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Abstract :

The aim of this study was to assess bioturbation rates in relation to macrozoobenthos and environmental
variables in the Svalbard fjords, Barents Sea and Nansen Basin during spring to summer transition. The results
showed differences in benthic community structure across sampled area in relation to sediment type and
phytopigment content. Fjords, Barents Sea and the shallow parts of Nansen Basin (<400 m) were characterized
by high functional groups diversity, and by biodiffusive and non-local rates ranging from 0.05 to 1.75 cm-2 y-1
and from 0.2 to 3.2 y-1, respectively. The deeper parts of Nansen Basin, dominated by conveyors species,
showed only non-local transport rates (0.1-1 y—1). Both coefficients intensity varied with benthic biomass. Non-
local transport increased with species richness and density and at stations with mud enriched by fresh
phytopigments, whereas biodiffusion varied with sediment type and organic matter quantity. This study
quantified for the first time the two modes of sediment mixing in the Arctic, each of which being driven by
different environmental and biological situations.

Highlights

» This is the first complex report on bioturbation in spring to summer transition conducted over a large depth
gradient in the Arctic Ocean. » Benthic community structure and related biodiffusion and non-local transport
varied in Svalbard fjords, Barents Sea and Nansen Basin. » Changes in environmental conditions, and related
changes in quality and quantity of available organic matter, had impact on benthic communities and
bioturbation. » Large inputs of fresh OM to the seabed can trigger bioturbation activities.

Keywords : non-local transport, biodiffusive transport, macrozoobenthos, spring season, sea ice cover, Arctic
Ocean
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1. Introduction

The structure and functioning of benthic commusitiepend on the quality and quantity
of organic matter (OM) export fluxes to the seaofl@and this dependence increases with
increasing depth. Shallow Arctic shelves benthaxftesn fueled by high OM fluxes to the sea
floor due to tight pelagic-benthic coupling (e.gre@meier et al., 2006; Tamelander et al.,

2008), while deep-sea communities become food-diehdue to low amount of OM reaching
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sea floor (Maiti et al., 2010). The seasons strpsphpe the OM fluxes to the sea floor in the
Arctic marine ecosystems. Phytoplankton and icael@re two principal sources of primary
production (PP) in the Arctic Ocean with ice aldgmséng the first food source available after
polar night (Sgreide et al., 2006, 2008; Leu et a010). Although phytoplankton is
guantitatively dominant, ice algal blooms tend tewwr earlier in the seasonally ice-covered
Arctic seas and may contribute up to 50-60% ofl tBRa (Gosselin et al., 1997; McMinn et
al., 2010; Fernandez-Mendez et al., 2015; Van Leeetal., 2018). During the spring, PP is
typically greater than zooplankton consumption #mas highest vertical carbon fluxes are
recorded (Andreassen and Wassmann, 1998; Tamelandey 2006). Later in the season, the
zooplankton grazing reduces the OM flux but alsdsatd it by producing fecal pellets, which
helps phytoplankton sink rapidly to the sea boti{@ti et al., 2002). In fjords and on the
shelf, benthic communities can also be fueled byestrial OM carried by rivers and/or
glaciers, mainly during summer (Bourgeois et al1&). Benthic organisms act as temporal
couplers in the seasonal systems, since they casuote variable carbon sources over the
different seasons (McMeans et al., 2015), theref@methic communities reflect rather long
term (months to years) water column production |evtiie benthic activities reflect short term
(days to weeks) environmental conditions (Moraté Benaud, 2008).

Bioturbation occurs when an organism moves throthghsediment, constructs and
maintains burrows, and ingests and defecates. pgrbisess results in mixing of particles and
solutes within the substratum (Kristensen et @12), and alters sediment structure (e.qg.,
grain size distribution Montserrat et al., 2009), and production, mineralization and
redistribution of OM (Kure and Forbes, 1997). Lifabit, motility, and manner of feeding of
infaunal species induce either random particle muarg over a short distance (biodiffusion
(Db) hereafter) (Gérino et al., 2007; Meysman et @D03) or biologically induced

discontinuous particle transfer between the sedirserface and deeper sediment layers, for
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example via burrowing or feeding behavior (non-locansport (r) hereafter) (Boudreau,
1986; Meysman et al., 2003; Duport et al., 2007giG@ et al., 2017). According to the mode
of particle mixing, benthic organisms can be clessiinto five functional groups of sediment
reworking which may include biodiffusion and/or Rlmcal transport: biodiffusors, gallery-
diffusors, upward- and downward-conveyors, and meg&ors (Francois et al.,, 1997). The
presence and intensity of these bioturbation modes therefore mediated by fauna
characteristics like biomass, density, burrowingtdeor feeding behavior (Francois et al.,
1999; Gérino et al., 1998Sandnes et al., 2000; Gilbert et al., 2007; Michaud et al., 2005,
2006; Duport et al., 2007; Aschenbroich et al., 2017). In turn, Species composition, nature and
intensity of their effects on sediment mixing degemn temperature (Ouelette et ab004;
Duport et al.,2007; Maire et al., 2007), food inputs (Nogaro et al., 2008) and reedit
characteristics (Needham et al., 2011). Changespaties composition and activities, and
therefore in bioturbation mode and/or intensitye axpected to influence biochemical
processes near the sediment-water interface, imgjuchrbon cycling. Bioturbation rate can
therefore be influenced by seasonal changes imPlfReiabove water column and deposited
OM in the seafloor (food bankorata et al., 2015).

Only a few studies of bioturbation exist in the #edOcean. Teal et al. (2008) created
the database with global bioturbation intensityfitoent (Db) and layer depth (L), where
they showed that the Arctic, Central Pacific andstimopical regions are missing bioturbation
data. In polar regions, it has been shown thatnsewi mixing rates were higher through
biological transports in the shallow sediments alyeimpacted by the OM input along the
marginal ice covered area of the Barents Sea (Mai#él., 2010) and in the Svalbard fjords
(Konovalov et al., 2010). On the contrary, the deegiments of the Arctic Ocean were
marked by lower sediment mixing rates in relatiormtower benthic biomass correlated with

lower OM inputs (Clough et al., 1997). Soltwedelaét(2019), however, did not confirm a
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higher bioturbation activity in the high productiiarginal Ice Zone (MIZ) in Fram Strait
compared to the less productive ice zone. Seasspaicts of bioturbation in the Arctic were
preliminarily studied by Morata et al. (2015), whaxperiments showed that the bioturbation
activity was positively correlated with fresh foogbut during the polar night. McClintic et al.
(2008) found no seasonal variation in bioturbatitensity during June and October in West
Antarctic continental shelf which suggests that ad#fpfeeders are able to access food
particles accumulated during high PP periods.,Siuk knowledge on benthic communities
responsible for bioturbation processes and thé&tiom to OM inputs in the Arctic Ocean and
adjacent shelves remains limited, particularly aigithe spring bloom.

The main aim of this study was to understand theaits of differences in
environmental conditions on benthic communities Hradr bioturbation function during the
spring to summer transition. We focused on the I&vrdl area where fjords, shelf and deep
Nansen Basin differ considerably in terms of phagiksitorcing affecting the quality and
guantity of the OM inputs to the seafloor. Sedimesworking rates were quantified in
relation to taxonomic and functional compositiontieé benthic macrofaunal communities,
and in relation to the environmental variables.sTWork is the first study on bioturbation
processes conducted in the Arctic Ocean duringngga summer transition time over a large
depth gradient. It will contribute to our understang of response of macrofauna and their

activity to the quality and quantity of OM in theckic seabed.

2. Material and methods

2.1. Study area



125 Sampling was conducted in the Svalbard Archipeldige,Barents Sea and deep Nansen
126 Basin north of Svalbard (Fig. 1, Table 1). Thisaai® highly influenced by cold Arctic Water
127 coming from the north and warm Atlantic Waters cognirom the south, and the relative

128 influence of those two water masses varies langellge study area.
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131 Fig. 1. Geographical location of the study regig) &nd (B) sampling locations during two

132 cruises (AX — ARCEx, PS — TRANSSIZ) with two majourrents surrounding Svalbard:



