
Control of chaotic systems by Deep Reinforcement
Learning

Michele Alessandro Buccia, Onofrio Semeraroa, Alexandre Allauzena,
Guillaume Wisniewskia, Laurent Cordierb, Lionel Mathelina

aLIMSI, CNRS, Université de Paris-Saclay, Orsay, FR
bInstitut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, Poitiers, FR

Abstract

Deep Reinforcement Learning (DRL) is applied to control a nonlinear, chaotic
system governed by the one-dimensional Kuramoto-Sivashinsky (KS) equation.
DRL uses reinforcement learning principles for the determination of optimal
control solutions and deep Neural Networks for approximating the value function
and the control policy. Recent applications have shown that DRL may achieve
superhuman performance in complex cognitive tasks.

In this work, we show that using restricted, localized actuations, partial
knowledge of the state based on limited sensor measurements, and model-free
DRL controllers, it is possible to stabilize the dynamics of the KS system around
its unstable fixed solutions, here considered as target states. The robustness of
the controllers is tested by considering several trajectories in the phase-space
emanating from different initial conditions; we show that the DRL is always
capable of driving and stabilizing the dynamics around the target states.

The complexity of the KS system, the possibility of defining the DRL control
policies by solely relying on the local measurements of the system, and their
efficiency in controlling its nonlinear dynamics pave the way for the application
of RL methods in control of complex fluid systems such as turbulent boundary
layers, turbulent mixers or multiphase flows.

1. Introduction

With the availability of unprecedented computational resources, the ma-
turity of modeling in many areas of engineering has yielded systems close to
optimality in the context of well-known settings they were engineered for. To
further improve such systems, a scientific challenge lies in rendering these sys-
tems adaptive by design to changes in the operating conditions. Enlarging the
perspective from the engineering standpoint, the current environmental needs

Email address: michelealessandro.bucci [at] limsi.fr (Michele Alessandro Bucci)

Preprint submitted to . June 19, 2019

ar
X

iv
:1

90
6.

07
67

2v
1

 [
m

at
h.

O
C

]
 1

6
Ju

n
20

19

have also invigorated the research effort on flow control applications. For ex-
ample, carbon dioxide emissions are considered one of the main responsible for
the global warming and any reduction of these emissions can lead to an atten-
uation of this effect. Increasing the efficiency of the existing technologies for
the production of sustainable energy can lead to high potential benefits or to a
substantial reduction of oil-consumption in the transport economy sector. Not
surprisingly, a rather large body of literature is already available on the many
different efforts in this realm, with varying assumptions on the system, such as
linearity of the governing equations, or on the amount of information one has
on the system, such as observability of a state vector or not. The interested
reader is referred to the reviews by [1, 2, 3].

Active control for the optimization of the performance can be introduced via
adequate strategies capable of modifying the system response in a prescribed
manner (open-loop) or as a function of some observations of the system at hand
(closed-loop). In both cases, the challenge is to infer an efficient and robust
control strategy, hereafter termed policy, improving upon the retained objective
function. In the usual model-based approach, a dynamical model is used to
describe the behavior of the system.

This model allows to predict the effect of a given control action and can hence
be used to derive the best control strategy leading to an optimal performance.
However, a physical model1 is not always available. Besides systems for which
the governing equations are simply unknown or very poorly known, there are
many situations where solving the governing equations is too slow with respect
to the dynamics at play to be useful. While reduced-order models may help in
solving an approximate system meeting real-time constraints, they usually lack
robustness and can critically lose accuracy when control is applied, resulting in
poor performance, at best.

A different line of control strategy relies on a data-driven approach. In this
view, no model is employed and the control command is derived based on past
observations only. In a training step, control actions are applied to the system
and observations are made, possibly including the evaluation of the objective
function. From this collection of observations, an input-output (I/O) model is
built and subsequently used for controlling the system. Typical of this viewpoint
are extremum seeking, [4], control strategies relying on system-identification
techniques leading to auto-regressive models (AR, ARMA(X), etc.), e.g., [5, 6],
or the more recently proposed so-called Machine Learning Control, [7]. These
techniques are more directly compatible with real systems since they do not
require a physical model, nor prohibitive computational power. Moreover, they
do not assume knowledge of a state vector and can efficiently deal with partial
observations. Yet, they either exhibit limited performance in the general case
where prior expertise knowledge is not available, or require an extensive train-

1The term model is ambiguous. Here, the term model refers to a physical model. This
meaning differs from its use in the Machine Learning community where the term is more
related to a parameterized function that links inputs to outputs.

2

sensor signal

actuator signal

policy function

value function

Figure 1: Overview of the Reinforcement Learning (RL) strategy for the Kuramoto-
Sivashinsky equation considered in Sec. 4. In the RL framework, an agent interacts with
an environment by making observations y and performing actions u. In return, the agent
receives a reward that depends directly on the changes of the environment induced by the
action. The objective of RL is to determine the action u to impose on the environment in
order to maximize a given value function J that represents the cumulative rewards over time.
The control law u is determined via the policy function π which maps measurements y taken
from the environment to the action space.

ing set of trial-and-errors, negatively affecting the learning time. In the present
work, we introduce a Reinforcement Learning (RL) strategy [8] for the closed-
loop, nonlinear control. RL is a well-established technique mainly originating
from the robotics community and has gained wide-spread popularity with some
recent mediatic applications, achieving super-human performances in the go

and shogi games as well as self-teaching for the StarCraft II videogame, [9],
or in revenue management [10] to cite only a few examples. As a data-driven
technique, it shares the applicability of other I/O approaches, e.g., low computa-
tional requirements, and the ability to use only limited sensors in contrast with
a full state vector. Reinforcement learning dates back to the 1950s when the
problem of optimal control was solved by Richard Bellman through the intro-
duction of dynamic programming [11], leading – in the continuous formulation
– to the Hamilton-Jacobi-Bellman (HJB) equation.

