

SOA-30

Incongruent

SOA-30

Congruent

SOA-150

Incongruent

SOA-150

mCR 0.96 6 0.20 0.96 6 0.20 0.97 6 0.18 0.96 6 0.20 0.96 6 0.19 0.95 6 0.23

mRT 567 6 159 568 6 158 539 6 149 543 6 140 527 6 135 547 6 130

mLog(RT) 2.74 6 0.10 2.74 6 0.10 2.72 6 0.10 2.72 6 0.10 2.71 6 0.10 2.73 6 0.09

Table 1. Mean correct response rate (mCR), mean correct response times in milliseconds (mRT), and mean log transformed correct
response times (mLog[RT]), with standard deviations, for each experimental condition (congruence, scene SOA).

Figure 2. (A) Mean correct response rates (mCR) and (B) mean log transformed correct RTs (mLog[RT]) for the categorization of the

object according to the congruence between the object and the scene in peripheral vision (congruent, incongruent) and the scene

SOA (SOA-0, SOA-30, SOA-150). Black dots and error bars indicate means and 95% CIs. Color dots are individual observations (slightly

jittered for better visualization).
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vision although it was irrelevant to the task. This result
is consistent with the hypothesis of predictive influences
from peripheral vision. The effect, however, is rather
small in practice, since the raw observed difference
between the congruent and incongruent conditions was
20 ms. However, the effect seems to be robust and
should be detected easily in subsequent experiments, as
suggested by the large Cohen’s d (1.08). Thus, results of
Experiment 1 are consistent with the hypothesis of
predictive influences from peripheral vision, but suggest
that the influence is rather small. Moreover, the
mechanisms underlying the congruence effect are not
clear. First, as we did not test an experimental condition
without a context, we cannot know whether object
categorization was facilitated in the congruent condition
or impaired in the incongruent condition. In addition, it
is possible—at least in a certain proportion of trials—
that the recognition of the scene category itself may have
directly driven the response, without any feedback
modulation on the processing of the object. An extreme
example of such an ‘‘overhasty’’ response strategy would
be a situation where a participant always responds
animal when an outdoor scene is recognized and
furniture when an indoor scene is recognized, regardless
of the object. In this case, the proportion of correct
responses would be 100% in the congruent condition
and 0% in the incongruent condition, resulting in a
maximum congruence effect. Considering this, the
congruence effect measured in our experiment might not
be entirely due to the integration of the peripheral visual
input during the categorization of the object in central
vision. Unfortunately, Experiment 1 did not allow us to
dissociate an actual object categorization influenced by
the scene from mere scene-consistent responses. Finally,
we observed a ceiling effect of accuracy, suggesting that
the design of this experiment made the task too easy,
making it difficult to detect interactions on accuracy.

Experiment 2

We conducted a second experiment to understand
better how peripheral vision influences central vision
processing considering the limits described above. We
used the same experimental paradigm as in Experiment
1, but the scenes were always presented 150 ms before
the object onset (i.e., the condition for which we
observed a significant congruence effect in Experiment
1). First, in order to rule out the possibility of a ceiling
effect, we parametrically decreased the visibility of
objects by manipulating a phase-scrambling parameter.
Objects were presented at seven different levels of
visibility. The parametric manipulation allowed us to
map psychometric functions of mCR as a function of
visibility levels. Another aim of this manipulation was