133 WSC - West Spitsbergen Current, warm Atlantic watéolack) and the ESC — East

134 Spitsbergen Current, cold Arctic waters (gray) €aftSvendsen et al.,, 2002).



135 Table 1. Main characteristics of the sampling otedi
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Station Date Cruise name ';l(())rg; Area La(tci,ﬁ)d € LorzoinEt;J de cqu?g;t D[?np]th Botéoarl?n\i/x/ater TemEJOeé;;\ture
AX/1 19.05.2016 ARCEX 5 Van Mijenfjorden 77.83° 16.47° SE 59 34.5 -0.8
AX/2 20.05.2016 ARCEX 5 Hornsund 77.02° 16.45° ESC 121 453 -0.8
AX/3 21.05.2016 ARCEXx 5 Storfjorden 77.94° 20.22° ESC 96 34.5 -0.8
ST/8 15.07.2016 SteP 4 Storfjorden 77.98° 20.28° ESC 99 34.1 4.5
AX/4 24.05.2016 ARCEXx 5 Erik Eriksen Strait 79.21° 26.00 ESC 217 34.7 0.5
AX/6 25.05.2016 ARCEXx 5 Southern Barents Sea 76.60° 130.0 ESC 278 35.0 25
PS/20 30.05.2015 TRANSSIZ 3 Northern Barents Sea 81.04° 9.3 WSC 170 34.9 0.9
PS/32 06.06.2015 TRANSSIZ 4 Northern Barents Sea 81.16° 0.0v WSC 312 34.9 2.1
PS/19 29.05.2015 TRANSSIZ 5 Northern Barents Sea 81.23° 8.51r WSC 471 35.1 1.4
PS/27 01.06.2015 TRANSSIZ 5 Northern Barents Sea 81.31° 7.18° WSC 842 34.9 0.2
PS/31 04.06.2015 TRANSSIZ 5 Nansen Basin 81.47° 18.17° CWS 1656 34.9 25
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Van Mijenfjorden and Hornsund are located on thestweoast of Spitsbergen,
Svalbard. Van Mijenfjorden is a small fjord, neadlpsed by an island at its mouth. It is
separated into two basins: the outer (115 m deptb)inner (74 m depth), and by 45 m deep
sill that restricts exchange of water between jbilfand the coastal waters (Skaamar and
Svendsen, 2010). Hornsund is a large open glgoia With eight major tidal glaciers located
in the central and inner parts and large terrdstrfiow (Btaszczyk et al., 2013Drewnik et
al., 2016). The average depth is 90 m with a mawinofi 260 m (Kdra et al., 2013). Strong
gradients in sedimentation, PP and benthic fauraroalong the increasing distance to the
glaciers (Wiodarska-Kowalczuk et al.,, 2013). Thdsgh latitude fjords are productive
systems, where PP starts in early spring and aomtio late autumn (Fetzer et al., 2002). The
annual PP reaches up to 216 g € yit in Hornsund (Smota et al., 2017). The BarentsiSea
a shelf sea with water depths ranging from 35 mhénSvalbard Bank to up to 400 m or more
in deep depressions and proximal canyon boundétieshrane et al., 2012). The southern
part of the Barents Sea is relatively warm andfiee while its northern parts are seasonally
ice covered, with maximum ice coverage from MarchApril and minimum ice coverage
generally occurring iSeptember (Vinje, 2009; Ozhigin et al., 2011; Jargensen et al., 2015). It
is one of the most productive areas in the Arctie&h with average PP about 100 g €y
and maximum PP reaching over 300 g G s ™ on shallow banks (Sakshaug, 2004).
Storfjorden is located east of Spitsbergen andahmsximum depth of 190 m (Skogseth et al.,
2005). A polynya appears regularly in Storfjordns a very productive area of the Barents
Sea, and its productivity is correlated with theration of the seasonal sea cover
(Winkelmann and Knies, 2005). In Storfjorden thedarction of marine organic carbon may
exceed 300 mg C chkyr™, while the production of total organic carbon (TQfay exceed

500 mg C cnf kyr (Pathirana et al., 2013; Rasmussen and Thomsen, 2014). Nansen Basin,
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with a maximum depth of 4000 m, is part of the Biaa basin of the Arctic Ocean. In

general, annual gross PP is within the range 0058 m?(Codispoti et al., 2013).

2.2. Sampling

Benthic sampling was conducted during spring criisé¢ R/V Polarstern PS92 —
TRANSSIZ in May and June 2015, and R/V Helmer Hanss ARCEx in May 2016 (Table
1). Samples were collected at 10 stations locatedgathe depth gradient, from Svalbard
flord (depth: 59 — 121 m), through the Barentdlfsaed slope (from 170 to 842 m) to the
deep Nansen Basin (max. depth: 1656 m) (Fig. Ihoat all stations north of Svalbard (P32,
PS/19, PS/27 and PS/31) were sea ice covered dsamgling, except PS/20 station. One
station in Storfjorden (AX/3) was revisited in J@Q16 during the cruise of R/V L'Atalante —
STeP 2016 (ST/8).

At each station the bottom water temperature atidityawere determined by the
shipboard Conductivity Temperature Density (CTD}eatte. Bottom-water samples were
collected using Niskin bottles attached to a CTDd amere filtered on pre-combusted
Whatman GF/F glass microfiber filters in triplicaad frozen at -20 °C for later analyses of
bottom water organic carbon (BW,g, total nitrogen (BW M), 8°C (BW §'°C), 5"°N (BW
8'N), and C/N ratio (BW C/N).

Sediment samples were collected with a box core®.26 nf sampling area. The
overlying water from box corer was gently removeahf sediment surface and push-cores
samples (12 cm @ and 20 cm deep, 113.0940scimface layer) were collected. The top 2 cm
sediment of the core was sampled for biogeochenaargbles (grain size, chlorophgl(Chl

a) and phaeopigments (Phaeo), organic matter (S@€Mpnic carbon (Sedg and total

10
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nitrogen (Sed d)). Samples were frozen in -20 °C and transportedhé laboratory for
analysis.

Additional sediment cores were taken from the bavercfor bioturbation experiments
following procedures described by Morata et al.1&0 Sediment cores (3 to 5 per station,
Table 1) were kept in dark cold room on board,(temperature at 2 °C, the average between
-0.8°C and 4.5C being the range of temperatures observed indtterh waters, Table 1).

Fluorescent luminophores (5 ¢0—-120um diameter) were homogeneously added to
the overlying water and gradually spread on thensext surface of each core without
disturbing the resident infauna. Cores were théadfiwith bottom water and aerated by
bubbling to keep the overlying water saturated waitygen. Overlying water was renewed
every four days. Sediment cores were incubatetiaed conditions for 10 days which is the
minimum time to enable the characterization ofdHhferent transport modes. Incubation time
that exceeds 15 days increases the probabilitpmipbete homogenization of the sedimentary
column, and may thus prevent the differentiatiortrahsport modes (Francois et al., 1997).
This choice of 10 days for duration of experimemtsva compromise between the response
that we were expecting from the benthic communitied the available time on board to
process the experiments.

After this time of incubation in stable conditiotise surface water was carefully
removed and cores were sliced horizontally in Grblayers from O to 2 cm depth, and in 1
cm layers between 2 and 10 cm depth. In total, ai2pses were taken, and each sediment
layer was homogenized. A subsample of each sedilaygat was directly frozen (-20 °C) and
used for bioturbation analyses. The remaining sedinof each core samples were sieved
onboard through 0.5 mm sieve for benthic commustitycture analysis, and fixed with 10 %

buffered formaldehyde.
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2.3. Biogeochemical environmental analyses

Sediments for grain size analysis were freeze-datec/O °C, homogenized and dry
sieved into coarse-grained fractions (>0.250 mnal) fare-grained (<0.250 mm). For the fine
fraction, analyses were performed using a Malveastdrsizer 2000 laser particle analyzer
and presented as volume percent. Mean grain sizamg#ers were calculated using the
geometric method of moments in the program GRADIEBA (Blott and Pye, 2001).

Pigment concentrations were analyzed fluorometyidallowing methods described
in Holm-Hansen et al. (1965) to determine &laind Phaeo concentrations. About 1 g of dried
sediment was extracted with 10 ml of 90 % acetdnk &€ in the dark. After 24 h, sediment
was then centrifuged (3000 rpm for 2 min), and ws&d using a Turner Designs AU-10
fluorometer before and after acidification with 30/00.3 M HCI.

For sediment and bottom water biogeochemical paemsanalyses, sediments and
filters were dried, homogenized and weighed inteesicapsules. For sediment and bottom
waterd°C ands™N, Coq and Not analyses, samples were acidified with 2 M HCI tmoge
inorganic carbon and dried at 60 °C for 24 h. Thalgses were performed on an Elemental
Analyzer Flash EA 1112 Series combined with andjgiot Ratio Mass Spectrometer IRMS
Delta V Advantage (Thermo Electron Corp., Germa$@)M content was measured as loss
on ignition at 450°C for 4 h (Zaborska et al., 20(ed G,y content was measured following
the method of Kennedy et al. (2005). About 10 mgreéd sediment was acidified with 50 ul

of 1 N HCI three times. Analyses were run on a MweQuest Flash EA 1112 CHN analyzer.

2.4. Benthic community analysis

12
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In the laboratory, macrofaunal organisms were mickem sediments under a binocular
microscope and identified to the lowest possibl@tamic level. Each taxon was counted,
weighed (g wet weight) and transferred to 70 % mahaMobility and feeding (WoRMS
Editorial Board, 2019), and burrowing behavior (feferences see Table 4) were attributed to
each taxon. Benthic fauna was classified into Biaurbation functional groups based on the
type of the sediment mixing: biodiffusors, galletyfusors, upward- or downward-conveyors,
and regenerators. Biodiffusors move patrticles rmralom manner in short distances (Gérino,
1992). Gallery-diffusors transport material frome teurface sediment layer to deeper by
constructing tubes or tunnels system (Francoisl.et2802). Upward-conveyors transport
material from depth to the sediment surface andneawd-conveyors transport sediment non-
locally to deeper layers (Fisher et al., 1980aust and Bromley, 2012). Regenerators create a
biodiffusion-like process, with large amounts ofliseent transported out of the reworked
zone with a strong input to the overlying waterucoh, as well as passive downward
transport of surface sediment to the bottom ofalneow after burrow abandonment (Gardner
et al., 1987 Knaust and Bromley, 2012). Organism density and biomass were evaluated per
taxon, trophic and bioturbation functional groupdan total for each sediment core, and
subsequently converted per I’n@rea) in order to provide relevant surface valuidse

biomass to density (B/D) ratio was calculated mee@s a proxy of the mean organism size.