3

Figure 1 provides a sketch of the RL methodology for the control of dynam-
ical system. The physical system under consideration, termed the environment
in the reinforcement learning literature, is observed at time t by a so-called
agent through a set of localized measurements y(t) ∈ Rn. The agent performs
an action u(t) that changes the future state of the environment and, in return,
receives a reward that represents the degree at which a state/action pair is
desirable for the targeted objective function. This measure of performance to
be optimized is then defined as the expectation of the (discounted) cumulative
rewards over time. The action u(t) ∈ Rm is evaluated from the current obser-
vations via the control policy π, defined as u(t) = π (y(t)), which represents a
mapping from the observation space (Rn) to the action space (Rm). The pol-
icy is defined in a given class Π of multivariate functions. The value function
J : Rn → R or cost-to-go function of a policy π over a time horizon gives the
cumulative rewards when yt is the current measurement and the system follows
policy π thereafter. The optimal policy, denoted π?, maximizes J over Π.

Estimation of the value function unlocks avenues for a more efficient use of
the available information, potentially resulting in a faster training, and improved
robustness with respect to small perturbations to the system and to the sensor
measurements. Applications of RL have been mostly restricted to the discrete
settings, where the number of possible actions is potentially huge, but finite,
[12]. A notable extension to the continuous framework includes the work by
Gorodetsky and collaborators using function trains, [13]. Our earlier efforts in
bringing RL to the context of fluid flows involved Q-learning, [14], and temporal
difference-based continuous approaches, [15, 16].

Recent efforts from the literature involve optimizing a collective swimming
strategy [17] and the control of the flow around a circular cylinder in the lam-
inar regime [18], among others. Here, we demonstrate the performance of our
methodology in terms of quality of the control strategy (achieved performance)
and robustness with respect to perturbations to the system and the sensor mea-
surements.

In this proof-of-concept work, we focus on the control of a nonlinear, chaotic
dynamical system, the 1D Kuramoto-Sivashinsky (KS) equation as a model of a
fluid flow to be controlled. This model is described in a space-time domain with
a 4-th order partial differential equation (PDE). The KS system exhibits some
of the typical features observed in flow systems at low Reynolds number, such as
traveling waves, and may reach a chaotic regime closer to turbulence for certain
configurations, [19, 20, 21]. Due to these peculiarities, the KS system serves as
a challenging test-bed for more complex fluidic systems to be controlled such as
turbulent mixers or turbulent boundary layers.

The paper is organized as follows. The basics of our control strategies are
presented in Sec. 2 and 3. In Sec. 2, we review how Reinforcement Learning is
connected to the classical optimal control problem. We first derive the Hamilton-
Jacobi-Bellman equation from optimality principles, and next particularize in
the discrete time settings to obtain the Bellman equation. The connection
with linear optimal controllers is further described in App. 5. In Sec. 3.1, we

4

briefly discuss the different classes of RL algorithms. In Sec. 3.2, the Deep
Deterministic Policy Gradient (DDPG) reinforcement learning technique we are
using is then presented. The DRL methodology is illustrated with the control of
the Kuramoto-Sivashinsky model in Sec. 4 where results are put in perspective
with insights from the physics. The paper finalizes with conclusions in Section 5.

2. From nonlinear optimal control to Reinforcement Learning

The section briefly introduces the mathematical background of Reinforce-
ment Learning. For a deeper introduction to RL, we refer the interested reader
to the books by [8, 22]. From the methodological viewpoint, we introduce RL
following the approach taken in [23, 24], starting from the definition of the opti-
mal control (Sec. 2.1) as basis for the Hamilton-Jacobi-Bellman (HJB) equation
(Sec. 2.2) and stressing the analogies with optimal control theory. Further, we
show how we can derive the time-discrete counterpart of the HJB equation, the
Bellman equation (Sec. 2.3), which serves as the theoretical and mathematical
ground for RL applications.

2.1. Definition of the control problem

We consider a dynamical system to be controlled with localized inputs (ac-
tuators) and outputs (sensors), see for instance Fig. 1 where these elements are
organized along the streamwise coordinate x. Hereafter, the combination of the
system to be controlled, the actuators and the sensors will be simply referred
to as the plant, following the classical terminology in control theory. From the
mathematical view point, this corresponds to defining the state-space model
that, in the most general case, reads

dv

dt
= f (v(t),u(t), t) , (1a)

y(t) = g (v(t),u(t), t) . (1b)

Equation (1a) is the state equation, where the map f propagates in time the
state v ∈ RN , while (1b) is the output equation. In the optimal control problem
[25], we aim at defining a control signal u ∈ Rm feeding the actuators, based on
the sensor measurements y ∈ Rn, such that an objective function J is minimized

