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Spontaneous symmetry breaking is an important concept in many areas of physics. A fundamen-
tally simple symmetry breaking mechanism in electrodynamics occurs between counterpropagating
electromagnetic waves in ring resonators, mediated by the Kerr nonlinearity. The interaction of
counterpropagating light in bi-directionally pumped microresonators finds application in the real-
isation of optical nonreciprocity (for optical diodes), studies of PT -symmetric systems, and the
generation of counter-propagating solitons. Here, we present comprehensive analytical and dy-
namical models for the nonlinear Kerr-interaction of counter-propagating light in a dielectric ring
resonator. In particular, we study discontinuous behaviour in the onset of spontaneous symmetry
breaking, indicating divergent sensitivity to small external perturbations. These results can be ap-
plied to realise, for example, highly sensitive near-field or rotation sensors. We then generalise to
a time-dependent model, which predicts new types of dynamical behaviour, including oscillatory
regimes that could enable Kerr-nonlinearity-driven all-optical oscillators. The physics of our model
can be applied to other systems featuring Kerr-type interaction between two distinct modes, such
as for light of opposite circular polarisation in nonlinear resonators, which are commonly described
by coupled Lugiato-Lefever equations.

Introduction.—Spontaneous symmetry breaking plays
a critical role in the description of many phenomena in
physics. In the case of continuous symmetries, it allows
for the modelling of magnetism and superconductivity
[1], as well as the generation of mass via the Higgs mech-
anism [2]. It also plays a prominent role in systems that
exhibit discrete symmetries, which are frequently found
in optics, such as time-reversal [3] and parity-time sym-
metries [4], as well as the interplay between two types
of symmetry breaking [5]. A novel type of discrete sym-
metry breaking has recently been demonstrated in bi-
directionally-pumped whispering-gallery microresonators
[6, 7]. In this case, the symmetry violation is caused by
an instability whereby, above a threshold pump power,
a difference between the intracavity powers in the two
counter-propagating directions leads to a splitting be-
tween their two resonant frequencies via the Kerr non-
linearity. As a result, small differences between the in-
tracavity circulating powers are amplified. Consequently,
the (parity) symmetry of the circulating optical power in
the resonator spontaneously breaks. This is due to the
fact that the cross-phase-modulation-induced Kerr shift
between counter-propagating light waves is different to
the self-phase-modulation-induced shift in unidirectional
light. Interestingly, this imposes fundamental limits on
the attainable power of a standing wave in a dielectric
ring resonator. Fig. 1 shows a simple experimental plat-
form for observing this symmetry breaking in a ring res-
onator.

The theoretical treatment of the Kerr interaction of
counter-propagating light was pioneered by Kaplan and
Meystre in the early 1980s, in the context of nonlinear

effects in Sagnac interferometers [8, 9]. A more complete
theoretical basis for light-with-light interaction in ring
resonators, and especially of symmetry breaking, is criti-
cally needed for a precise understanding of recent work on
microresonator-based non-reciprocal devices such as iso-
lators and circulators [10], as well as for the dynamics of
counter-propagating solitons [11–13]. Here, we develop a
generalised model that not only captures this symmetry
breaking, but extends to a universal sensitivity analysis,
which will be crucial for future sensing devices based on
this effect, such as enhanced rotation sensors and near-
field detectors. In addition, we generalise the model to
the time domain, which should facilitate the creation of
an all-optical oscillator.