2.5. Bioturbation analyses

After the sediment cores were sliced, part of tbdirment from each sediment layer
was freeze-dried at -70 °C, and homogenized witioetar and pestle. Three replicates of 0.2
g sediment from each layer were taken and placed black box (9.5 cm x 7 cm) under a

constant UV light source (350 = 370 nm, Tube UV BGBT5 6 W). Images were taken with

13
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a digital camera (Nikon digital captor 2.342.018gb6) with 28 pum per pixel resolution from
a constant 12 cm from the sediment sample to asgdengical acquisition conditions for all
images (aperture time 1 s; diaphragm aperture /13, ISO 200). Images were saved in red-
green-blue (RGB) colour in jpeg format. The imagesre analysed using an image
processing toolbox (@mathworks) in order to diffei@te luminophores from the background
sediment by using an appropriate set of RGB thidslevels (Michaud, 2006). Finally, the
particle size appropriate for each luminophore wakected (6 pixels x 6 pixels for the
smallest luminophores), and the pictures were ctede(cleaned) by removing the particle
sizes smaller and larger than the actual size efsghecific luminophore (90-120 um). The
sum of areas (in pixels) of the remaining objectsl ahe number of objects (i.e.,
luminophores) were calculated for each picture aretaged between the three pictures from
each sediment layer. Finally, with these abundafaresll sediment depths for each core, the
results were computed as the percentage of detpctets per depth according to the total
number of pixels detected per core thus represgitte luminophores distribution over depth
for each sediment core.
The reaction diffusion type model used in this pape describe luminophore

redistribution following macrofaunal reworking issed on the general diagenetic equation

(Berner,1980):

2=2 (pb2%) +7.(0) (1)

(44

where Q is the quantity of the tracer (e.g., lupimares), t is the time, z is the depth, Db is
the apparent biodiffusion coefficient, and r(Q)xh& non-continuous displacement of tracer.

The term r(Q) is defined as follows:

r

Sz — f;lQ(x,t)dx if z € [z4;2,]
r(Qzt))=4{"" oLz e 10z (2a-c)

FANY A =
Tyt —~2Z—< y ZT

0if z > z,

14
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wherez; andz, define the upper and lower limits of the tracetistibution, x and z are
depth variables and r is the biotransport coeffictbat is the percentage of tracer that left the
[0; x,] deposit and was redistributed in the;[z,] layer. The redistribution of tracer between
z, andz, and the disappearance of tracer from thg Gayer are, respectively, described by
Egs. (2a) and (2b). Eqg. (2c) indicates that ncetracovement occurs belawy.

This displacement term was originally exemplified a model describing gallery-
diffusion of macrofaunal reworking (Francois et @D02). This biological reworking process
describes the diffusive-like mixing of particlesthre region of intense burrowing activity and
the rapid transport of organic and inorganic materom the upper sediment layers to the
lower regions of reworking (i.e. ‘biotransport’ ‘tvon-local transport”).

According to the experimental conditions, the falllog initial conditions were used

0 (z,.0) = {QO if z € [x1; %5 (3)

U else

where f;;x,] is the tracer deposit layer. Finally, a zero-fNg&uman boundary condition was

considered:

Qon=1im. 2 @o=o0 (4)
07z 4 07

The application of this bioturbation model to tnagedistributions, initially started by
Francois et al. (1997, 2001) and later revised bgddt al., (2007), allowed the quantification
of two particle mixing coefficients: an apparemdiffusion coefficient Db and a biotransport
coefficient r. The biodiffusion coefficient Db takento account the diffusion-like transport
due to the activity of the organisms. We assume tiha actual concentration dependent
diffusion of tracers is negligible. The biotrandpowefficient (r) represents a non-local mixing
pattern associated with a biologically induced ¢fan of particles from one place to another
in a discontinuous pattern (i.e. a n@mtinuous transport; Boudreau, 1986; Meysman et al.,
2003). Estimates of the parameters Db and r weadlyi obtained by minimizing a weighted

sum of squared differences between observed awdlatdd tracer concentrations (Frangois

15
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et al.,, 1999, 2002). For each core, many adjussnkatween the observed and modelled
profiles are necessary in order to find the minimueighted sum of squared differences.

This model was used with MatLab (@mathworks), titugves qualitative data (i.e.,
kind of sediment mixing) and quantitative data €ngtity of the sediment mixing) on the

sediment mixing function for the entire benthic ecoumity at the sediment-water interface.

2.6. Statistical analysis

Bray-Curtis similarity matrix, based on square-ro@nsformed data was used for the
multivariate analysis of the macrobenthic communRyincipal coordinate analysis (PCO)
was conducted to explore multivariate variabilitygang different sampling stations based on
the (B/D) ratio community composition data matii@earson rank correlation (>0.5) vectors
of species B/D with axes were overlaid on the PQQspto visualize the relationships
between ordination axes and the directions andedsgof variability in the biological
variables. Differences in species composition im@as among the groups of stations were
explored using non-parametric multivariate methagplied to Bray-Curtis dissimilarity
matrix calculated from biomass/density ratio (B(Dhe-way PERMANOVA). Whenever the
significant effect of factor was detected by thanmRERMANOVA test, pair-wise tests for
differences between levels of each significantdastias performed. SIMPER procedure
(similarity percentage species contribution) wasdug discriminate species responsible for
the differences between sites. In all models, avdod-selection procedure was used to
determine the best combination of predictor vaaabfor explaining the variations in
macrofauna assemblages. The selection criteriaeohfus the best-fitting relationship were
based on Rvalues (Anderson et al. 2008). A distance-bageshti model (DistLM) was used

to analyse and model the relationships betweemto&ofaunal community structure and the
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353
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358

environmental factors. A distance-based redundaneyysis (dbRDA) was used to visualize
the variability along the two axes that best disanated groups of samples defined by a priori
assigned groups. Superimposed vectors correspotadd®earson's correlations (>0.5) of
environmental factors with the dbRDA axes. Calcafet of the pseudo-F and p values were
based on 999 permutations of the residuals undedwced model. The significance level for
all the statistical tests was p = 0.05.

The normality of environmental factors and biol@gitactors (non-local and biodiffusion
coefficients, benthic density and biomass) was fieeri with use of Shapiro-Wilk test
(p<0.05). Since data did not have a normal distidm Spearman correlations were
calculated to estimate the relationships betweenalacommunity characteristics (Table 8)
and environment (Appendix 1). Differences in bemntlkiensity, biomass, non-local and
biodiffusion coefficient were evaluated with theeusf the nonparametric Kruskal-Wallis test,
and the Dunn’s post-hoc multiple comparison tess wpplied to identify the differences
among stations groups. Station ST/8, sampled ¥) Wwas excluded from those analyses due
to lack of environmental information and becauswas sampled during a different season
than the other stations. Additionally, a non-paraimepairwise Mann-Whitney U-test was
performed to compare differences between the spaimd) summer season in Storfjorden
(AX/3 vs ST/8). All analyses were performed usihg PRIMER package v. 7 Clarke and

Gorley, 2006 Anderson et al., 2008) and the Statsoft software STATISTICA v. 9.

3. Results

3.1. Environmental patterns
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Bottom water salinity ranged from 34.5 to 35.1 &attom water temperature ranged
from -0.8 °C to 2.5 °C during our sampling. Thevést BW Gy concentrations were
measured in Erik Eriksen Strait (AX/@.1 £ 0.1 %9 and the highest in Storfjorden (AX/3; 0.6
+ 0.0 %). The BW6'°C values ranged from -27.7%o on the slope northvaflird (PS/32) to
-22.2 %0 in Storfjorden. The lowest BW C/N ratio was were found at the deepest station
(PS/31: 6.1 £ 0.0) and the highest values were unedsn the southern Barents Sea (AX/6:
10.3 £ 1.2) (Table 2). Sandy and muddy sedimentsimi@med in the study area. The lowest
SOM concentrations were measured at station P8fB&lope (2.6% + 0.1) and the highest in
Storfjorden (AX/3 6.5% =+ 0.3). The most depleted sedim&H€ values occurred in fijords
(AX/1: -24.2%0 and AX/2: -25.4%0) while the most ectied values were found on southern
Barents Sea shelf (AX/6: -22.2%0). The lowest Sed @Gtio values were found in deep basin
(PS/27: 7.8 £ 0.4) and the highest value occurredfan Mijenfjorden (AX/1: 18.7 + 0.5)

(Table 3).
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372 Table 2. Bottom water (BW) characteristics for esampling station: &, Nir, 5°°C, 8'°N (in %) and C/N values (mean = SD, n=3).