J = h (v(T), T) +

∫ T

0

r (v(τ),u(τ), τ) dτ, (2)

where h is a specified function, r is a reward associated with the action u and
T is the optimization horizon. According to [23], this optimization problem can
be embedded in a larger class of problems by considering

J (vt, t, u(τ)
t≤τ≤T

) = h (v(T), T) +

∫ T

t

r (v(τ),u(τ), τ) dτ, (3)

5

where t can be any value less than or equal to T . Following the convention tacitly
introduced in Sec. 1, we note J ? = max

u
J the optimal value of the objective

function. The controller (or more properly said the compensator) provides the
mapping between the measurements y of the system and the control actions
u. For now, we stress that the aim of RL is to determine an optimal policy
function π? that describes the optimal control u? from the current observations
y [26, 27] following

u?(t) = π? (y(t), t) . (4)

2.2. Hamilton-Jacobi-Bellman equation

The optimal control problem stated in (1)-(2) can be solved by maximizing
an augmented Lagrangian [25] where the governing equations act as constraints.
After optimal conditions are imposed on the Lagrangian, a direct-adjoint opti-
mality system can be derived. When the function f is linear or can be linearized,
and the objective function is quadratic, the final controller is obtained as the
solution to a Riccati equation (see Appendix 5 for the derivation). Here, we
focus on the general nonlinear case (2), and follow a dynamic programming ap-
proach to solve the optimal control problem. The objective is to determine a
Partial Differential Equation (PDE) for the optimal objective function (or value
function in the RL terminology) J ? such that the corresponding action satisfies
the constraint given by the state equation (1). By definition, the maximum
value of the objective function is equal to

J ?(v(t), t) = max
u
J (vt, t, u(τ)

t≤τ≤T
)

= max
u(τ)
t≤τ≤T

[∫ T

t

r (v(τ),u(τ), τ) dτ + h (v(T), T)

]
.

(5)

By splitting the integrand in (5) between the immediate reward in the interval
[t, t+ ∆t] and the future value function at t+ ∆t, we obtain

J ?(v(t), t) = max
u(τ)
t≤τ≤T

[∫ t+∆t

t

r dτ +

∫ T

t+∆t

r dτ + h (v(T), T)

]
. (6)

The principle of optimality requires that

J ?(v(t), t) = max
u(τ)

t≤τ≤t+∆t

[∫ t+∆t

t

r dτ + J ?(v(t+ ∆t), t+ ∆t)

]
. (7)

Expanding J ?(v(t + ∆t), t + ∆t) in a Taylor series about (v(t), t) and taking
the limit as ∆t→ 0 gives

− J̇ ?(v(t), t) = max
u(t)

[r (v(t),u(t), t) + J ?v (v(t), t) f (v(t),u(t), t)] , (8)

6

where J̇ ? is the temporal derivative of the optimal value function and J ?v is
the derivative with respect to the state. Equation (8) is the Hamilton-Jacobi-
Bellman (HJB) equation. This equation is continuous in time and defined back-
ward. The terminal condition is given by

J ?(v(T), T) = h (v(T), T) . (9)

The HJB equation is a sufficient condition for an optimum [28, 29]. Indeed, a
value function might fail to satisfy the differentiability and continuity conditions
that are required to solve (8) and yet still be optimal. When solved over the
whole state space and when the value function is continuously differentiable,
the HJB equation becomes a necessary and sufficient condition for an optimum
[23]. In case of a continuous action-state space, the optimal policy π? is the one
that produces the optimal trajectory by obeying the HJB. However, the whole
action-state space is rarely known, especially when the dimension of f is large.

Note that, for infinite horizon optimizations, it is common to introduce a
discount rate factor ρ > 0, that penalizes the immediate reward in the future.
In this case, (5) becomes

J ?(v(t), t) = max
u

∫ ∞
t

e−ρτ r (v(τ),u(τ), τ) dτ . (10)

If we assume that J ?, f and r do not explicitly depend on the time t, the HJB
equation then finally rewrites

ρJ ?(v) = max
u

[r(v,u) + J ?v (v) f(v,u)] . (11)

2.3. Bellman equation

In the derivation of the HJB equation, we have tacitly assumed that the
model (1) is known or can be inferred, for instance by system identification. This
is usually not the case as, most of the time, only the state v or a reduced-order
representation at a given time t can be accessed, for instance by instantaneous
measurements. In this case, the right framework is to consider a Markov Deci-
sion Process (MDP) for which the decision making is formulated by means of a
transition matrix expressing the probability of evolving from a state to another
under the chosen action u. This framework introduces a discrete time stochastic
control process and, as such, requires the reformulation of the objective function
in terms of expectation [8]. Letting vt and ut being the state and the action at
the discrete time t, respectively, and vt+∆t be the state at t + ∆t, (11) can be
rewritten as

J ?(vt) = max
u

[∆t r(vt,ut) + γJ ?(vt+∆t)] , (12)

where γ = exp (−∆t ρ) is the discount factor. Including ∆t in the definition
of r(vt,ut), (12) is the Bellman optimality equation [11]. This equation, which
describes the evolution of the optimal value function under the optimal policy
π?, is the foundation of the dynamic programming theory.