to promote the congruence effect. The rationale was
that when the input is poor or ambiguous, the weight of
predictions should be stronger compared to that of the
inputs (Kok & de Lange, 2015). Therefore, information
in peripheral vision should have a stronger influence
when the central visual information is poor. In this
context, studies have shown that predictive processes
enhance visual perception when the visual stimulation
is noisy or incomplete (e.g., Brandman & Peelen, 2017;
Tang et al., 2018; Teufel, Dakin, & Fletcher, 2018;
Wyatte, Curran, & O’Reilly, 2012). Secondly, in order
to consider the direction of the congruence effect
(facilitation in the congruent condition, hindrance in
the incongruent condition, or both), we included a
baseline condition. In this condition, we combined the
object with a meaningless image background (1/f
noise). Thirdly, in order to distinguish the part of the
response based on the peripheral scene alone from the
part of the response actually due to the influence of the
peripheral scene on object categorization, we included
trials for which no object was presented. In those trials,
the object region was simply filled with 1/f noise. In
that case, there was no correct response. However,
since these trials were randomly embedded among
object trials (some of them being of low visibility),
participants did not realize the absence of objects. We
tested if the tendency to rely on the scene when no
object was present correlated with the congruence
effect. A positive correlation would suggest that the
congruence effect is partly due to a mere processing of
the scene, without exerting feedback modulation during
the processing of the object. In Experiment 2, we were
also interested by the nature of the peripheral influence.
In the peripheral visual field, the visual system extracts
low-level visual features (spatial frequencies and
orientations), whose processing allows the construction
of high-order semantic representations. As can be seen
in Figure 3, pieces of furniture and indoor scenes tend
to have similar amplitude spectra. The energy is mainly
distributed on vertical and horizontal, but also few
oblique, orientations (due to the viewpoint perspec-
tive), ranging from the lowest to the highest spatial
frequencies. In the same way, animals and outdoor
scenes tend to have similar amplitude spectra, with
energy more sparsely distributed throughout orienta-
tions, and mostly on the lowest spatial frequency range.
It is thus possible that the influence of peripheral vision
on central object categorization is only based on low-
level visual features, rather than on a higher order
semantic representation of the scene. Both influences
are plausible. For example, predictive coding theories
of vision (Friston & Stephan, 2007; Lee & Mumford,
2003; Rao & Ballard, 1999) propose that predictions
flow between hierarchical areas within the visual cortex,
where low-level aspects are represented. In predictive
models of visual recognition (Bar, 2003; Kauffmann et
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al., 2014; Kveraga et al., 2007; Peyrin et al., 2010),
predictions are triggered in the inferofrontal cortex,
where semantic aspects would be represented. To test
for the influence of the two types of information (low-
level and semantic) we manipulated the presence of a
semantic content in the background scene. In the intact
condition, we used the original scene image. In the
scrambled condition, we suppressed the semantic
information by scrambling the phase spectrum of the
intact scene image via random permutation. This
procedure is known to preserve orientation and spatial
frequency content while preventing the processing of
any semantic content (Goffaux et al., 2010; Woodhead,
Wise, Sereno, & Leech, 2011). If the peripheral
influence is due to low-level visual features only, we
expected to observe an effect of congruence both in the
intact and scrambled condition. On the contrary, if the

peripheral influence involves semantic representations
as well, we expected to observe a greater effect of
congruence in the intact condition than in the
scrambled condition.

Methods

Participants

Eighteen right-handed participants (14 women; M 6

SD: 21 6 3 years; range: 19–30 years) who did not
participated in Experiment 1 were included. They were
psychology students who received course credits for
their participation. The sample size was chosen based
on a power analysis with estimated effect size of 1.08
(effect size of the congruence effect in the SOA-150
condition in Experiment 1) to achieve power of 0.99 at

Figure 3. Example of a set of stimuli used in Experiment 2. (A) The object was a piece of furniture (first row) or an animal (second row)

pasted on a 1/f noise and embedded in a congruent or incongruent scene background whose phase was either intact or scrambled, or

in a meaningless 1/f noise background. (B) ‘‘Scene-alone’’ condition, in which no object was present in the 1/f noise. (C) The mean

amplitude spectrum of indoor scenes is similar to that of furniture, while the mean amplitude spectrum of outdoor scenes is similar

to that of animals. For illustration purposes, contrast and phase coherence of objects were slightly increased in the present figure. See

Figure 4 for a zoom in on the object.
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alpha level of 0.05. All participants had normal or
corrected-to-normal vision. They gave their informed
written consent before participating in the study.

Stimuli

In the same way as for Experiment 1, we used 20
groups of four object-scene associations. Stimuli were
created in MATLAB. We first gamma-corrected each
object and pasted it on a 1/f noise image. We varied the
visibility of the object by manipulating a phase-
scrambling parameter. For each object, seven versions
of the object-on-1/f image were thus created by
parametrically adding coherence in the phase structure
of the object, using Ales, Farzin, Rossion, and Norcia’s
(2012) MATLAB function. This function interpolates
the phase of the Fourier transformation between the
object-on-1/f image and a noise image of the same size.
The seven versions ranged from 0% to 80% of phase
coherence (100% being the original object on 1/f noise),
increasing linearly in 13.33% steps (Figure 4). We chose
to limit maximum coherence to 80% in order minimize
the ceiling performance observed in Experiment 1 with
fully visible objects. Each of the seven object-on-1/f
images was pasted on five different backgrounds
(intact-congruent, intact-incongruent, scrambled-con-
gruent, scrambled-incongruent, and noise-baseline).
Intact scene images were gamma-corrected and equal-
ized to obtain a mean luminance of 0.51 and mean
RMS contrast of 0.24. Scrambled scene images were
created by scrambling the phase of the intact scenes in
the Fourier domain via random permutation. The noise