373

374

375

376

377

378

379

380

Station BW Corg (%) BW N (%) BW 6'°C (%o) BW 8N (%o) BW C/N
AX/1 0.204+0.017 0.023+0.002 -24.7+0.1 5.7+0.7 10.3+1.1
AX/2 0.187+0.005 0.024+0.001 -24.0+0.1 3.9+0.5 8.9+0.2
AX/3 0.630+0.037 0.097+0.005 -22.2+0.2 4.8+0.3 7.6+0.2
ST/8 - - - - -

AX/4 0.137+0.047 0.015+0.003 -24.0+0.1 5.1+0.2 10.241.7
AX/6 0.268+0.013 0.031+0.005 -24.5+0.9 5.9+1.7 10.3+1.2
PS/20 0.354+0.017 0.063+0.001 -23.5+0.0 1.4%0.0 6.6+0.2
PS/32 0.180+0.002 0.030+0.001 -27.740.1 1.940.6 7.0+0.2
PS/19 0.188+0.014 0.032+0.001 -24.6+0.2 2.1+0.2 6.8+0.2
PS/27 0.226+0.007 0.040+0.001 -22.9+0.2 2.0+0.7 6.6+0.1
PS/31 0.258+0.013 0.050+0.002 -23.8+0.1 2.3+0.7 6.1+0.0
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381 Table 3. Sediment variables for each samplingsstatiediment type, &, Niot, 8°°C, §°N, OM (in %), C/N, Chla (ug DW ¢*) and Chla/Phaeo

382 values (mean = SD, n=no of cores).

No . Sed Sed
. Sediment Gravel Sand Mud Sed G Sed Ny 13 15
Station of 0 0 0 oy o 8°C &N Sed C/N SOM (%) Chla(ug/g)  Chla/ Phaeo
cores WPE () (%) (%) (%) (%) %) (%)
AX/1 3 Sand 0.0 78.1 21.9 1.9+£0.0 0.1+0.0 -24.2 4.018.7+0.5 51+04 2.3%x0.2 05+0.1
AX/2 3 Sand 1.3 86.8 12.0 1.8+0.0 0.1+0.0 -25.4 4.818.1+0.2 4.4 +0.3 1.4+0.1 0.4 +0.0
AX/3 3 Mud 0.0 40.8 59.2 2.1 0.0 0.2 0.0 -22.9 3.6 8HM.1 6.5 0.3 19.4 +2.6 1.9+0.4
ST/8 2 - - - - 2.1 0.0 0.2 +0.0 - - 11.0+0.4 7.3+0.6 21.8+1.3 51.8 +34.2
AX/4 3 Sand 2.3 66.4 31.2 1.0 +0.0 0.1 £0.0 -23.6 53 218.2 5.1 +0.6 2.2+0.3 0.3+0.0
AX/6 3 Mud 1.3 42.6 56.1 2.1+0.0 0.3 0.0 -22.2 4.6 MNP 5.7 £0.6 2.6 £0.5 0.4 £0.0
PS/20 2 Sand 7.5 51.3 41.2 0.9 £0.0 0.1 £0.0 -22.8 2.8 5418.1 4.6 £+0.3 7.6 £1.7 1.1+£0.2
PS/32 2 Sand 1.9 76.6 215 0.5+0.1 0.1 £0.0 -22.8 40 148.2 26+0.1 128+1.6 1.9+£04
PS/19 3 Sand 0.1 74.5 25.3 1.6 +0.0 0.2 +0.0 -22.7 46 510.3 8.3 0.8 2.9+05 0.4 +0.0
PS/27 3 Sand 6.3 62.3 31.5 0.8 0.0 0.1 #0.0 -22.9 3.0 8+0.4 3.7 #0.3 2.6 0.5 0.5 +0.0
PS/31 3 Sand 30.1 46.0 23.9 0.8 0.1 0.1 0.0 -23.0 3.9 6.713.8 4.4 +0.1 1.1+0.4 0.3 0.0
383
384
385
386
387
388
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3.2. Macrobenthic community structure

In total, 186 taxa were identified. The number @htper station ranged from 9 (AX/2)
to 68 (PS/32) (Table 4). Four burrowing and fouisent-mixing types were recorded. Sub-
surface burrowing, Cirratulidae (biodiffusor) andmbrinerissp. (gallery diffusor) dominated
in Svalbard fjords in biomass and density, andtorfforden in density. The deep burrowing
Yoldia hyperboreaconveyor) dominated in biomass at AX/3. Two bifudiors, the tube
building polychaeteMyriochele heeriand the deep burrowing bivalvastarte borealis
dominated in Erik Eriksen station (AX/4) in densiyd biomass respectively. The tube
building Spiochaetopterus typicysonveyor) dominated in terms of density and wa®iseé
dominant in biomass in the Southern Barents Sea/@AXThe sea staCtenodiscussp.
dominated in biomass at this station. The tubedmdl polychaete Maldane glebifex
dominated in both density and biomass at the station PS/20. Deep burrowing bivalves
(Yoldiella lenticula, Yoldia hyperborga@ominated in density at PS/32 while the tubedig
polychaeteGalathowenia oculatalominated in biomass. Burrow-building taxa werestiyo
biodiffusors and dominated at all shallow statioDeep burrowing and tube building taxa
were mostly conveyor bioturbators and dominatediedper stations (Table 4). Fourteen
mobility-feeding groups were recorded, and sessi@é mobile macrofauna dominated at all
stations except from the deepest one (PS/31) wdisceetely mobile fauna dominated. The
lowest number of functional groups was found in méond (AX/2) where 4 groups (sessile
surface feeders, discretely subsurface feeders,ilen@mnivore and mobile subsurface
feeders) occurred. Sessile subsurface feeders dtadirat PS/20 (30%) and PS/27 (33%).
Sessile surface feeders were predominant in fjiGAdg1: 52%; AX/2: 80%), Storfjorden
(AX/3: 35%), in the southern Barents Sea (AX/6: 4%d on slope (PS/19: 18%). The share

of discretely mobile fauna increased with depthd ahscretely mobile surface feeders
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dominated in the Nansen Basin (PS/31: 44%). Thédsgnumber of mobile subsurface
feeders was found on the shelf (PS/32: 23%). Theben of mobile taxa was similar for all

stations. The mobile surface fauna dominated ik Eriksen Strait (AX/4: 25%) (Fig. 2).
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Table 4. Functional traits, relative density anonbass of the three dominant taxa for each samptatgon. Class: P — Polychaeta, B — Bivalvia,

An — Anthozoa, As — Asteroidea, O — Ophiuroidea, Sipunculidea. Mobility and feeding groups (M/I¢ anarked by codes: mobility type (D -

Discretely mobile, M — Mobile, S — Sessile) anddieg type (car - carnivore, omn - omnivore, subbssurface feeder, sur - surface feeder, sus -

suspension feeder). Burrowing depth (BT): 1 — ssrfaurrowing, 2 — subsurface burrowing, 3 — deepowing. Tubes (T): “+” — I-shaped

tube, “-* — no tube. Sediment mixing types (SMikjodiffusor (B), upward conveyor (UC), gallery diffor (GD), downward conveyor (DC).
. No . Density . Biomass
Station of Taxa Class M/F BT T SMix % Taxa Class M/F BT T SMix %
taxa
AX/1 20 Cirratulidaé P Ssur 2 B 41.4 Lumbrinerissp.® P Momn 2 - GD 72.1
Polycirrus arcticug™ P Ssur 3 DC 7.1  Polycirrus arcticus” P Ssuy 3 + DC 115
Lumbrinerissp.® P Momn 2 GD 6.4 Aglaophamus malmgrehi P Mcar 2 - B 10.6
AX/2 9  Cirratulida€ P Ssur 2 B 66.7  Cirratulidae P Ssur 2 - B 49.3
Polycirrus arcticug™® P Ssur 3 DC 13.1 Polycirrus arcticug™® P Ssuy 3 + DC 36.6
Lumbrinerissp.® P Momn 2 GD 8.3  Lumbrinerissp.® P Momn 2 - GD 8.7
AX/3 34 Cirratulidaé P Ssur 2 B 31.2 Yoldia hyperboreé B Msub 3 - C 57.4
Lumbrinerissp.® P Momn 2 GD 14.1 Maldane sarst P Ssub 3 + C 12
Yoldia hyperborea B Msub 3 C 6.3 Nuculana radiaté B  Msub 3 - B 11.5
ST/8 29 Lumbrinerissp.? P Momn 2 GD 18.3 Yoldia hyperborea B  Msub 3 - C 30.5
Cirratulida€® P Ssur 2 B 11  Nuculana radiatd B  Msub 3 - B 27.8
Eteone longd *° P Msub 1 GD 7.3 Macoma calcared B Ssur 3 - B 13.7
AX/4 63  Myriochele heert’ P Msur 3 B 12.1 Astarte borealié B Msus 3 - B 90
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References in superscriplsGilbert at al. (2007); 2 Gérino at al. (1992, 2007); ® Fauchald and Jumars (1979); ¢ Queirés at al. (2013); ® Gingras et
al. (2008); ° Petch (1986); ’ Stead and Thompson (2006); ® Smith and Shafer (1984); ® Mazik and Elliott (2000); *° Mermillod-Blondin et al.
(2003); ™ Michaud et al. (2006); *? D'Andrea et al. (2004); ** Mulsow et al. (2002); ** Quintana et al(2007); **> Zanzerl and Dufour (2017); *°

Bouchet et al. (2009); *” Duchéne and Rosenberg (2001); *® Venturini et al. (2011); *° Shields and Kedra (2009); *° Shick (1976).
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Fig. 2. Percentages of mobility and feeding groaipdifferent sampling stations. Station ST/8
marked with * was sampled in summer season. Fumatitraits codes: mobility type (D -
Discretely mobile (yellow), M — Mobile (green), SSessile (blue)) and feeding type (car -
carnivore, omn - omnivore, sub - subsurface feeslar,- surface feeder, sus - suspension
feeder).