7

Let J π(vt) denote the long-term reward achieved for the state vt, and fol-
lowing a particular policy π. With the developments made in Sec. 2.2 for the
HJB equation, we derive the Bellman equation for the value function given by

J π(vt) = r(vt,ut) + γJ π(vt+∆t). (13)

Similarly, we can derive a Bellman equation for the state-action value func-
tion Qπ(vt,ut) or Q-function. This quantity is a measure of the long-term
reward assuming the agent is in state vt, performs action ut, and then con-
tinues following some policy π. The Bellman equation for the Q-function is
written

Qπ(vt,ut) = r(vt,ut) + γQπ(vt+∆t,ut+∆t). (14)

At this point, a few remarks are in order:

1. Since ρ > 0 and ∆t > 0, the discount factor γ ∈ (0, 1). In the MDP frame-
work, the value function can be represented as the cumulative discounted
reward or return Rt defined by

J π(vt) = Rt =

∞∑
l=0

γlr(vt+l∆t). (15)

The two benefits of introducing a discounted reward is that the return is
well defined for infinite series (l →∞), and that it gives a greater weight
to earlier rewards, meaning that we care more about imminent rewards
and less about rewards we will receive in the future.

2. Equation (12) highlights how the discounted infinite-horizon optimal prob-
lem can be decomposed in a series of local optimal problems. This is the
Bellman’s principle of optimality, [30]: An optimal policy has the property
that whatever the initial state and initial decision are, the remaining de-
cision must constitute an optimal policy with regard to the state resulting
from the first decision.

3. In (13), the model (1) does not appear explicitly. If vt can be observed, and
the reward r can be measured, it is possible to recover J π(vt) by inference
from the agent-environment interaction ensuring that J π(vt) is solution
of the Bellman equation (13). This is precisely what the Reinforcement
Learning (RL) approach does. In this framework, the policy and the
value function are deterministic or stochastic functions. These functions
can be represented as tables when the number of states and actions are
sufficiently low. When there are more state and action variables, the
curse of dimensionality occurs [31] and there is a need to approximate
these functions as parameterized functional forms. Then, the learning
process consists in optimizing the parameters so that the value function
is maximized and the constraint imposed by the Bellman optimality (12)
is satisfied. In Deep Reinforcement Learning (DRL), the functions are
represented by a Neural Network (NN).

8

Within the RL framework, the Bellman equation is formulated in terms of
the expectation of the value function. In the value Bellman equation (13), the
value function is replaced by the expected value (E [J π(vt)]). Similarly, in the
cost-value Bellman equation (14), the Q-function is replaced by E [Qπ(vt,ut)].

3. Reinforcement Learning

As mentioned above, the aim of RL is to find the optimal policy π? that
maximizes the return (15). A crucial aspect for our application is the possibil-
ity for RL algorithms of learning directly from the observations resulting from
the interactions of the agent with the environment. In that sense, we do not
rely on the full knowledge of the state, but on a few localized measurements.
Hereafter, the value function, the policy and the whole formulation will be given
as parameterized functions of the observable yt. In Sec. 4, pointwise measure-
ments will be used for the application on the KS system. In the following, we
introduce a possible classification of the RL algorithms and specify our choices.

3.1. Several classes of RL algorithms

In the literature, many RL algorithms exist. In practice, the choice of the
right algorithm often depends on the type of available actuators and sensors,
on the system to control and on the task to fulfill. A general classification that
embeds all RL algorithms can be made. Three classes of algorithms can be
identified: i) Actor–only, ii) Critic–only and iii) Actor–Critic, where the words
actor and critic are synonyms for the policy and value function, respectively.

Actor–only methods work with a parameterized family of policies. The gra-
dient of the value function, with respect to the parameters, is estimated, and
the parameters are updated in a direction of improvement. In the DRL ap-
proach, the policy is represented by a neural network to be inferred such that
u = π(y|ω), with ω the parameters of the NN. The learning process is guar-
anteed by choosing ω such that the discounted reward Rt is maximized. In
such a procedure, a single policy is evaluated by recording the system for a
long time. This evaluation allows the computation of Rt, and of the gradient
of the value function with respect to the NN parameters of the policy, i.e.,
∇ωJ π(yt). The algorithms belonging to this class are referred to as REINFORCE
algorithms, [8]. A gradient-based optimization of the policy representation is
carried-out with Stochastic Gradient Descent (SGD) algorithms (or closely re-
lated SGD-like strategies, for a recent review see [32]). A possible drawback of
such methods is that the gradient estimations may have a large variance.

Critic–only methods rely exclusively on value function approximation and
aim at learning an approximate solution to the Bellman equation, which will
then hopefully prescribe a near-optimal policy. In the ”Deep” flavor of the
algorithms, the state-action value function Qπ is approximated by a NN, leading
to Qπ (yt,ut|θ), with θ being the parameter vector of the NN. The parameters
θ are chosen such that the function Qπ is solution of the Bellman equation (14).

9

A Q-learning algorithm [33] may be used to approximate the optimal action-
value function. The core of the algorithm is to update iteratively the function
by using a weighted average of the old value and the new information:

Qπ (yt,ut|θ) ←− Qπ (yt,ut|θ) (16)

+ α
(
r(yt,ut) + γ max

u
Qπ (yt+∆t,u|θ)−Qπ (yt,ut|θ)

)
,

where α is the learning rate (0 < α ≤ 1).
The use of NN in the Q-learning procedure establishes the Deep Q-Networks

(DQN), [34]. This class of algorithms is often referred in the specialized litera-
ture as the first ”human-level” control algorithm. The optimal policy does not
need a function representation as it shall consist of choosing the action u that
maximizes the optimal state-action value. For a finite number of possible ac-
tions, the Q-function is computed for each of these and the action that ensures
the maximum is then chosen. The use of NN imposes the implementation of
some strategies to regularize the learning process, such as memory, prioritized
experience, target neural network, etc., [34].