background for the baseline condition was a 1/f noise
image of the same size as the scenes (i.e., 1024 3 768
pixels, or 248 3 188). Object-on-1/f images were then
progressively blended to the different backgrounds with
a circular patch (Figure 3). Given this procedure, the
circular patch had a noisy structure, allowing a more
natural blending between the object and the scene
compared to Experiment 1 where the circular patch was
uniformly gray. We also created stimuli in which the
scene backgrounds (intact and scrambled) were pre-
sented without an object (the part of the image in
central vision was only filled with 1/f noise).

Procedure

The experiment was programmed on E-Prime 2.0 (E-
Prime Psychology Software Tools Inc., Pittsburgh,
PA). Stimuli were displayed on the same 30-in. monitor
as in Experiment 1. At a viewing distance of 50 cm, the
scenes sized 248 of visual angle horizontally and 188
vertically, the larger side of the objects sized 38, and the
circular patch sized about 88. The participant’s head
was supported by a chinrest in order to maintain
distance. They were instructed to maintain their
fixation on a little white fixation cross, centered on the
screen location at which the object was presented (i.e.,
at the center of the screen horizontally and in the lower
part vertically). The fixation cross was displayed for a
random duration from 500 to 1,500 ms (on average
;1,000 ms) in order to disrupt the predictability of
trials’ rhythm. Each trial began with the fixation cross,
followed by a first stimulus (always a background

Figure 4. Portion of an indoor scene where participants fixated during the experiment, containing an object (a fawn) or no object.

Participants viewed each object in seven versions, ranging from 0% to 80% of phase coherence, within 1/f noise. For illustration

purposes, contrast and phase coherence of objects were slightly increased in the present figure.
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without an object) for 150 ms, then by a second
stimulus for 150 ms, and finally by a backward mask
(1/f noise) for 30 ms. The second stimulus depended on
the experimental condition: intact background with a
congruent object, intact background with an incon-
gruent object, scrambled background with a congruent
object, scrambled background with an incongruent
object, baseline 1/f noise background with an object,
intact background without an object, or scrambled
background without an object. The first stimulus was
thus the background of the second stimulus. The
interstimulus interval was 3000 ms on average. It
should be noted that in the second stimulus, there was
always a 1/f noise circular patch in central vision
(including an object or not). Thus, in order to maintain
a coherent percept in central vision throughout the
trial, we also blended a 1/f noise circular patch in the
background of the first stimulus.

As in Experiment 1, the task was to categorize the
object as animal or furniture by pressing two keys on a
keyboard. Since the visibility of the object was low in
many trials, participants were encouraged to rely on
their ‘‘intuition’’ and were instructed to respond at
random when they could not see any object (without
favoring one of the two response keys). Response keys
were counterbalanced across participants. Accuracy
and RTs were recorded at each trial. Experimental
conditions were fully randomized. There were 1,720
trials: 280 intact-congruent trials (20 animal object/
intact outdoor and 20 furniture object/intact indoor37
levels of object phase coherence), 280 intact-incongru-
ent trials (20 animal object/intact indoor and 20
furniture object/intact outdoor 3 7 levels of object
phase coherence), 280 scrambled-congruent trials (20
animal object/scrambled outdoor and 20 furniture
object/scrambled indoor 3 7 levels of object phase
coherence), 280 scrambled-incongruent trials (20 ani-
mal object/scrambled indoor and 20 furniture object/
scrambled outdoor 3 7 levels of object phase coher-
ence), 280 noise-baseline trials (20 animal object/noise
and 20 furniture object/noise 3 7 levels of object phase
coherence), 160 intact scene alone (80 intact outdoor
and 80 intact indoor), and 160 scrambled scene alone
(80 scrambled outdoor and 80 scrambled indoor). The
experiment was split into two 1-hr experimental
sessions, including pauses. Prior to completing the
experimental trials, participants underwent a training

session (20 trials) to be familiarized with the stimuli and
the task.