Stations were separated into 4 groups, based o @@ analysis: A - fjords (Van
Mijenfjorden: AX/1, Hornsund: AX/2), B - Storfjorae(AX/3), C - Barents Sea shelf (Erik
Eriksen Strait: AX/4, southern Barents Sea: AXf&] aorthern Barents Sea: PS/20, PS/32), D
- northern Barents Sea, stations deeper than 400mootinental stock: PS/19, PS/27 and
Nansen Basin: PS/31. PCO explained 22.5% of thhiity among sampling stations: the
first axis explained 13.6% and the second axis 8(89%. 3). Fjords’ communities were
correlated with presence of polycha&elycirrus arcticusand cumaceaiastylis lucifera

while benthic patterns in Storfjorden were cormtiatvith presence of polychaeteldane
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471
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475

476

sarsi and Apistobranchus tullbergi, and bivalves Musculus discors, Ennucula tenuis and

Yoldia hyperborea. Those correlations were negative for deeper stations where benthic

communities were mainly correlated with presence of polychaetes Notoproctus oculatus and

Prionospio cirrifera. The shelf stations varied the most with less clear patterns for benthic

communities.
40
A A
HB
®C
20 D
5 T
:-g Noteproctus oculatus A
B 0. Prionospigcirrifera
®©
:é' .‘. ® Polycirrus arcticus
'S @) ® Diastylis lucifera
(=]
> o
) 220
©
~ °m
O E I . Cirratulidae
O nﬁucu a tenuis Eteone longa
- Yoldia hyperborea Musculus discors
-40 - Maldang sarsi | ‘
é Apistobranchus tullbergi
-60 -
| | | T | |
-40 -20 0 20 40 60

PCO1 (13.6% of total variation)

Fig. 3. PCO analysis for macrobenthic communities based on species biomass to density ratio,

and the Bray-Curtis similarity among four sampling areas: A (Hornsund, Van Mijenfjorden);

B (Storfjorden); C (Barents Sea shelf); D (northern Barents Sea and Nansen Basin).

Significantly correlated species with the PCO coordinates (r>0. 5) are shown on the plot.
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Polychaeta dominated at all stations. There wegaifstant differences in density
(Kruskal-Wallis test; p<0.05; significant differences (post hoc test) between group A:B, A:C
and C:D) (Fig. 4A). Benthic density ranged from 848ind./nf + 168.7 standard error (SE)
(station AX/2) to 2475.8 ind./fmt 369.9 SE (station AX/1) in group A. In group Brithic
density was 3625.3 ind./t 83.9 SE (station AX/3). In group C density rafdem 1927.6
ind./n? + 196.5 SE (station AX/6) to 6388.5 ind7m 399.3 SE (station PS/32). In group D
density ranged from 1609.3 ind7m 295.1 SE (station PS/27) to 2794.1 ind.Am04.8 SE
(station PS/19). There were significant differenced®iomass among areas (Kruskal-Wallis
test; p<0.05; significant differences (post hoc test) between group A:B, B:D and C:D) (Fig.
4B). Benthic biomass ranged from 2.6 g wet weightin.5 SE (station AX/2) to 37 g wet
weight/nf + 18.4 SE (station AX/1) in group A. In group Britkeic biomass was 172.3 g wet
weight/nf + 37.3 SE (station AX/3). In group C biomass rahffem 7.8 g wet weight/fn+
1.1 SE (station PS/32) to 112.9 g wet weighttr61.3 SE (station AX/4). In group D biomass
ranged from 2.2 g wet weightfmt 0.5 SE (station PS/31) to 11.2 g wet weighAt#5.7 SE

(station PS/27).

A B

H(3, N=47)=17.9 (A vs B**: A vs C**.C vs D**) H(3, N=47)=24.4 (A vs B**: B vs D**.C vs D**)
7000 250

+ 225
6000
200
5000 175

4000 0

125
100

Density (ind./m?)
Biomass (g/m?)

3000 *

2000 ' i * ] 75
50 + i
1000
2 L]
"
0 0

L] L]
AXI1 AXi2 AXI3 STI8Y AX4 AX/6 PSI20 PS/32 PS/19 PSI2T PSI31 AXH AXZ AX3 STIB* AXi4 AXIE PSI20 PS/32 PSM9 PSI27 PSI31

A B c D A B C D

Fig. 4. Mean density (ind./f) (A) and biomass (g/f) (B); + SE, n= no of cores (Table 1) at
stations sampled in Van Mijenfjorden, Hornsund (group A); Storfjorden (group B); Barents

Sea shelfgroup C); northern Barents Sea and Nansen Basin (group B{ioBtST/8 marked
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with * was sampled in summer season. Kruskal — igv/atsults for differences between
sampling sites are given; significant test results are marked with ** (p<0.05).

There were significant differences in the benthcommunities structure
(biomass/density ratio) among different locatiorBERMANOVA test Pseudo-F: 5.07,
p=0.001). Significant differences were found forcleagroup (significant pairwise

comparison$=0.001); see Table 5 for detalils.

Table 5. PERMANOVA results for the multivariate degtors of benthic communities with

significant pair-wise comparisons results for difet groups.

Benthic parameter Source of variation Df MS Pseudd- P (perm)
Biomass/Density ratio  Gr 3 16606.0 5.07 0.001
Res 43 3272.8
Total 46
Benthic parameter Regime Site t Df P(MC) P (perm)
Biomass/Density ratio  Groups A:B 2.886 13 0.001 00.0
A:C  2.469 25 0.001 0.001
AD 2715 23 0.001 0.001
B:C 1.874 20 0.001 0.001
B:D 2.151 18 0.001 0.001
C:D 1.852 30 0.001 0.001

Benthic taxa that contributed mostly to the growgasilarities were:Polycirrus
arcticus (44.7 %) in fjords (A), Yoldia hyperborea(31.7 %) in Storfjorden (B),
Spiochaetopterus typicuyd 6.8 %) in the Barents Sea shelf (C) ahebhasoma diaphanes
diaphaneg16 %) in the northern Barents Sea and Nansen EB3ias revealed by SIMPER

analysis (Table 6).

Table 6. SIMPER analysis results based on B/D .r&pecies that contributed more than 5%

of the average similarity for different samplingtsdns groups are listed.
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Group Average similarity Species Contribution %

A 39.7 Polycirrus arcticus 447
Cirratulidae 28.5
Lumbrinerissp. 18.7
B 35.9 Yoldia hyperborea 31.7
Maldane sarsi 31
Nuculana radiata 9
Lumbrinerissp. 8.1
Cirratulidae 5.8
C 12 Spiochaetopterus typicus 16.8
Lumbrinerissp. 10.7
Yoldiella lenticula 7.3
Maldane sarsi 5.6
D 14.8 Nephasoma diaphanes diaphanes 16
Maldane glebifex 11.7
Prionospio cirrifera 10.1
Notoproctus oculatus 9.8
Nemertea 9.5
Lumbrinerissp. 6.3
Byblis minuticornis 5.9

The results of DistLM analyses showed that saliekplained 10.1% of the variation
observed in the macrofauna community while 886 (10%) and Sed C/N (9.3%) were next
main contributors. Nine variables were includedthg DistLM procedure to construct the
best fitting model, together explaining 46.8% dhtwariation. However, one of the variables
was not statistically significant (gravel) (Tablp The most important parameter contributing
to the first axis of the dbRDA plot was Sed C/N angblained 17.2% of fitted variation. It
also positively correlated with fjords’ group (AJhe most important parameter contributing
to the second axis was sediment @hlnd explained 25.7% of fitted flux variationwas

positively correlated with Storfjords group (B) amebst stations in group C (shelf) (Fig. 5).

Table 7. Results of DistLM procedure for fittingveonmental variables to the macofauna
community data. %Var percentage of explained variance; %Cum - cumulative percentage
explained by the added variable. Significance lgvet 0.05. Environmental factors: D —
depth, S — salinity, T — temperature, types ofrsedit (mud, sand, gravel), BW,g&— bottom
water Grg, BW Ny — bottom water B, BW 8"°C — bottom wates'*C BW, BW 8"°N —
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531

532

533

534

535

bottom wates™*N, BW C/N — bottom water C/N, Sedy,g— Corg CONcentration in sediment,
Sed Not— sediment B, Seds*®C — sedimens'*C, Seds'N — sedimens™N, Sed C/N —
sediment C/N, SOM — sediment organic matter, &rl sediment Chlorophyld and Chl

a/Phaeo -sedimenfPhaeopigments.