FIG. 1. A simplified schematic of a ring resonator setup in a
symmetry-broken state. Amplified laser light (λ = 1550 nm)
is split into two paths of equal powers, which are then sent in
opposite directions into a microresonator. (b) Above a critical
power threshold, the parity symmetry is broken, characterised
by different reasonant frequencies in the two directions, such
that one direction of light is preferentially coupled into the
cavity. Panel (a) shows the case for preferential coupling in
the clockwise direction. CW = clockwise, CCW = counter-
clockwise.
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Coupled Lorentzian model.—The basis of our theory
of counter-propagating light in a ring resonator is the
following dimensionless model, featuring two coupled
Lorentzian curves, which results from considering how
the Kerr effect modifies the resonant frequency of a cav-
ity in a non-reciprocal fashion [6]:

p1,2 =
p̃1,2

1 + (p1,2 + 2p2,1 −∆1,2)2
. (1)

p̃1,2 are the (dimensionless) powers of the pump laser,
and p1,2 are the powers coupled into the resonator. The
apportionment of power coupled into the resonator is de-
termined by the detuning parameters, ∆1,2, which are
normalised to the half-linewidth of the resonance. The
subscripts 1 and 2 denote clockwise and counterclockwise
directions. See Ref. [14] for more information. Equations
(1) are the steady-state, homogeneous solutions to a pair
of coupled Lugiato-Lefever equations (see Ref. [15] for the
uncoupled version). Consequently, this model extends to
other nonlinear systems in which Kerr coupling occurs
between two distinct modes, such as for opposite circular
polarisation states [16, 17]. We now need to consider the
threshold condition beyond which Eq. (1) can describe a
symmetry-broken regime.

Onset of symmetry breaking.—We demonstrate here
that symmetry breaking occurs only above a certain
threshold pump power. We consider symmetric pumping
conditions by setting ∆1 = ∆2 = ∆ and p̃1 =

∼
p2 = p̃,

and then examine the number of crossing points between
the two Lorentzians, Eq. (1), in terms of p1,2, to see where
this number changes between 1 and 3 (2 stable, 1 unsta-
ble - indicative of a bistable regime, and hence symmetry
breaking). Combining the two Lorentzians gives the fol-
lowing cubic equation:

[p1 − p2]
[
(p21 + p22 + p1p2)− 2∆(p1 + p2) + ∆2 + 1

]
= 0.

(2)

The term in the first set of square brackets is the symmet-
ric solution, whilst the rest is the symmetry-broken so-
lution. The abrupt onset of symmetry breaking is hence
described as the discontinuous intersection of a straight
line with an ellipse, as shown in Fig. 2. At the points
where symmetry breaking occurs, i.e., the points of in-
tersection, p1 = p2 = p±, the quadratic part of Eq. (2)
yields

p± =
1

3

(
2∆±

√
∆2 − 3

)
, (3)

for ∆ ≥
√

3. The p− solution gives the coupled power at
which the symmetry-broken region opens, and p+ gives
the coupled power at which it closes. Similar thresh-
old powers apply to polarisation symmetry breaking in
ring cavities, as shown in [16]. Coincidentally, Eq. (3)
describes the limits of the region of bistability for the

homogeneous, steady-state solution to a Lugiato-Lefever
equation for a unidirectional beam of light in a cavity
[15]. The threshold power (per direction) for the same
bistability in the case of a standing wave is, in fact, 3
times lower than in the unidirectional case, owing to the
extra contribution from cross-phase modulation [9].

0 1 2 3 4 5 6
CCW coupled power (p2)

0

1

2

3

4

5

6

C
W

 c
o
u
p
le

d
 p

o
w

e
r 

(p
1
)

Δ = 3

Δ = 2

Δ = 4

FIG. 2. Illustration of Eq. (2), each ellipse for a different
(constant) value of the detuning parameter ∆. Each curve
comprises all the values of p1,2 at which the two Lorentzians,
Eq. (1) intersect. When p1 6= p2, the symmetry is broken,
the threshold of which occurs where an ellipse intersects the
straight line. These curves are traced out by continuously
increasing the pump power, p̃.

In order to find the minimum required pump power
for symmetry breaking as a function of detuning only,
we first apply Eq. (3) to Eq. (1) for p1 = p2 = p± and
p̃1 = p̃2 = p̃, to recover the equation found in [9]:

p̃± =
2

3

[
∆(3∆2 − 5)± (3∆2 − 1)

√
∆2 − 3

]
(4)

As for the coupled power, p̃− gives the pump power
at which the symmetry-broken region opens, and p̃+ is
where it closes. The threshold pump power is then triv-
ially found to be

p̃thresh. = p̃−

(
∆ =

5√
3

)
=

8

3
√

3
≈ 1.54, (5)

associated with the coupled power of p = 2/
√

3 ≈ 1.15.