From a mathematical point of view, the difference between the Actor–only
and Critic–only approaches relies on the difference between the Pontryagin’s
maximum principle and the Bellman principle. The first principle is based on a
perturbative approach: the neighborhood of the controlled trajectory is explored
by perturbing the states in order to further minimize the cost function (curve
optimization). The second principle is based on the solution of the HJB equation
under the assumption of Markovianity of the system (function optimization)
as explained in the previous paragraphs. While the Pontryagin’s maximum
principle is a necessary condition for the optimality, the fulfillment of the HJB
equation is a necessary and sufficient condition if and only if the action-state is
fully known (Legendre-Clebsch condition, see [35]).

The last class of algorithms, the Actor–Critic ones, combines the advantages
of the two aforementioned approaches. The critic uses an approximation ar-
chitecture to learn a value function, which is then used to update the actor’s
policy parameters in a direction of performance improvement. In DRL, two NNs
are employed simultaneously, one for the policy and a second one for the value
function. In that sense, a possible implementation consists in combining the
REINFORCE and the Q-learning procedures such that the optimal controller is
obtained, [36]. From the algorithmic viewpoint, the coupling of the two NNs is
due to the update of the networks that is performed simultaneously by sharing
the same expectation of the discounted reward. With a parameterized policy
function, the limitation of the application of the Critic–only approach to a dis-
crete action space is circumvented.

3.2. Deep Deterministic Policy Gradient as an actor-critic algorithm for RL

In this work, we consider the Deep Deterministic Policy Gradient (DDPG)
algorithm [37] as an Actor–Critic, model free algorithm (see the graphical sum-
mary in Fig. 2). The advantage of DDPG compared to the Deep Q Network

10

sensor signal

actuator signal

policy function

value function

PO-MDP

Actor NN weights

Critic NN weights

temporal difference

Input layer

Hidden layer

Output layerreward

Markovian Decision ProcessMDP

Figure 2: Graphical sketch for the Deep Deterministic Policy Gradient algorithm. The strategy
is an Actor–Critic controller, where each of the part is implemented by means of a neural
network, as depicted in the sketch.

considered in [34] is to handle continuous action domain that are often en-
countered in physical control tasks. Essentially, the DDPG algorithm adapts
the theoretically-grounded Deterministic Policy Gradient (DPG) algorithm in-
troduced in [38] to the Deep Reinforcement Learning setting where NNs are
employed to represent the policy and value functions. The basic idea of DPG is
to update the policy parameter ω in the direction of the gradient of Qπ, rather
than globally maximizing Qπ as it is done classically in policy gradient meth-
ods. After application of the chain rule to Qπ (yt, π(yt|ω)), we can show that
the policy improvement at each iteration number k can be decomposed into the
gradient of the state-action value with respect to actions, and the gradient of
the policy with respect to the policy parameters (see Eqs. 6 and 7 in page 3 of
[38]; ibid. the policy π is indicated as µ). We finally obtain:

ωk+1 = ωk + αE
[
∇ωπ(yt|ω) ∇utQ

πk (yt,ut)
∣∣∣
ut=π(yt|ω)

]
, (17)

where α is a learning rate.
The tuple corresponding to one time discrete transition {yt,ut, rt,yt+∆t}

defines a Markov Decision Process (MDP) or Partially Observable Markov De-
cision Process (PO-MDP) in case only a partial measurement of the state is ac-

11

cessible. At each iteration, the PO-MDP is stacked in memory and successively
used by the critic optimizer to reduce the Temporal Difference error defined as

Qπ (yt,ut|θ)− r(yt,ut)− γ Qπ (yt+∆t,ut+∆t|θ) . (18)

Regardless of the optimized critic NN, the actor NN is also optimized according
to (17).

The optimality of the control is guaranteed by the Bellman principle under
the hypothesis that the state-action space is known. For this reason, the state-
action space needs to be explored. The exploration is carried out by perturbing
the parameters of the policy as

ut = π(yt|ω +N1) +N2, (19)

where N1 and N2 are two noise processes. N1 is essential at the beginning of
the exploration process to introduce unbiased and uncorrelated random actions.
The NN is a strongly non-linear representation of the true optimal policy func-
tion and a small variation of the parameters can thus lead to drastic changes
in the output action. Both noise processes N1 and N2 vary over time. N1 is
damped to a desired standard deviation of the resulting action u, while the
amplitude of N2 is given as a function of an Ornstein-Uhlenbeck process. This
different choice introduces two different time-scales in the exploration process:
when N1 is already damped, the noise process N2 still allows to explore effi-
ciently the control landscape in the vicinity of the converged policy. We refer
to DDPG articles for further technical information about its implementation,
[38, 37, 39].

4. Control of the Kuramoto-Sivashinsky model

The DDPG algorithm introduced in the previous section is tested on the one-
dimensional (1D) Kuramoto-Sivashinsky (KS) equation. The 1D KS equation is
used for the description of flame fronts and reaction-diffusion systems. It is well
known and referenced as being one of the simplest nonlinear PDEs exhibiting
spatio-temporal chaos [19, 21], thus providing an appropriate test-bed for the
proposed control strategy. In the following, we first describe the dynamics of
the KS in the phase-space (Sec. 4.1), before a description of the controlled cases
is given in Sec. 4.2.