MARGINAL TESTS

Variable Pseudo-F Var% P

S 5.06 10.1 0.001

Seds'®c 5.01 10.0 0.001

Sed C/N 4.59 9.3 0.001

BW C/N 4.31 8.7 0.001

BW 8°N 4.25 8.6 0.001

Sed Gy 4.11 8.4 0.001

D 3.99 8.1 0.001

T 3.96 8.1 0.001

Chla 3.66 7.5 0.001

Sand 3.62 7.4 0.001

Mud 3.46 7.1 0.001

Chl a/ Phaeo 3.34 6.9 0.001

BW Corg 3.26 6.8 0.001

BW Niot 3.16 6.6 0.002

Gravel 3.11 6.5 0.001

Sed Nyt 2.43 5.1 0.001

Seds™™N 2.09 4.4 0.004

BW &'°C 2.04 4.3 0.001

SOM 1.56 3.4 0.032

SEQUENTIAL TESTS

Variable R2 Pseudo-F Var% Cum% P
D 0.08 3.99 8.1 8.1 0.001
S 0.16 3.98 7.6 15.7 0.001
Sand 0.30 4.06 7.0 22.7 0.001
BW §°N 0.44 3.71 5.5 28.2 0.001
BW C/N 0.49 3.70 5.1 33.3 0.001
BW §'°C 0.38 3.06 4.9 38.1 0.001
T 0.20 2.44 4.5 42.7 0.001
Mud 0.33 2.26 3.8 46.4 0.001
Gravel 0.23 1.29 2.4 48.8 0.127
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Fig. 5. Distance-based Redundancy Analysis (d(bRDA) plot of the DistLM model visualizing
the relationships between the environmental parameters and the biomass/density ratio of
species between four sampling areas: A (Hornsund, Van Mijenfjorden); B (Storfjorden); C
(Barents Sea shelf); D (northern Barents Sea and Nansen Basin). Environmental variables
with Pearson rank correlations with dbRDA axes > 0.5 are shown. Environmental factors: D —
depth, S — salinity, T — temperature, types of sediment (mud, sand, gravel), BW C,;, —bottom
water Corg, BW Nyt — bottom water Ny, BW 8'>N — bottom water 615N, BW C/N - bottom
water C/N, Sed Cory — Corg concentration in sediment, Sed 813C — sediment &' C, Sed C/N —

sediment C/N, Chl a — sediment Chlorophyll @ and Chl a/Phaeo — sediment Phaeopigments

3.3.Bioturbation

32



548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

After 10 days, almost all luminophores (~95%) remedi on sediment core surface at all
sampling stations meaning that about 5% of lumioops were transported into sediments.
The fastest decrease was noted at the B groupfj(Btien : AX/3 and ST/8), and at the C
group (Southern Barents Sea station (AX/6) ; Nar&asin < 400 m (PS/20, PS/32)) where
~15 to 25% of surface luminophores were buried. lgVhiminophores were still present all
along the sedimentary column in the Storfjordentia@ta some subsurface peaks of
luminophores were clearly measured below 3 cm enG@hgroup. The lowest decrease of the
luminophores over depth was noted in the A gron@alg&rd Fjords AX1/1, AX/2) and in the
D group at deepest station (PS/31) in the NansesnBahere 92 to 98% of luminophores
remained at surface with slight subsurface peaksaoérs (about: only 0.91 %) between 1 to
3 cmdeep .

Biodiffusion rates ranged from 0.04 ény* + 0.01 standard error (SE) (station AX/2)
to 0.07 cnif y*! + 0.03 SE (station AX/1) in group A. In group Bobiffusion rates was 0.06
cm? y*! + 0.04 SE (station AX/3). In group C biodiffusiosanged from 0 (station PS/32) to
0.76 cn¥ y' + 0.71 SE (station AX/6). There was no biodiffussivansport in group D. There
were significant differences in biodiffusion amorgeas (Kruskal-Wallis test; p<0.05;
significant differences (post hoc test) betweenugré:D and C:D) (Fig. 6A). Non-local
transport rates ranged from 0.21 ¥ 0.20 SE (station AX/2) to 0.60%y+ 0.23 SE (station
AX/1) in group A. In group B non-local transportea was 2.12 Y+ 1 SE (station AX/3). In
group C non-local transport rates ranged from §:7% 0.25 SE (station PS/32) to 2.08 ¥
0.58 SE (station AX/6). In group D non-local traodprates ranged from 0.28'y 0.04 SE
(station PS/31) to 0.68'y+ 0.31 SE (station PS/19). There were significdifferences in
non-local transport (Kruskal-Wallis test; p<0.05grsficant differences (post hoc test)

between group A:C and C:D) (Fig. 6B). Biodiffusits&nsport values were significantly
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related with depth, Sed,gand BW C/N ratio Spearman correlation: -0.6, 6 @.6, p<0.05
respectively). Non-local transport values were igicgntly related to benthic taxa richness,
biomass, mud and Sed,N(Spearman correlation: 0.5, 0.5, 0.5 and 0.5 Ex@e8pectively)
(Table 8).
H(3, N=47)=20.4 (A vs D**; C vs D**) H(3, N=47)=17.5 (A vs C**; C vs D**)
2.00 35
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Fig. 6. Mean bioturbation coefficients: Db - biod#fon (cn? y*) (A) and r — non-local (3)
(B); = SE, n=no of cores (Table 1) at stations sampledain Mijenfjorden, Hornsund (group
A); Storfjorden (group B); Barents Sea shelf (group C); northern Barents Sea and Nansen
Basin (group D). Station ST/8 marked with * was pbled in summer season. Kruskal —
Wallis results for differences between samplin@ssiire given; significant test results are

marked with ** (p<0.05).
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584 Table 8. Spearman’s rank correlation analyses arbmtggical and physical parameters. Significaritiga are marked in bold (p<0.05).
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3.4. Storfjorden — seasonal changes

Bottom water salinity was similar in spring and saoer in Storfjorden, respectively
34.5 and 34.1. Bottom water temperature in spreagsn was -0.8 °C and increased to 4.5 °C
(Table 1). Benthic density decreased from 3625/t + 83.9 SE in spring (AX/3) to
1812.7 ind./m + 229.7 SE in summer (ST/8). Biomass was simitaboth seasons (172.3
g/m? + 37.3 SE (spring, AX/3) and 152.1 ¢/m67.5 SE (summer, ST/8). Non-local transport
rates were similar in spring and summer (2.12 +ndl 8.09 + 0.72 ¥ respectively) but
biodiffusion rates increased in summer (0.06 + Gr94pring and 0.90 + 0.90 ény™* in
summer). Significant differences were found for thumber of taxa and macrofauna density
between spring and summer seasons (Mann-WhitnegstlUZ= 2.3; p<0.05 and Z=2.4;

p<0.05, respectively).

4. Discussion

This is the first complex report on bioturbationtigties in spring to summer
transition time conducted over the large area f@albard fjords and Barents Sea to deep
basin north off Svalbard. In our study, benthianoaunity variables differentiated four
groups of stations, and this separation was to sexrtent echoed by the environmental
factors. The benthic community properties furthiéeaed the measured benthic activities i.e.

bioturbation rates.

4.1.Benthic community characteristics across the sathprea
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610 The structure and composition of the benthic comtramseemed to be grouped in
611 four groups of stations, however, the primary Maga of the benthic community structure
612 (e.g., density, biomass) were highly variable wateach statiorOne of the reasons could be
613 the high variability among replicates that covemdy small area of sampled sediment.
614 Benthic species richness of the region was not vegifesented in the cores taken for the
615 experiments at each station due to their small Bagyunit (~113 cm?). This may have
616 implications for the results generalization to sempled areas due to high variability of
617 benthic density, biomass and consequently on tlectsf of these on the measured
618 bioturbation coefficients. However, we assume thatcollected the most abundant taxa,
619 which would likely have the dominant role in medigtbioturbation effect. We have sampled
620 and identified the benthic organisms in each sedimeore where the bioturbation
621 experiments were processed meaning that we knowothanisms responsible of the
622 measured bioturbation activities.

623 The variability of the quality and quantity of sedintary OM within each station
624 impacted benthic community structure. For instarbe, lowest quality of SOM (C/N~18)
625 was found in sandy sediments of Van Mijenfjorderd dfiornsund fjords, highlighting
626 dominance of refractory organic material within t@up A. This probably explains the
627 lowest benthic densities and biomass at thesestatirhis can be the result of geographical
628 locations (e.g., water circulation restrictionsdaglacial activity in Hornsund, related high
629 sedimentation rates and high terrestrial OM inmlissurbing benthic fauna (Drewnik et al.,
630 2016; Wlodarska-Kowalczuk and Pearson, 2004). These two statiocogimunities were
631 mainly shaped by presence of polychd@béycirrus arcticusand cumaceabiastylis luciferg
632 and opportunistic cirratulids were among dominants.

633 A high, but variable, B/D ratio was found in Storfjen (group B), which is the site of

634 a recurring polynya and has some of the highestymtivity in the Barents Sea. The low
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temperature, presence of a sea ice-edge bloomfinergrained sediments (muds) indicating
low hydrodynamism, and highofg and Chla contents in sediments and in bottom waters
promote diverse and high biomass benthic commusnitieh larger individuals burrowing and
feeding deeper (Winkelmann and Knies, 2005). HiphalPhaeo ratio and large quantities of
Chl a within sediments show also a more frequent inpditesh OM because of the presence
of the polynya Klaarpaintner et al., 2001; Vinje, 2001; Winkelman and Knies, 2005). This
community was also diverse, with high dominancepofychaetes (cirratulids, carnivore
Lumbrineris sp, and subsurface tube-building convelaldane sargi and bivalves like
Yoldia hyperboreandNuculana radiataPCO indicated that samples collected in Storgard
were correlated with presence of bivalEanucula tenuisand polychaetédpistobanchus
tulbergi.