Nonlinear enhancement of sensitivity.—We have so far
considered balanced pump powers and equal detunings
in both directions of propagation, in order to investigate
symmetry breaking. We now consider the most general
case of Eq. (1), for p̃1 6= p̃2 and ∆1 6= ∆2. The latter may
be caused by using the resonator as a sensor, whereby a
change in the local environment around the resonator
perturbs its optical modes [18, 19], for example by in-
ducing a small resonant frequency splitting. This can
come from rotating the resonator (Sagnac effect) or from
interacting with its evanescent field. This splitting can
then be magnified by the Kerr nonlinearity, allowing for



3

enhancement of the sensitivity, theoretically down to the
shot noise limit.

Divergent sensitivity.—Sensitivity, in this context, is
defined as the rate of change of the coupled power with
respect to the detuning. These partial derivatives are
calculated to be

∂p1,2
∂∆1,2

=
(1 +X2,1)

(1 +X1)(1 +X2)− 4
, (6)

∂p1
∂∆2

=
∂p2
∂∆1

= − 2

(1 +X1)(1 +X2)− 4
, (7)

wherein

X1,2 =
1 + (p1,2 + 2p2,1 −∆1,2)2

2p1,2(p1,2 + 2p2,1 −∆1,2)
. (8)

See Ref. [14] for more details. By inspection, the sensi-
tivity diverges for

(1 +X1)(1 +X2) = 4. (9)

Eq. (9) is the universal condition for maximally-enhanced
sensitivity to a small perturbation to the resonator; it
defines a closed boundary within the symmetry-broken
regime, and is illustrated in Fig. 3. As will be demon-
strated later, this condition defines the onset of insta-
bility in the system. For given pump and circulating
powers, this condition defines the detunings for which
sensitivity diverges. However, since the region enclosed
by this boundary is unstable (see the stability analysis
that follows), we find that only one particular point on
this boundary is useful for nonlinear enhancement of a
sensor, referred to as the critical point.

Critical point.—We view the critical point as the gen-
eralisation of the discontinuous point of symmetry break-
ing to the regime of imbalanced pumping conditions, in
which there is no symmetry to break in the first place.
This point sits on the unstable boundary, shown in Fig. 3,
and is defined by the condition X1 = X2 = 1. Informally,
this can be thought of as the condition that causes the
sensitivity of the clockwise and counterclockwise coupled
powers to diverge at equal and opposite rates. In the
symmetric case, i.e., for p̃x = p̃y = p̃, ∆x = ∆y = ∆,
and px = py = p, this constraint allows us to recover
the original condition for symmetry breaking, Eq. (3).
Consequently, divergent sensitivity to perturbations can
be accessed even in the case of imbalanced pump pow-
ers and unequal detunings. We have numerically verified
this condition for the critical point. We note that the
sensitivity to changes in the pump powers also diverges
for this same critical point condition.

Generalisation to a time-dependent system.—We ob-
serve that the coupled Lorentzians in Eq. (1) are, in fact,
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FIG. 3. Illustration of Eq. (9), in the case of balanced pump
powers, p̃1 = p̃2 = p̃. Each curve corresponds to a differ-
ent choice of pump powers. Each pair of circulating pow-
ers (p1, p2), corresponds to a particular pair of detunings
(∆1,∆2).

the steady-state solutions to a pair of time-dependent
coupled mode equations. We introduce the ‘normalised
electric fields’: p1 = |e1|2, p2 = |e2|2, p̃1 = |ẽ1|2,
p̃2 = |ẽ2|2; the resulting equations take the form