4.1. Dynamics of the Kuramoto-Sivashinsky equation

The time evolution of the velocity v = v(x, t) on a periodic domain of length
L is given by

∂v

∂t
+ v

∂v

∂x
= −∂

2v

∂x2
− ∂4v

∂x4
+ g, (20)

where g is a spatio-temporal forcing term. The equation is characterized on
the left-hand side by a nonlinear convective term and on the right-hand side by

12

Figure 3: Dynamics of the Kuramoto-Sivashinsky (KS) equation on a time interval of 3000
time-units. The contour plot in (a) shows the space-time behavior of a trajectory emanating
from the perturbed state E0. The same trajectory is shown in (b) in the phase-space spanned
by the dominant Fourier coefficients {ê1, ê2, ê3}. Red spots indicate: the trivial solution E0,
the three non-trivial invariant solutions Ei, i = 1, 2, 3, and the two traveling waves TW1 and
TW2. The spatial distributions of the solutions are given in (c). Note how the trajectory is
attracted by E3, although never visited, while the other two equilibria are often visited.

13

a diffusion term expressed by two addends: a 2nd-order derivative related to
energy production, and a 4th-order derivative acting as an hyper-diffusion.

The length of the domain dictates different regimes for the solution. Intro-
ducing the trivial solution E0 = 0, it can be shown that for L < Lc = 2π, the
dynamics is stable and converges towards E0, while for L > Lc a chaotic dy-
namics emerges (in a Lyapunov sense). In this work, we focus on the dynamics
of the KS equation for a domain length of L = 22, identical to that studied in
[21]. This length is large enough for exhibiting many of the features typical of
turbulent dynamics observed in large KS systems, see [40], but sufficiently small
for a thorough analysis of the state-space dynamics as performed by [41, 21].

4.1.1. Numerical Simulations

Numerical simulations are used for solving (20). As already mentioned,
periodic boundary conditions are imposed, v(x, t) = v(x + L, t). The spatial
periodicity allows us to project the instantaneous solution onto Fourier modes
and to perform spatial derivatives in the Fourier space. For L = 22, N = 64
Fourier collocation points have been used. This number of collocation points is
deemed sufficient for an accurate representation of the spatio-temporal dynamics
(see the related discussion in [21]). Time marching is carried out with a 3rd-order
semi-implicit Runge-Kutta scheme [42]. The linear operator on the right-hand
side of (20) is marched in time by an implicit scheme, whereas the non-linear
and forcing terms are marched in time explicitly. For all numerical simulations,
a time step of 0.05 was adopted.

In Fig. 3(a), a sample of the chaotic dynamics is shown when the solution is
initialized with the trivial state E0 perturbed by a Gaussian white noise with
an amplitude of order 10−4. The trajectory evolves in time as shown in the
corresponding phase-space 3(b) obtained by projecting the dynamics onto the
set of the dominant Fourier modes ê1, ê2, ê3. Indeed, due to the periodicity
of the domain, the velocity fields are characterized by different phases, with
respect of which the Fourier projection is independent. In Fig. 3(b), the different
invariant solutions computed by Newton iterations are shown, namely the three
unstable, fixed points indicated by Ei (i = 1, 2, 3) and the two traveling waves
indicated by TWi (i = 1, 2). Apart for the relevant role in the dynamics, the
invariant solutions Ei are used as target of our control strategy in Sec. 4.2. A
detailed analysis of the resulting dynamics shown in Fig. 3(a)−(b) is beyond
the scope of the present paper and already well described in [21]. However,
it is interesting to observe how the system evolves by frequently visiting the
vicinity of the solutions E1 and E2, as well as the two traveling waves; on the
other hand, the dynamics is “attracted” by the unstable solution E3, along the
manifold associated with it, without ever reaching it.

4.2. Controlled system

As mentioned in Sec. 2, the plant is the system to be controlled, including
the inputs (actuators) and the outputs (sensors) of the system. The number of
actuators and sensors, their distribution and the combination of the two define a

14

(d)(a)

(b)

(c)

Figure 4: Closed-loop dynamics for the three control test cases: (a) E3 → E1, (b) E1 → E2

and (c) E2 → E3. The controller is switched on at t = 20. The control strategy used in each
test case is the optimal RL policy. The trajectories are shown in the Fourier phase-space in
(d).

Figure 5: The value function is plotted for each of the three control test cases considered
in Fig. 4. For each of the test case, the robustness of the policy is assessed by running 15
different experiments emanating from different initial conditions of the control. The darker
blue line indicates the average of the value as a function of time. For each case, it can be
observed that - regardless of the initial conditions - the controller is capable of reaching the
target in a robust manner.

15

rather large parametric space. In this work, we consider 4 actuators equispaced
along x. The support of each actuator is assumed Gaussian-shaped and the
forcing term in (20) is given by

g (x; {xai }i) =

4∑
i=1

(2πσ)
−1/2

exp

(
− (x− xai)

2

2σ2

)
, (21)

where xai ∈ {0, L/4, L/2, 3L/4} is the location of the actuators along the x-axis
and σ = 0.4 is the variance defining their spatial distribution. Regarding the
sensors, we make the realistic assumption that real-life controllers rely only on
partial information. We then introduce 4 equispaced sensors measuring the local
velocity v. These sensors are staggered with respect of the actuator’s locations
and are located at xsi ∈ {L/8, 3L/8, 5L/8, 7L/8}.