Results

Data analysis

For each participant, correct RTs were log trans-
formed and then trimmed by removing trials for which
the RT was inferior or superior to the condition
average 6 2.5 SDs (0.34% of trials were excluded).
Data used for the analysis of RT only included phase
coherence levels for which mCR (averaged across
conditions and participants) exceeded 0.75 at group
level (Levels 4, 5, 6, and 7 of phase-coherence). Weibull
psychometric functions were fitted to each participant’s
mCR through maximum likelihood estimation for the
congruent and incongruent conditions of the intact and
scrambled scene conditions, as well as for the baseline
condition, using the Quickpsy package in R (Linares &
Lopez-Moliner, 2016). For each experimental condi-
tion, threshold values were derived from the psycho-
metric functions at a mCR of 0.75 (1� p(chance) / 2).
Threshold values, mRT and mlog(RT), with standard
deviations, for each experimental condition (congru-
ence and background) are reported in Table 2.

Congruence effect and nature of influences: Intact versus
scrambled scenes

To assess if the congruence effect was due to low-
level or semantic features in the scene background, we
conducted a repeated measures ANOVA on the
threshold values and mLog(RT) with congruence
(congruent or incongruent stimuli) and background
(intact or scrambled scenes) as within-subject factors.
Further pairwise comparisons were tested with two-
tailed paired-sample t tests using a Bonferroni adjust-
ment of alpha level to correct for multiple tests (0.05 / 2
¼ 0.025 for the two tests performed with each
dependent variable). Effect size was estimated by
calculating Cohen’s d for within subject design.

Analysis of thresholds values showed that main
effects of congruence (F[1, 17] ¼ 4.26, p ¼ 0.055) and
background (F[1, 17] , 1) were not significant but that
these two factors interacted (F[1, 17]¼7.54, p¼0.014, d
¼ 0.65; Figure 5). Follow-up pairwise comparisons

Congruent

intact scene

Incongruent

intact scene

Congruent

scrambled scene

Incongruent

scrambled scene Baseline

Threshold 3.44 6 0.65 3.76 6 0.70 3.59 6 0.52 3.62 6 0.68 3.57 6 0.51

mRT 522 6 57 550 6 54 541 6 62 533 6 58 533 6 52

mLog(RT) 2.70 6 0.06 2.73 6 0.04 2.72 6 0.05 2.71 6 0.04 2.71 6 0.04

Table 2. Mean threshold values, mean correct response times in milliseconds (mRT), and mean log transformed correct response
times (mLog[RT]), with standard deviations, for each experimental condition (Congruence, Background).
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Figure 5. (A) For illustrative purposes, the figure shows a Weibull model fitted to the accuracy of one representative subject for the

congruent and incongruent stimuli of the intact and scrambled background conditions, and for the baseline condition (for which the

background was just 1/f noise). (B) Mean correct response rates (mCR) and (C) mean of log transformed correct RTs (mLog[RT])

plotted according to the experimental condition. Black dots and error bars indicate means and 95% CIs. Color dots are the individual

observations. (D) Congruence effect index (difference in thresholds between the congruent and incongruent stimuli of the intact

scene condition) as a function of the scene-consistent response index (the tendency of participants to use the category of the scene

to infer the category of the object, when there is no object in the stimulus). Shading is 95% CI.
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showed that thresholds were significantly lower in the
congruent (3.44 6 0.65) than in the incongruent (3.76
6 0.70) condition for the intact scenes (t[17]¼ 2.73, p¼
0.014, d ¼ 0.65) while there was no difference between
the congruent and incongruent conditions for the
scrambled scenes (congruent: 3.59 6 0.53; incongruent:
3.62 6 0.68; t[17] ¼ 0.36, p ¼ 0.723).