ė1,2 = ẽ1,2 − [1 + i(|e1,2|2 + 2|e2,1|2 −∆1,2)]e1,2, (10)

where the dot signifies the time derivative. Consequently,
the theory shown in the first part of the paper – symme-
try breaking and the sensitivity analysis – can be sub-
sumed, as the steady state, within a time-dependent the-
ory.
Stability analysis and oscillations.— Small perturba-

tions of the electric field may grow or shrink with time.
We investigate this by defining e1 = es1 + ε1 and e2 =
es2+ε2, where ε1,2 are small perturbations on the steady-
state solutions, es1,s2. For simplicity, without loss of gen-
erality, we adjust the phases of ẽ1,2 such that es1,s2 are
real. To characterise the time evolution of the resulting
system of four equations, we form a 4× 4 matrix, which
has the following eigenvalues:

λ = −1±
√
−A1B1 −A2B2 ± S√

2
, (11)

S =
√

(A1B1 −A2B2)2+ 4A1A2C2, (12)

in which A1 = e2s1 + 2e2s2 − ∆1, A2 = 2e2s1 + e2s2 − ∆2,
B1 = 3e2s1 + 2e2s2 − ∆1, B2 = 2e2s1 + 3e2s2 − ∆2, and
C = 4es1es2. The ± signs are independent, giving four
distinct eigenvalues. See Ref. [14] for more details. Qual-
itative changes in the eigenvalue describe transitions to
different kinds of time-dependent behaviour: if λ is a
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FIG. 4. Symmetry-broken solutions under balanced pumping.
(a) Tilted resonances for various pump powers, showing the
symmetry-broken region. Dark solid curves indicate stable
solutions, faint curves show unstable solutions, and dashed
curves correspond to oscillatory behaviour. (b) Amplitude of
the difference in the coupled powers. The grey area corre-
sponds to time-oscillating solutions (white denotes symmet-
ric states). (c) Isolated curve for p̃ = 3.8, from (a). (d) Real
part of the stability eigenvalue, λ. (e) Imaginary part of the
stability eigenvalue. Note that there always exists at least
one eigenvalue with non-zero imaginary part, implying strong
susceptibility to oscillations.

positive real number, the solution is a real, growing expo-
nential, and the perturbed system will become unstable.
Such unstable solutions occur for

(1 +X1)(1 +X2) < 4, (13)

i.e., within the region enclosed by each of the curves in
Fig. 3.

From Eq. (11) and the conditions of their existence, we
have verified that it is not possible to have four real eigen-
values for the linear stability of the symmetry-broken so-
lutions. This means that these solutions are strongly sus-
ceptible to either damped or sustained oscillations, since
at least one stability eigenvalue is complex for experimen-
tally relevant values of the parameters. Intuitively, oscil-
lations are expected because of the simultaneous presence
of two symmetry-broken solutions, under exchange of the
indices (1, 2) in Eq. (10). In Fig. 4 (e) we show, for exam-
ple, that for the chosen value of the pump p̃ = 3.8, there
is always at least one eigenvalue with non-zero imagi-
nary part. In the case of negative real parts of the sta-
bility eigenvalues (between the vertical solid and dashed
lines in Fig. 4 (c)–(e)) one observes damped oscillations
where nonlinear resonances can be excited by suitable
modulations of the pumps. When S in Eq. (12) is purely
imaginary, we have four complex eigenvalues where the
angular frequency, Ω, and the growth rate, R, are given
respectively by

Ω = ±
√

1

2

√
A1A2(B1B2 − C2) +

1

4
(A1B1 +A2B2),

(14)

R = −1±
√

1

2

√
A1A2(B1B2 − C2)− 1

4
(A1B1 +A2B2) .

(15)
Here, again, the independent ± signs give rise to four
different complex solutions.