4.2.1. Implementation of the control policies

The Deep Deterministic Policy Gradient approach (see Sec. 3.2) is imple-
mented using scripts in PyTorch2. The critic and actor parts are both imple-
mented by means of a neural network. The neural network of the critic part
consists of an input layer of dimension 8, with 4 nodes dedicated to the actu-
ator’s signals and 4 to the sensor’s ones, and a single scalar output layer; two
hidden layers are introduced, with 256 and 128 nodes, respectively, both featur-
ing the swish activation function, [43]. The neural network for the actor part
approximates the control law. As such, the input layer is fed with the sensor
measurements and is of dimension 4, while the output layer provides the con-
trol signal feeding the 4 actuators. Two hidden layers are used, of dimensions
128 and 64, with activation functions swish and tanh, respectively. The last
layer acts as a saturating function. The maximum amplitude of the output is
gmax = 0.5. The training is performed using the Adam optimization algorithm,
with learning rate of 0.001 for both the networks, and mini-batch with 200 ex-
amples for the optimization of the critic-network. Finally, the discount factor
is set to γ = 0.99.

4.2.2. Results

We want to demonstrate the ability of the DDPG-based policies to drive the
chaotic system towards the unstable fixed points and keep the dynamics in their
vicinity, using the localized sensors and actuators discussed before. From the
engineering viewpoint, this would correspond to leading a fluid system to a given
operating condition only relying on some measurements of the environment.
Specifically, we introduce three control test cases, each of them targeting to
minimize the distance between the state v and the non-trivial invariant solutions,
namely E1, E2 and E3, respectively. In the following, for simplicity, we label
the different policies with the invariant solution considered in their objective
function.

2https://pytorch.org/

16

First, we consider each individual policy for driving the dynamics of the
system from one invariant solution to another. In Fig. 4, the spatio-temporal
behavior of the solution is shown in the inserts (a)-(c), and as a phase-space
representation in (d). In each case, the RL controller is active for t > 20. For
each control case, the numerical experiments are repeated 15 times with different
initial conditions of the control, to assess the robustness of the policy. In Fig. 5,
we report the value as a function of time for each experiment (light-blue). The
darker line indicates the average of the runs. By comparing Fig. 4(d) and Fig. 5,
we can observe that the controller is capable of driving the system in about 10
time-units towards the target solution. We also show that the control action of
the policies is robust since the general behavior is comparable for all the runs
considered.

To further verify the robustness of the policies, we consider a second set of
numerical experiments, where the initial condition is randomly chosen in the
phase space. This is shown in Fig. 6, where we consider 10 different initial
conditions randomly and run the simulation under the control policy πE3

. Five
of these examples are reported in the inserts (a)-(e). The controller is capable
of controlling the system in about 15 time-units in all but one cases (c) where
it took about 40 time-units. The phase-space view is shown in (f), where the
trajectories in (a)-(e) are shown in colors, while the others are in gray. The time
evolutions of the corresponding values are shown in (g). Large excursions of J
roughly correspond to fluctuations in the phase-space, although all trajectories
finally converge towards E3. In that sense, the high independence from the
initial conditions – as compared to linear control methods such as the model-
based LQG – and the ability to maximize the value function demonstrate the
level of performance and robustness of the DDPG-based strategy applied to the
KS system.

5. Conclusions

We have presented a deep reinforcement learning (DRL) algorithm success-
fully controlling the chaotic dynamics governed by the well-known nonlinear
Kuramoto-Sivashinsky (KS) equation. The DRL combines reinforcement learn-
ing principles with deep Neural Networks for approximating the value function
and the control policy. Among the different available strategies, we have tested
an actor-critic algorithm, the Deep Deterministic Policy Gradient (DDPG). This
choice is related to the possibility of directly tailoring the classical strategies
from the nonlinear optimal control theory and, in particular, the solution of the
Hamilton-Jacobi-Bellman equation, with the resulting approximation obtained
by DDPG. From this perspective, our approach departs from recent efforts found
in the flow-control literature as it allows knowledge of the cost landscape in the
vicinity of the system trajectory, hence bringing robustness with respect to per-
turbations, while allowing for high control performance. Further, our off-policy
framework is not episode-based and can then potentially require less training
data (faster learning).

17

(f)

(g)

(e)

(d)

(c)

(b)

(a)

Figure 6: Illustration of the robustness of the closed-loop dynamics with respect to changes
of the initial conditions. Ten different initial conditions are randomly chosen for the optimal
policy driving the dynamics towards the unstable state E3. Five of these examples are reported
in the figures (a)-(e). It is shown that, except for the trajectory shown in (c), the controller is
capable to control the system in approximately 15 time-units. The corresponding phase-space
is shown in (f), where the trajectories in (a)-(e) are shown in colors, while the others are in
gray. The corresponding values are shown in (g) as a function of time.