The group C, covering stations sampled over theemar Sea shelf, was highly
variable in terms of community structure and vasi@nvironmental factors. The southern
Barents Sea station (AX/6) was characterized bylainenvironmental conditions to the
Storfjorden resulting in the occurrence of faungvgimilar characteristics but with a lower
biomass to density ratio. This station was domuphdig tube-building conveyor polychaete
Spiochaetopterus typicdHeteromastusp. and bivalvévlacomasp. It was characterized
by high amount of SOM but low Cla in the sediments, indicating late bloom/post bloom
conditions, where most of the fresh OM was alreatlyzed by benthic organisms. Lower
Chl a/Phaeo ratio also indicates more degraded OM, Iplgsai result of intensive pelagic
grazing (Morata and Renaud, 2008). This is likehcs this station is in the southernmost
location, therefore it was under the strong infleeenf Atlantic waters and was already in the
late-phase of the phytoplankton bloom (Krause et24)18). The other stations from this
group, located in the northern part of Barents &gaErik Eriksen Strait, were characterized

by high share of sand but relatively fresh and danbh SOM, though low Cld levels. This is
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quite similar to stations north of Svalbard (PS/@0d PS/32), although the later was

characterized by higher amounts of Ghpresent in the sediment related to the bloom in
progress at the time of sampling (Peeken, 20165 §loup was characterized by highly

diverse communities (from 36 (AX/6) to 68 (PS/32mber of taxa), however most of them

belonged to either biodiffusors or conveyors.

The northern Barents Sea and Nansen Basin (groupeD differentiated from the
other groups by salinity, temperature, depth anclwence of gravel. The species shaping
communities included polychaetBsionospio cirriferaandNotoproctus oculatusStations in
group D were seasonally ice covered (including rdusampling), and deeper than 400 m.
They were characterized by low amount of Seg But presence of high OM quality in
bottom water layer, perhaps indicating recent sedtation. They were characterized by
much lower benthic biomass and higher benthic demnghich were both decreasing with
increasing depth regardless the bloom stage. Dangeajuality and quantity of OM with
increasing depth, as it was observed in NansemBase often reflected in spatial variations
in benthic community structure (Carroll et al., 8D@nd result in severe energy limitation for
deep-seafloor communities, dominated by small simdtviduals in high densities (Gage and
Tyler, 1991; Bergmann et al., 2009; Grebmeier ¢t18i88; Renaud et al., 2008).

Long living Arctic benthic fauna reflects carbonpext fluxes to the sea bottom but
changes are observed after several years or degaadesp stations (Grebmeier, 2012; Link et
al., 2013). Therefore, it is likely that the blo@tage and current OM delivery to the sea floor
did not directly influence the benthic communityusture which is mainly dependent on the
integrated carbon input to the sediments and OM puailable in the sediment. However,
fresh OM arriving to the sea floor can trigger fhshthic response in terms of feeding and
related movement (Morata et al., 2015; Boetiusl.et2@13), thus influence the community

functioning.
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4.2. Bioturbation processes (sediment mixing)

Conducting experiments at the large depth gradeests a challenge of working in
hyperbaric conditions. Although, Glud et al. (19%towed that in situ measurements of
sediment oxygen demand/oxygen penetration depthe wmiformly higher than deck
incubations, the relative differences among statidid not change with depth. Since other
published studies have also not incorporated hyprrlthambers when estimating sediment
oxygen demand (Boetius et al., 2013), metabolisink@ et al., 1995), and bioturbation
(Clough et al., 1997), our results, as the relatates, remain comparable.

Both coefficients of bioturbation (non-local transp(r) and biodiffusion (Db) were
qguantified in the stations of groups A, B and C weh& higher diversity of bioturbation groups
was recorded among the dominant taxa (Table 4jio8taof the group D, on the contrary,
exhibited lower diversity of functional traits angpthe dominant taxa with the simultaneous
presence of two groups of sediment mixing (conveybrodiffusers) but where only non-
local transport was observed.

Species identity and differences in species chariatts, such as feeding mode and
typical burrowing depth, have been previously shotn influence the intensity of
bioturbation (Viitasalo-Frosén et al., 2009; Josefet al., 2012; Nakki et al., 2017) and
functional diversity can be considered to have mmgacts than taxonomic richness (Harvey
et al., 2012; Link et al., 2013). However, intetprg the bioturbation processes and the
assignment of the macrofaunal species to the dofuectional group can be challenging.
Short-term experimental studies of sediment mipngvide just essential data for only few
species and results are hard to compare with longee-scale processes in natural

ecosystems. Also, the same species can have diffdehavior and belong to another
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sediment mixing groups across their ranges sineeisp are known to be able to feed in
several different ways and change their feeding rmodility to exploit the food resources
available (Biles et al., 2002). Change in organiseding behavior will also mean a change in
bioturbation which is reduced as a result of destrepspecies diversity and community
biomass, as well as diversity of feeding and blzdtion groups (Mazik and Elliott, 2000). In
general, in our study, the high number of sub-s@r@eposit feeders, which feed at depth and
transport material to the surface can explain damie of non-local mixing (Boudreau, 1997,
Gérino et al., 1998). Conveyors were actually omespnt and the intensity of non-local
transport was variable between stations, and wasasing with increasing species richness,
density and biomass, but also with increasing peacge of mud presence and @hdontents
(Table 8). Since non-local transport is non-cordimy it is usually difficult to link it directly

to benthic biomass (or biovolume) since some mowesnef particles do not depend only on
animal movements, but also on animal-independdattsf (e.g., particles falling down into
the burrows, initial burrows construction). In @atudy, increasing benthic biomass generated
by high labile OM inputs, seems to have positiviea$ on the conveying activities and
consequently on the non-local transport rates.

In shallow fjords (Van Mijenfjorden and Hornsund,ro@p A), the benthic
communities were characterized by low bioturbatiates (non-local transport from 0.21 +
0.20 to 0.60 + 0. 23y and biodiffusion from 0.04 + 0.01 to 0.07 + 0.0%ty™). This
similarity between the AX/1 and AX/2 stations ofetlygroup A can be explained by the
occurrence of a similar benthic community whosegpecies have the same functional traits
combination (i.e., feeding, mobility, burrowing depburrowing mode and sediment mixing
mode Table 4) but present in low density and biomasedi#usors (CirratulidagGérino et

al., 1992, 2007), conveyorP.(arcticug and gallery diffusorsLumbrinerissp.; Petch, 1986),
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both present in those fjords, were probably limibgdhe lack of fresh OM in the sediments at
the time of sampling.

Storfjorden (AX/3, group B), Erik Eriksen Strait XA4) and PS/20 (group C) had
similar measured bioturbation rates with high nocal transport and low biodiffusion, and
shared a high biomass contribution of bivalves amaldanid polychaetes. Yoldiids and
maldanids, burrowing deeper into the sediment.kamvn to be effective conveyors which
can either actively transfer sediment directly ideep layers from the surface, or into surface
layers from deeper layers of the sediments (Beiader Davis, 1984 Smith and Schafer,
1984), respectively. This can explain high non-d@nsport in these areas.

The southern Barents Sea, AX/6, group C, had higbestrongly spatially variable
Db and r by station within the group, with a relaty higher biomass and density of the
organisms $piochaetopterus typicysonveyor, Smith and Shafer, 1984) dominatinghi@ t
density andAstarte sp. (biodiffusor, Queirés at al., 2013) dominating hetbiomass. The
reason for that was most likely earlier occurreotthe phytoplankton bloom due to the lack
of sea ice, so at the time of the cruise, latenggpiost-bloom conditions and abundant OM
activated rapidly benthic organisms.