Analysis of mLog(RT) gave very similar results
with no main effect neither of congruence (F[1, 17] ¼
1.56, p¼ 0.229) nor of the background (F[1, 17] , 1),
but there was an interaction between the two factors
(F[1, 17] ¼ 7.13, p ¼ 0.016, d ¼ 0.63; Figure 5).
However, follow-up pairwise comparisons showed no
main effect of congruence neither with intact scenes
(congruent: 2.70 6 0.06; incongruent: 2.73 6 0.04;
t[17] ¼ 2.12, p ¼ 0.049) nor with scrambled scenes
(congruent: 2.72 6 0.05; incongruent: 2.71 6 0.04;
t[17] ¼ 0.90, p ¼ 0.383).

These results partially support those of Experiment
1 by showing that visual information in the periphery
is automatically processed and can decrease the level
of perceptual quality needed to recognize objects in
central vision when congruent, compared to when
incongruent. However, unlike Experiment 1, we did
not observe the congruence effect on RTs. Further-
more, it seems that peripheral visual information
needs to carry a semantic meaning to influence the
processing of the object, as no congruence effect was
observed when the phase of the peripheral scene was
altered (scrambled scene condition). Since there was
no congruence effect with scrambled scenes, the
following analyses only consider the intact scene
condition.

Direction of the congruence effect: Comparison to the
baseline

To evaluate the direction of the congruence effect
(facilitation in the congruent condition, hindrance in
the incongruent condition, or both), we compared
threshold values and mLog(RT) of the baseline
condition (meaningless 1/f noise background) to those
of the congruent and incongruent conditions with
two-tailed paired-sample t tests (alpha level Bonfer-
roni corrected: 0.05 / 2 ¼ 0.025 for the two tests
performed with each dependent variable). For
threshold values, these tests showed no difference
neither between the baseline (3.57 6 0.51) and the
congruent condition (t[17] ¼ 1.37, p ¼ 0.190), nor
between the baseline and the incongruent condition
(t[17]¼ 1.99, p¼ 0.063). For mLog(RT), there was no
difference between the baseline (2.71 6 0.04) and the
congruent condition (t[17] ¼ 0.89, p ¼ 0.388), but
participants were significantly slower in the incon-
gruent than in the baseline condition (t[17]¼ 2.72, p¼
0.015, d ¼ 0.64).

Relation between the congruence effect and the scene-
consistent response effect

In trials where no object was presented, we labeled as
‘‘scene-consistent responses’’ each animal response
when an outdoor scene was presented and each
furniture response when an indoor scene was presented.
In theory, participants are supposed to respond at
random between animal and furniture in the no-object
trials. The proportion of scene-consistent responses
thus represents the tendency of participants to use the
category of the scene to infer the category of the object,
when there is no object in the stimulus. We first tested if
the proportion of scene-consistent responses, hereafter
named scene-consistent response index, was different
from chance level (i.e., a proportion of 0.5) in the intact
condition using a one-sample t test. The proportion of
scene-consistent responses averaged across participants
was 0.54 6 0.04, and was statistically different from
chance level (t[17] ¼ 4.28, p , 0.001, d ¼ 1.01),
indicating that when they could not identify any object,
participants’ responses were in part driven by the scene
category. Then, we tested the Kendall correlation
between the scene-consistent response index and the
congruence effect index calculated on threshold values
(incongruent minus congruent) of the intact scene
condition. There was no correlation between these two
variables (r¼ 0.16, p¼ 0.36; Figure 5). To avoid the
limitation of concluding on the null hypothesis, we
tested a Bayesian correlation using the Psycho package
in R (Makowski, 2018). This Bayesian correlation
analysis indicates anecdotal evidence (BF ¼ 1.76) in
favor of an absence of a positive association between
the scene-consistent response index and the congruence
effect index (r¼ 0.11, median absolute deviation¼ 0.21,
90% CI [�0.23, 0.46]). The correlation can be consid-
ered as large, moderate, small, or very small with
respective probabilities of 2.94%, 15.58%, 32.78%, and
18.25%. As a reminder, the effect of the scene
congruence on object categorization observed in our
experiments may originate from two processes. The
first would be that the implicit categorization of the
scene automatically drives the response (e.g., the
participant responds animal after having recognized an
outdoor scene, independently of the recognition of the
object). The second would be an integration of the
peripheral visual input to the recognition processes
occurring in central vision (i.e., the process we actually
aimed to measure). In light of this, we observed no
strong evidence for a link between the congruence effect
index and the scene-consistent response index, sug-
gesting that the effect of congruence on object
categorization observed in our experiments was mostly
due to the integration of the peripheral visual input to
the object recognition processes in central vision, rather
than being directly driven by the categorization of the
scene.
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Discussion

