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Abstract: Biological swarms - from the simplest bacteria to large populations - compute the solution of geometrical
problems for their growth and survival. In order to engineer synthetic swarms, it is of interest to understand how biological
swarms relate space and time to sense their geometry. Here we propose a swarm architecture that senses the shape of its
environment, using agents that form Turing patterns as ”sonar”, and neural-like layers to process those Turing patterns
and find the shape of reactor that generate them.
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1. INTRODUCTION
Many swarms in biology - ranging from social in-

sects and multicellular organisms to films of bacteria and
biomolecules- have evolved to solve problems of com-
putational geometry. Termites build nests with elaborate
3D structures, and ants find the shortest route to a food
source (foraging) [1]. Bacteria films estimate their den-
sity with quorum sensing [2]. During the development of
a multicellular organism from a single cell (morphogen-
esis), cells decide on a spatial reference and form a fully
differentiated organism [3]. And at the molecular scale,
the population of biomolecules that makes up a cell col-
lectively interact to find the center and poles of the cell -
a prerequesite to ensure its even division [8].

Shape sensing by swarm raises an interesting funda-
mental challenge: How can a swarm estimate geometric
features that are vastly larger than the size of its agents
? In the above cases, the passing of chemical messengers
between the agents of the swarm was shown to be cru-
cial. Ants lay down pheromones that build up along the
best trail [1]. And bacteria broadcast chemical signals -
autoinducers - to measure their fluctuation of density [2].

Many of these problems have been framed with
reaction-diffusion PDEs, starting with the pioneering
work of Turing on morphogenesis [4]. In reaction-
diffusion PDEs, a chemical reaction term interacts with a
diffusion term, the Laplacian. The chemical reaction term
encodes local and direct interactions between agents,
while the Laplacian operator encodes global and indi-
rect interactions through diffusion by Brownian motion.
Alan Turing suggested a simple model with two chemi-
cal species (one activator and one inhibitor) to capture the
essence of morphogenesis. He showed that -surprisingly
- this reaction-diffusion system supports steady states
that are spatially inhomogenous, typically consisting of
stripes or spots. His model has since been refined and
studied extensively in mathematical biology to explain
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the formation of biological patterns. Turing patterns have
also inspired swarm engineering [5].

The existence and nature of the Turing patterns is
closely related to the boundary conditions - and thus the
shape of the reactor - through the eigenvalues and eigen-
modes of the Laplacian. In the textbook derivation, one
checks the stability of the homogeneous state by con-
sidering a small perturbation, which is decomposed into
the eigenmodes of the Laplacian. Eigenmodes whose
eigenvalues fall within a given range (which depends on
the chemical constants and diffusion coefficient, but not
the geometry of the reactors) are amplified, while other
eigenmodes decay. Since the spectrum of the Laplacian
forms a discrete set, it may or may not contain eigenvalue
whose eigenmodes are amplified. We turn this observa-
tion upside down: by looking at the existence of Turing

Fig. 1 Illustration of the general architecture of the
swarm. The first layer contains ”chemical pixels”,
which are pairs of agents forming a Turing pat-
tern. The convolution layer acts as an ”edge detec-
tor”, picking up differences between chemical pixels.
Lastly the pooling layer averages concentration at the
scale of the reactor, and the last layer classifies the
resulting signatures to recognize the shape of the re-
actor.



patterns for a given set of chemical and diffusion parame-
ters, one infers the existence of an eigenvalue in the afore-
mentioned range. By repeating this test for many differ-
ent parameters, one gleans information about the whole
spectrum of eigenvalues, from which in principle we can
(approximately) reconstruct the shape of the reactor.

Based on this, we propose a swarm that senses the
shape of its reactor, with agents that form Turing patterns
as ”sonar”, and information-processing layers to recog-
nize the shape that generates these Turing patterns.

At the bottom of the network sits a Turing layer (Fig.
1). It comprises pairs of agents (the Turing nodes) obey-
ing the same Schnakenberg kinetics [6] (except for the
scaling of their chemical term) and forming Turing pat-
terns at steady state. The Turing nodes act as chemical
pixels which individually capture information on the ge-
ometry of the reactor at a given length scale. The next
layer is a convolution filter that performs the equivalent
of chemical edge detection: it pairwise compares the con-
centrations of species from two pairs in the Turing layer
and produces an output species if their concentrations dif-
fer noticeably. The layer produces an activation map that
detects sudden bifurcation in the Turing pattern with re-
spect to the chemical strength.

The next layer, the pooling layer, smooths the concen-
trations of the convolution layers to produce spatially-
uniform species. In other words, the smoothing layer
compresses spatial information into a finite-dimensional
vector - a signature of the geometry in which the swarm
evolves. The last layer performs pattern recognition and
classifies the shape of the reactor. In this paper, we have
not implemented the pooling and classification layer, al-
though we are confident that classification schemes is-
sued from DNA computing might prove useful [7].

Fig. 2 Schematics of the recognition process for two ge-
ometries of reactor

2. MODELLING
We consider a swarm whose agents emulate chemi-

cal reactions and diffusion. We work in the limit of con-
tinuous space and time, treating the agents as molecules
that randomly diffuse, collide and react, or bounce off the
walls of the reactor Ω. The goal is to prescribe rules to
the swarm so that at the steady state, emerges a species in
the swarm that classifies the shape of the reactor.