All deeper and sea ice covered stations in groum®&uding sea ice covered PS/32
(group C), were dominated by biodiffusors and cqove (Table 4). Those stations were
characterized by significant non-local transpod anmeasurable biodiffusion. This suggests
that the sediment transport mode by conveyors dateihin the sampled deeper areas
adapted to scarce fresh food availability despite gresence of biodiffusers. This implies a
very low activity by biodiffusers undetectable hé ttime scale of 10 days of experiment, or
an interfering of such activities with the conveyapecies. Typically for communities living
in OM limited environments, these benthic commusitivere characterized by a low number

of species with low biomass. Giving the low biotatibn rates in the deeper stations, we
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could actually suppose that time incubation withnilwophores superior to 10 days could be
tested in the future experiments in order to insarenore complete transport of tracers
towards deep layers where the benthic communigsis active. Since the bioturbation model
takes into account in its calculation this time atiom, the final bioturbation coefficient is
however normalized to this time scale, signifyitg tsimilar relative comparison between
stations for our experiment remains valid. If werevable to detect measurable biodiffusive
coefficient for the deeper stations for a longeretiscale, normalized to the same time unit,
the biodiffusion would be still low because of webknthic infauna dynamic in such
environments. Our results are, however, similath® patterns showed by Clough et al.
(1997) who noted low biodiffusive transport (0.@10t11 cnif y'*) by using radioactive tracer
for its deep portions in relationships to the lovbenthic biomass due to lower fresh OM
inputs. They found, however, higher surficial seelnn biological mixing rates than the
natural sedimentation rates in the Arctic deep medis, highlighting the importance of
qguantifying bioturbation in the Arctic Ocean takimgo account its spatial variability. Also,
Soltwedel et al. (2019), using luminophores forexxpents that lasted 2 and 4 years, found
low biodiffusion mixing rates at the Long-Term Eaogical Research (LTER) observatory
HAUSGARTEN in Fram Strait (~ 0.2 cfy™®). They concluded that the meiofauna, and to a
certain extent megafauna, were the main bioturbatothe deep sea environments. Although,
only macrofauna (>500 pm) was identified and was@nted as the main responsible of the
bioturbation activities in our study, meiofaunaltigties may also explain some of the
patterns that could not be attributed to the changethe environment or macrofaunal
communities in the deep sea stations. Since theshtpantifies bioturbation coefficients of
the entire benthic community, it includes here dls® meiofauna activities. Meiofauna is
actually known as the most abundant infauna (Hegd.e1985; Vanreusel et al., 2010; Rosli

et al.,, 2016; own data) and as having impact onbib&urbation activities in the first few
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centimeters of the sediment (Aller and Aller, 19920t el al., 2014; Aschenbroich et al.,
2017; Makela et al., 2018). Therefore, we suggesat &lso the smaller benthic fractions
should be identified in future studies on Arcticedenfaunal activity in order to find better

infauna variables for explaining the bioturbatioeasurements.

4.3. Seasonal changes (Storfjorden station)

The highest values of non-local transport were meplofor Storfjorden and remained
stable during both spring and summer time. The iffitmion coefficient measured in
Storfjorden during summer was about fifteen timeghér compared to measurements
conducted during spring, probably because of trengés in species and functional groups
between the two seasons associated with the mite @M reaching the seafloor in summer
(Chl a/Phaeo~52, Table 3). The dominant taxa in denséye Cirratullidae (biodiffusor)
both during spring and summer (31.2 % and 11 %ews/ely) and Lumbrineris sp. (gallery
diffusor) (14.1 % and 18.3 %, respectively) whitebiomass, Yoldia hyperborea (convoyer)
dominated during both seasons (57.4 % and 30.%e8%pectively) (Table 4). Such changes,
i.e. replacement of one large specimen by ano#rge Ispecimen of different species, should
be rather accounted to spatial variability of bentommunities than due to seasonal change
in sampled communities. Also, species sucNa®is diversicoloor M. balthicaare able to
change their feeding mode (suspensive-feeder vedwosit feeder) depending on
environmental conditions @©Goej and Luttikhuizen, 1998; Christensen et al., 2000). It is
also possible that taxa such as Cirratulidasnbrinereis Yoldia andNuculanachange their
feeding mode with increased OM input from the pglymuring the summer just after the
spring bloom, as was observed in other ecosystemnegmeriments (e.g., Bender and Dauvis,

1984 forYoldiaspp; Rouse and Pleijel, 2Qedra et al., 2012 for Cirratulidae).
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Benthic activities are related to the supply of @Mthe seabed (Grassle and Grassle,
1994; Levin and Gooday, 2003; Blake et al., 2009) and biodiffusion intensity can be strongly
dependent on flux of fresh food from overlying watéGérino et al., 1998). In shallow
sediments of temperate areas, Duport et al. (268f)d the highest intensity of sediment
mixing (non-local and biodiffusion) during summaerthe Thau Lagoon. Also Gérino et al.
(2007) found more rapid non-local transport in ggrihan in autumn in the Venice Lagoon.
Organic carbon supply generally increases wherPfestarts in spring, and peaks with the
bloom and afterwards, over the summer. In the palaas, Morata et al. (2015) found
minimum biodiffusive activity during the polar nighand high non-local transport after a
pulse of fresh food in experiments conducted irhhgctic fjord in Svalbard. This result
suggests that behavior of benthic species change the OM input. Also, laboratory
experiments showed that macrofauna can react guickifood input by increasing their
bioturbation activities (Nogaro et al., 2008). ermore, Dauwe et al. (1998) reported
maximum sediment mixing with medium food qualitythee study comparing macrofaunal
benthic activity with contrasting food supply inettNorth Sea. They also showed that the
minimal mixing was observed at the station withhhggality OM, and no mixing when low
quality OM was present. This can result from corabon of physical and biochemical
factors influencing bioturbation, or changes in e behavior. The other possible
explanation is related to the oxygen conditionglifferent areas. Both North and Baltic Sea
are areas with high PP and eutrophication. Higheyumts of new OM reaching the sea floor
often result in low oxygen levels leading to anoganditions affecting faunal behavior or
even survival (Carstensen et al., 2014). Svalbjrdld and adjacent areas are largely oligo-
and meso- trophic, and well oxygenated regardlesdime of the year and intensity of the

spring bloom deposition. We, thus, expect minimadative impacts of OM deposition on
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benthic communities. Our results from this limiteglasonal comparison suggest that large

inputs of fresh OM to the seabed can trigger bludtion activities.
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Fig. 3. PCO analysis for macrobenthic communit&seldl on species biomass to density ratio,
and the BrayCurtis similarity among four sampling areas: A (Hornsund, Van Mijenfjorden);

B (Storfjorden); C (Barents Sea shelf); D (northern Barents Sea and Nansen Basin).
Significantly correlated species with the PCO camates (r>0. 5) are shown on the plot.

Fig. 4. Mean density (ind./A) (A) and biomass (g/f) (B); + SE, n= no of cores (Table 1) at
stations sampled in Van Mijenfjorden, Hornsund (group A); Storfjorden (group B); Barents
Sea shelf (group C); northern Barents Sea and Nansen Basin (group DjoSta8T/8 marked
with * was sampled in summer season. Kruskal — ig/atsults for differences between
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Fig. 5. Distance-based Redundancy Analysis (dbRpl&) of the DistLM model visualizing
the relationships between the environmental pammmetnd the biomass/density ratio of
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(Barents Seahelf); D (northern Barents Sea and Nansen Basin). Envirorahgatiables
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Basin (group D). Station ST/8 marked with * was pled in summer season. Kruskal —
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1358 Appendix 1. Spearman’s rank correlation analysesmgnphysical and biogeochemical variables. Sigaificzalues are marked in bold (p<0.05).
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5 § &€ &6 © = F & 2 32 % & & & & & o o 2

2 @)

Depth - o8 08 07 -02 00 01 03 01 -05 -06 -06 -03 04 02 05 -04 -02 -05
Salinity 08 - 07 03 -04 04 02 03 00 -03 03 -02 03 08 01 -05 01 02 -03
Temperature 0.8 0.7 - 06 03 00 -00 01 02 02 -03 -03 02 05 00 -03 -02 -01 -05
Gravel 07 03 06 - 02 00 -01 02 03 -05 -06 -07 -05 00 -03 -05 -07 -04 -04
Sand 02 -04 03 -02 - 09 -08 -07 -06 -01 02 02 -05 -05 05 02 -02 -03 00
Mud 00 04 -00 -00 -09 - 07 06 06 02 00 03 07 05 -04 -03 04 05 01
BW Corq 01 02 00 01 -08 07 - 08 06 01 02 04 04 04 -07 02 03 04 03
BW Ny 03 03 01 02 -07 06 08 - 07 04 07 01 01 04 08 -01 01 04 04
BW $%°C 01 00 -02 03 06 06 06 07 - 01 04 -01 01 -01 05 -02 -01 00 01
BW 5N 05 03 -02 05 -01 02 01 04 01 - 08 08 05 02 05 05 05 -02 -03
BW C/N 06 -03 03 06 02 00 -02 -07 -04 08 - 07 05 01 06 03 04 -00 -01
Sed Gyg 06 -02 -03 -07 02 03 04 -01 01 08 07 - 07 01 03 06 08 01 00
Sed No 03 03 02 05 -05 07 04 01 01 05 05 07 - 05 02 -01 08 05 00
Sedd*°C 04 08 05 -00 -05 05 04 04 -01 -02 01 01 05 - 02 05 03 07 01
Sedd™N 02 -01 00 03 05 -04 -07 -08 05 05 06 0302 -02 - 02 03 -04 -06
Sed CIN 05 05 -03 05 02 03 02 01 -02 05 03 06 -01 -05 0.2 - 03 -04 00
SOM 04 01 02 07 02 04 03 01 -01 05 04 08 08 03 03 03 - 03 -0.0
Chla 02 02 01 04 -03 05 04 04 00 02 00 01 05 07 -04 04 03 - 07

Chla/Phaeo 05 -03 -05 -04 0.0 01 03 04 01 -03 -01 0.0 0.0 01 -06 0.0 -0.0 0.7 -
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This is the first complex report on bioturbation in spring to summer transition
conducted over alarge depth gradient in the Arctic Ocean.

Benthic community structure and related biodiffusion and non-local transport varied in
Svalbard fjords, Barents Sea and Nansen Basin.

Changes in environmenta conditions, and related changes in quality and quantity of
available organic matter, had impact on benthic communities and bioturbation.

Large inputs of fresh OM to the seabed can trigger bioturbation activities.