Most of the time in natural vision, eye movements
direct central vision toward relevant objects, while
peripheral vision continuously extracts coherent con-
textual information. The objective of this study was
twofold: to explore how LSF extracted in peripheral
vision can shape the processing of central visual inputs,
and to test the predictive nature of these influences. In
two independent experiments, we examined how
information conveyed by LSF in peripheral vision
could influence the processes leading to object catego-
rization in central vision. Participants categorized
objects surrounded by congruent information (i.e.,
indoor scenes for furniture, outdoor scenes for animals)
or incongruent information (the other way around).
Importantly in our experimental design, contextual
information was restricted to peripheral vision (beyond
68 in Experiment 1 and 88 in Experiment 2) and object
information to central vision. We did not filter out the
HSF in peripheral vision (peripheral vision acts as a
natural low-pass filter), nor did we filter out the LSF of
the object in central vision (we were not interested in
LSF and HSF integration at the object level).
Unfortunately, we were not able to record eye
movements during the experiments in order to control
that participants maintained their gaze on the object
location when the scene was presented. However, given
that the task was to attend and categorize the object in
central vision, it would have been inefficient and even
demanding to make eye movements to other locations
without impairing object categorization. Indeed, sac-
cadic eye movements are usually initiated within 100–
150 ms (Fischer & Weber, 1993). If participants made a
saccade in the scene (presented during 150 ms in the
SOA-150 condition) prior to making a new saccade
toward the object (also presented during 150 ms), this
puts severe constraints on (a) the time left to process
visual information in the scene between a first saccade
on the scene and an immediate second saccade on the
object or (b) the time left to actually initiate a new
saccade toward the object and categorize it. Yet, mean
correct response rate was high (in Experiment 1 and in
Experiment 2 when object visibility was reasonable)
suggesting that eye movements did not impair object
categorization in the vast majority of trials. As
expected, we found an effect of the congruence of the
scene in both experiments indicating that contextual
information in peripheral vision can be processed
automatically during a central visual field directed task.
We speculate that even when irrelevant for the ongoing
task, peripheral vision is used to provide information
on the type of object and details that are expected to be
perceived in central vision, by generating a predictive
signal that controls visual processes in central vision, in
line with predictive coding theories (Friston & Stephan,

2007; Lee & Mumford, 2003; Rao & Ballard, 1999) and
recent models of visual recognition (Bar, 2003;
Kauffmann et al., 2014; Peyrin et al., 2010). Moreover,
in Experiment 2, the visibility threshold to accurately
categorize the object was lower when the peripheral
context was congruent than incongruent. In real-life
conditions, where information in peripheral vision is
usually congruent with central vision, predictive
processes based on peripheral vision could thus boost
the perceptual processing of poorly visible objects in
the scene. Such mechanisms surely can be a benefit to
visual recognition in low lighting and masking condi-
tions.

Still, it is easy to overinterpret this kind of results in
terms of predictive coding. We can think of another
account, already discussed by Brandman and Peelen
(2017), of how contextual scene information may
influence object processing in this type of experimental
paradigms. Without the need for predictive feedback
mechanisms, object and context could be processed
mostly independently, in parallel, and only later their
semantic representations would be integrated. There
are empirical arguments for this view. For example, the
fact that visual regions in the occipito-temporal cortex
are preferentially involved in the visual processing of
objects (the fusiform and inferior temporal gyri; Grill-
Spector, 2003; Grill-Spector, Kourtzi, & Kanwisher,
2001) and scenes (e.g., the parahippocampal cortex;
Epstein, 2005; Epstein & Kanwisher, 1998) can be
interpreted as the existence of partly independent
representations of object and scene information. The
approach adopted by Brandman and Peelen (2017) in a
fMRI-MEG study to disentangle the two accounts
(predictive feedback vs. parallel processing) was to
pixelize the object, rending its recognition practically
impossible without a context. Behavioral results of a
classification task showed that the recognition of such
objects was much better when embedded in congruent
scenes, than when isolated. The decoding accuracy of a
classifier of BOLD activity in object and scene selective
cortex was also strongly enhanced when the objects
were in congruent contexts. These findings suggest that
contextual information helped object categorization by
shaping the perceptual representation of the object, via
predictive feedbacks flowing through neurons of the
visual cortex, and therefore are not compatible with the
hypothesis of a strictly independent and parallel
construction of semantic scene and object representa-
tions.