Agents in layer at the bottom, the Turing layer, adopt
one of three following states: reserve state (noted R), ac-
tivator state (Ui), and inhibitor state (Vi). We assume that
the number of agents in the reserve state is so large that it
effectively acts as a reservoir for the swarm. We denote
by ui(x, t) the density of Ui states at point x ∈ Ω and
time t (and similarly for vi(x, t) and Vi).

The rules of the Turing layer are described in Figure
3. Briefly, agents in the Ui and Vi states are produced at
a constant rate from the reservoir. Agents in the Vi state
also decay to the reservoir at a constant rate. Lastly, when
twoUi agents and one Vi agent are close to each other, the
Vi agent is switched to a Ui agent. A pair ui and vi in the
Turing layer is modelled with a Schnakenberg reaction-
diffusion PDE, with no flux on the boundary (Neumann
condition):

∂ui

∂t = γi(a− ui + u2i vi) + du∆ui,
∂vi

∂t = γi(b− u2i vi) + dv∆vi,
∂ui

∂n = 0, on ∂Ω
∂vi
∂n = 0, on ∂Ω

(1)

where γi is a scaling parameter setting the strength of
the chemistry for the node i, a and b are constants setting
the conversion rate of agents from the reservoir to Ui or
Vi. The diffusion coefficients of Ui and Vi are du and dv
respectively.We note that the existence of Turing patterns
famously requires that dv >> du.

Each γi gives rise to a specific steady state for ui(a
Turing pattern), typically consisting of a number of dis-
crete spots of similar sizes that repel each other. As γ
increases, the number of spot grows discretely, starting
with no spot for γ = 0 (pure diffusion), and increment-
ing for specific values of γ = 0 that depend on the precise

Fig. 3 Chemical reactivity rules. In this paper, we imple-
ment the chemical pixels and the convolution layer.



geometry of the reactor Ω. This set forms a signature of
the reactor Ω which we will use to infer its shape.

The convolution layer locally compares the density of
ui and ui+1, detecting appearance of spots between the
Turing patterns for γi and γi+1. The dynamic of the con-
volution layer is modelled by the following PDE

∂ci
∂t = ciui+1/(Km + ui + ci)− ci + dc∆ci
∂ci
∂n = 0, on ∂Ω

(2)

The first term is a first-order Michaelis-Menten pro-
duction rate, stating that ci is an auto-catalyst promoted
by ui+1 and repressed by ui. To see how this layer per-
forms a comparison, let us temporarily omit diffusion and
solve the steady state for ci (since the layers are feed-
forward, the steady states of ui+1 and ui are independent
of that of ci):

ui+1/(Km + ui + ci) = 1 (3)

which is solved by

ci = max(ui+1 − ui −Km, 0) (4)

The positive part ensures that the concentration is not
negative. If the Turing pattern ui associated with γi, and
the Turing pattern ui+1 associated with γi+1 are similar
to each other, (ui ≈ ui+1, no new spot has appeared),
then ci decays to 0. On the other side, if a new spot does
appear when going from γi to γi+1, then this region be-
comes a local source of ci because locally ui+1 > ui,
resulting in non-null steady state.

3. RESULTS
As a proof of principle, we investigate a simple net-

work comprising only two Turing nodes and a convolu-
tion node. As a geometrical benchmark, we use digit-
shaped reactors, (handwritten digits were historically the
first images on which neural networks were trained).

We solve the PDE with an in-house FEM solver writ-
ten in Mathematica. Briefly we discretize equations 1
and 2, turning the system into a matrix differential equa-
tion, which we solve with an explicit Euler method. The
swarm is initially confined in a small square area at the
top of the reactor, and allowed to evolve at time t = 0.

Fig. 4 FEM simulations of the Turing for two geometries
and various chemical strength γ patterns.Color bars
are in arbitrary units of density

Fig. 5 FEM simulations of steady states for pairs of Tur-
ing nodes with close chemical strength γ (plotting u
in each Turing node) and the corresponding convolu-
tion layer. Color bars are in arbitrary units of density

We first sought to visualize the dependence of the Tur-
ing patterns on the geometry of the reactor. Figure 2
shows for two geometries the steady state of u for a Tur-
ing node whose chemical strength γ varies from 0 to 0.89.
The number of spots, and the chemical strength for which
they appear, depend intimately on the geometry of the re-
actor.

We next verified that the convolution layer can detect
local changes in steady state of ui+1 and ui. Figure 5
shows the steady state of u for pairs of chemical pixels
with similar γ. As expected, the convolution node is non-
null only when the Turing pattern changes suddenly (bi-
furcates) with the chemical strength, (here with γ going
from 1.15 to 1.19).

4. CONCLUSION
We proposed a swarm architecture for sensing the ge-

ometry of an environment based on Turing patterns. Pre-
liminary PDE simulations of the first two layers indi-
cate that distinct geometries can be sensed. But further
work is be needed to explore and concretize this idea.
First, full networks comprising the full typology of layers
(chemical pixels layer, convolution layer, pooling layer
and classification) should be simulated, with a larger va-
riety of geometries. In order to address the heavy compu-
tational load of these simulations, parallel computing ap-
proaches based on GPUs should be considered. Secondly,
we approximated the swarm in the continuum limits, us-
ing PDE inspired from chemical reaction-diffusion and
essentially considering the agent as point-like. More re-
alistic simulations modelling swarm as discrete and solid
agents will be needed to assess the relevance in real world
situations.
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