When R becomes positive, two Hopf bifurcations (for-
ward and backward, when changing ∆) of the symmetry-
broken solutions occur, allowing for non-decaying stable
oscillations. We illustrate these oscillations as the dashed
curves and shaded grey regions in Fig. 4. In frame (e)
of this figure, we plot the corresponding frequencies of
oscillation, Ω, from Eq. (14) when changing the detun-
ing. We anticipate that this bifurcation will permit the
construction of a microresonator-based all-optical oscilla-
tor, featuring periodic energy exchange between the two
directions, in the nanosecond regime.
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FIG. 5. Detuning scans of the oscillatory regimes of Eq. (10)
between two Hopf bifurcations (lower solutions of Fig. 4 (a)).
The field intensity is sampled at its maximum during the os-
cillation. The arrows indicate the direction of scanning the
detuning. (a) Scan for p̃ = 3.4 (showing no dependence on
direction). Forward (b) and backward (c) scans for p̃ = 3.8.

We have verified these predictions by direct numerical
integration of Eq. (10). For each configuration specified
by ∆ and p̃, we have evaluated Poincaré sections when
the intensity of one of the two fields (in our case p1 =
|e1|2) has a maximum given by the condition

pi = |ei|2 = ẽi Re(ei), (16)

where i = 1, 2 and Re(ei) is the real part of the complex
field ei, and we have now adjusted the phases such that
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ẽi is real. The Poincaré sections identify the oscillatory
regimes and allow for dynamical scans when changing ∆.
These scans are presented in Fig. 5 for p̃ = 3.4, p̃ = 3.8
while changing ∆ from 5 to 11, and for p̃ = 3.8 while
changing ∆ in reverse from 11 to 5. Each point in Fig. 5
corresponds to a nonlinear oscillation of the symmetry-
broken output. The numerically-derived oscillation fre-
quencies are in remarkably good agreement with those
predicted by Eq. (14).

The forward and backward Hopf bifurcations are
clearly visible at the beginning and the end of the scans.
For values of input pumps just above the critical value
of p̃ = 2.87 where the Hopf bifurcations appear, regular
oscillations occur at frequencies around four times the
decay rate of the ring resonator, γ. We note that the
point (p̃,∆) = (2.87, 5.8) corresponds to a co-dimension
2 bifurcation where a forward and a backward Hopf bi-
furcations collide. Normal forms and unfoldings of dou-
ble Hopf bifurcations provide the framework to establish
the full dynamical behaviour of the symmetry-broken so-
lutions [20]. In Fig. 5 (a) we show that forward and
backward period doubling bifurcations occur close to the
co-dimension 2 point (p̃ = 3.4). By increasing the pump
parameter, further period doubling bifurcations, deter-
ministic chaos, collision of Feigenbaum cascades [21], and
crises emerge, as shown in Fig. 5 (b) and (c) for p̃ = 3.8.
We observe bistable behaviour between these dynamical
regimes, as shown in Fig. 5 (b) and (c), where the direc-
tion of the detuning scan is reversed.

Conclusion.—We have presented analytical and dy-
namical models for the interaction between counter-
propagating light in a dielectric ring resonator. The mix-
ture of self- and cross-phase modulation from the Kerr
effect results in dramatic changes in behaviour: notably,
spontaneous symmetry breaking and the onset of nonlin-
ear oscillations – the latter holds promise for the devel-
opment of highly controllable, on-chip, all-optical oscil-
lators. We have also derived the universal condition for
divergent sensitivity to perturbations, of which sponta-
neous symmetry breaking is a special case under balanced
system conditions. This closed boundary of divergent
sensitivity with respect to the laser detunings marks the
transition between stable and unstable symmetry-broken
solutions in a coupled, homogeneous system. The criti-
cal point lying on this boundary makes possible a variety
of enhanced sensors for detecting rotations or near-field
disturbances (e.g. biomolecules). In order to cover a
wide range of experimental configurations, the scope of
our analysis can be extended to systems featuring other
forms of Kerr-nonlinearity-mediated symmetry breaking
such as the interaction of light states of different polari-
sations, which would enable the development of optically
controllable polarisation filters. In addition, this model
is applicable to systems with different coefficients of self-
and cross-phase modulation, such as semiconductors.
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