In our study, we used a different approach to test for
the predictive hypothesis. In Experiment 1, we manip-
ulated the robustness of the scene representation by
presenting it for different durations before the object
onset. In the object-background literature, we had no
knowledge of any study having directly manipulated
the sequential apparition of scene and object in order to
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test for predictive aspects of object and scene integra-
tion. We speculated that the more it is possible to
accumulate information in peripheral vision, the
stronger the predictive signal would be and the more it
would influence object recognition in central vision. We
found that the effect of congruence increased linearly
with scene duration, a result that is also in favor of a
predictive, rather than parallel, view of background
influence. In Experiment 2, mean visibility threshold
for the baseline condition (noise background) was
approximately in between mean threshold for the
congruent condition and that for the incongruent
condition (see Figure 5), even though the baseline
condition did not significantly differ from either
condition. For RTs, we did observe a difference
between the incongruent condition and the baseline.
Overall, the pattern of results is not clear-cut and, as it
stands, rather suggests that an incongruent context
delayed the object categorization. Therefore, we did not
replicate the facilitation effect observed with congruent
background by Brandman and Peelen (2017) with
poorly visible object. Nonetheless, the control condi-
tion in their study was simply the object passed onto a
uniform background. We rather embedded the object
in a noise background following the relationship
between amplitude and spatial frequency that is typical
of natural scenes (1/f2; Ruderman & Bialek, 1994). It is
thus possible that the mere presence of noise in
peripheral vision boosted the perception of the object,
for example via mechanisms of stochastic resonance
(McDonnell & Ward, 2011).

A substantial problem with sequential presentation
is that we cannot be sure about the mechanisms
responsible for a given participant’s response. As
mentioned above, a given object categorization can be
(a) ‘‘overhasty,’’ i.e., driven directly (and erroneously in
incongruent trials) by the recognition of the scene
category, or (b) actually driven by the integration of the
scene to the object representation. In Experiment 2, we
wanted to ensure that the congruence effect was due to
the second account. We included trials in which no
object was present, while participants were not aware
of the manipulation. Looking at behavioral responses
to those stimuli, we measured by how much partici-
pants had a tendency to use the category of the scene to
infer the category of the object even though there was
no object in the stimulus. First, we found that
participants’ responses were indeed driven by the scene
category (0.54% 6 0.04% of responses were consistent
with the scene category, significantly different from
chance). In a predictive coding framework, related
effects have been shown, where feedback activity
carrying information about the surrounding context in
the visual cortex was measured without any feedfor-
ward input (Smith & Muckli, 2010). However, we
found that the tendency to respond based on the scene

category did not correlate with the size of the
congruence effect, suggesting that the latter account (b)
was more likely to drive our results compared to the
former account (a).

The other aim of our study was to characterize
further the nature of the peripheral influence. We
manipulated the presence of a semantic content in the
background scene by presenting it either in its intact
version or in a scrambled version made by disrupting
the phase of the image. We found no effect of
congruence when the phase of the scene was scrambled,
suggesting that the mere low-level attributes of scenes
do not influence object categorization.1 In fact, this
would make sense if we think of situations where some
artificial objects are typically encountered in natural
environments (e.g., benches in public gardens) or
natural objects in artificial environments (e.g., a cat in a
living room). In such situations, the low-level visual
information (i.e., the amplitude spectrum) available in
peripheral vision would not be consistent with that of
the object. Thus, our results suggest that predictions
rather contain more mid- or high-level information and
that they are initiated in a higher level cortex (for
example, in the orbitofrontal cortex or in regions of the
ventral pathway) that represents semantics aspects of
the environment, as postulated by some models of
visual recognition (Bar, 2003; Fabre-Thorpe, 2011;
Kauffmann, Bourgin, et al., 2015). Consistently, studies
by Loschky and collaborators (Loschky & Larson,
2008; Loschky et al., 2007) have shown that the Fourier
amplitude spectrum is insufficient for scene gist
recognition. This suggests that the scene must be
recognized at some level (e.g., coarse gist recognition)
in order to influence the object processing. The mere
low-level signal would not be sufficient. Yet, it is
difficult to conclude on the null hypothesis. It is thus
possible that the physical information contained in the
scrambled scenes alone does influence object processing
at a lower extend, but that we were not able to measure
this effect here. For example, this can be due simply to
a lack of statistical power, since we planned our effect
size for Experiment 2 based on the congruent effect of
Experiment 1, where only intact scenes where present-
ed. It is also possible that phase scrambling is not a
good model of low-level predictive processes in the
brain, and that the spatial distribution of low-level
features—available in the phase spectrum—is in fact
important for such processes. Stojanoski and Cusack
(2014) have compared the neural activity at the earliest
stages of the visual system induced by intact images,
phase-scrambled images, as well as diffeomorphic
images (meaningless images resembling images printed
on a distorted rubber sheet). They have shown that
these regions do not respond to phase-scrambled
stimuli in the same way as they do to intact ones. On
the contrary, neural activity induced by diffeomorphic
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images is indistinguishable to that induced by intact
images. Diffeomorphic stimuli may therefore be a
better way to model low-level visual processes.

All that being said, it seems important to highlight
some matters regarding the effect of congruence in our
experiments. Initially, we hypothesized that low-reso-
lution information in peripheral vision could be used to
help perceptual processing of the object in central
vision via predictive processes. However, the effect of
congruence was not observed when the scene was
simultaneously presented with the object (SOA-0
condition), nor when the scene was presented 30 ms
before the onset of the object (SOA-30 condition). Yet,
according to spatial frequency–based models of visual
recognition, LSF are processed faster than HSF and
thus could influence the processing of the latter when
perceived simultaneously. It seems that the visual
system must have enough time to process peripheral
LSF for it to influence object recognition (here, in the
SOA-150 condition). Second, in the SOA-150 condi-
tion, the difference in RT between congruent and
incongruent conditions was only of 20 ms, as pointed
out before. Third, in Experiment 2, the congruence
effect on RT observed in Experiment 1 did not replicate
(participants were not significantly faster to categorize
the object in the congruent than incongruent condi-
tion), although we observed the effect on thresholds.

Therefore, it is possible that peripheral vision only
plays a moderate role in the predictive processes
leading to object recognition, and that LSF available in
central vision are preferentially used to initiate such
predictive processes. Nonetheless, it should be noted
that our task was a superordinate (animal vs. furniture)
categorization task. A basic level categorization task
could benefit more from low-resolution contextual
information in peripheral vision. Future studies should
compare directly LSF based predictions from central
vision to those from peripheral vision, and also
investigate other levels of object categorization (e.g.,
basic level). On the other hand, it is possible that LSF
are not a good descriptor of peripheral vision. For
example, crowding and ensemble perception are
important properties of peripheral vision that we have
not considered here. Influential models of peripheral
vision such as Balas, Nakano, and Rosenholtz (2009)
suggest that such mechanisms lead to consider periph-
eral vision as qualitatively different from central vision.
Peripheral vision would represent summary statistics of
different features of the environment (orientations, size,
textures, hue) within pooling regions. Therefore,
summary statistics could be a better descriptor of
peripheral vision than LSF.

To conclude, this study shows that low-resolution
information in peripheral vision can be unintentionally
processed and integrated to information in central
vision, if available for a sufficient amount of time. This

effect is not likely to be due to response strategy, but
rather on mechanisms of periphery-based predictions
integrated during the processing of local elements in
central vision. The study also suggests that predictions
rely on the semantic processing of peripheral informa-
tion, since mere low-level information did not influence
the processing of the object in central vision. Such
mechanisms could boost perception of poorly visible
objects. Given that the effects are rather small and
unstable, further studies manipulating the level of
object categorization and comparing predictions com-
ing from central and peripheral vision are needed to
explore the issue further.

Keywords: peripheral vision, scene, context effect,
spatial frequency, predictive coding
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Footnote

1 It should be noted that the absence of a congruence
effect in the scrambled condition does not preclude that
the mere presence of noise in this condition may have
boosted the perception of the object, as we previously
suggested for the baseline condition (1/f noise back-
ground).
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