We emphasize that, in the present work, the controlled system exhibits a
chaotic behavior in the analyzed regime. This configuration is significantly
more involved than systems exhibiting a periodic, or quasi-periodic, dynamics.
Nonetheless, we demonstrate that, using a limited, localized set of actuators and
sensors and model-free DRL controllers, it is possible to drive and stabilize the
dynamics of the KS system around its unstable fixed solutions, here considered
as target states. Also, we show that the controllers are robust with respect
of the initial conditions by considering numerous trajectories emanating from
them; for all the tested cases, the performances are essentially unchanged with
respect of the initial conditions, in contrast with the application of more classic,
linear controllers where this choice is often critical.

The complexity of the KS system and the possibility of computing a DRL

18

control policy by solely using local measurements of the system suggest the
extension of this application to the control of more realistic configurations such
as turbulent boundary layers or mixers. In this sense, this work represents a
first effort toward these applications. A number of developments are currently
made to apply RL to these configurations addressing – among other limitations
– limited and noisy observables, low measurement sampling frequency, high-
dimensional state-action space and unknown and non-stationary time-delays.

Authors’ contributions. The project has been initiated by LM and LC. MAB
implemented all the routines used in this work for the analysis of the dynamics
governed by the KS equation, the approximation and control by RL, with su-
pervision from OS and LM, and feedbacks from AA. The paper was written by
MAB, OS, LM and LC, with feedbacks from GW and AA.

Competing Interests. We declare we have no competing interests linked to this
study.

Acknowledgements. This work has benefited from discussions with Charles Pivot
whom is gratefully acknowledged. The authors are also thankful to Sylvain Cail-
lou for his support in the numerical implementation of the algorithm.

Funding. This project was generously funded by the French Agence Nationale
pour la Recherche (ANR) and Direction Générale de l’Armement (DGA) via
the FlowCon project (ANR-17-ASTR-0022).

Appendix A. Solving the linear optimal problem: Variational and
HJB approaches

In this section we briefly summarize how a classic Linear Quadratic Regu-
lator (LQR) problem can be derived from the more general formulation of the
Hamilton-Jacobi-Bellman equation developed in Sec. 2.2. This Appendix is not
meant to be exhaustive, but instead puts in perspective the application of the
Reinforcement Learning with respect to standard approaches from control the-
ory applied in the last decade in flow control. For more details on the optimal
control theory, the interested reader can refer to [25] and to the reviews [1, 44, 2].

To begin with, we consider the assumption of a linear, time-invariant, state-
space model

dv

dt
= Av +B u, (A.1a)

y = C v +D u. (A.1b)

In this case, the system matrix A ∈ RN×N is obtained from the discretiza-
tion in space of the analyzed model, including boundary conditions; the spatial

19

distribution of the m actuators is indicated by the matrix B ∈ RN×m, while
C ∈ Rn×N is the matrix including n sensors and D ∈ Rn×m is the feedthrough
(or feedforward) matrix. The aim of LQR is to define a control signal u, such
that the quadratic objective function

J (vt,ut) =
1

2

∫ T

0

(
vTQ1v + uTQ2u

)
dτ (A.2)

is minimized, [25]. The first term of (A.2) is related to the energy of the state
v, while the second one penalizes the energy expense of the control action. In
this definition, the matrices Q1 < 0 ∈ RN×N and Q2 � 0 ∈ Rm×m respectively
represent state and control penalties.

The objective is then to determine J ? = minu J under the constraints
of the state equation (A.1a). This optimal control problem can be solved by
minimizing the augmented Lagrangian

L =
1

2

∫ T

0

(
vTQ1v + uTQ2u

)
dτ +

∫ T

0

pT (v̇ −Av −B u) dτ , (A.3)

where the governing equations with initial conditions v = v0 act as constraint
and the co-state or adjoint state p can be interpreted as a Lagrangian multiplier.
The optimality system is then obtained by imposing the optimality conditions
on L. It leads to the following system of coupled equations:

Lp = 0 =⇒ dv

dt
= Av +B u, v(0) = v0, Direct equation

(A.4a)

Lv = 0 =⇒ dp

dt
= −AT p +Q1 v, p(T) = 0, Adjoint equation

(A.4b)

Lu = 0 =⇒ 0 = BTp +Q2u. Optimality condition
(A.4c)

The direct-adjoint system (A.4a)-(A.4b) is solved iteratively, by marching for-
ward in time the direct equation, and backward in time the adjoint equation,
forced by the second term on the right-hand side of (A.4b). The optimal con-
dition is updated using the gradient given by (A.4c). It can be shown that the
optimality system can be directly solved by means of an associated continuous
time algebraic Riccati equation (CARE), [25].

We have shown in Sec. 3 that the HJB equation determines the minimum
value function for a given dynamical system with an associated reward. This
equation is directly linked to the class of optimal control problem treated pre-
viously. For this reason, we aim at obtaining the CARE starting from the HJB
equation rewritten for the linear system as

−J̇ ?(v, t) = min
u
H (v(t),u(t),J ?v , t) (A.5)

= min
u

[
1

2

(
vTQ1 v + uTQ2 u

)
+ J ?Tv (Av +B u)

]
, (A.6)

20

where H by definition is the Hamiltonian. The right-hand side of (A.6) is
minimized for Hu = 0, leading3 to the optimal control

u? = −Q−1
2 BTJ ?v . (A.7)

Plugging this expression in (A.6), we get

− J̇ ? =
1

2
vTQ1 v −

1

2
J ?Tv BQ−1

2 BTJ ?v + J ?Tv Av. (A.8)

At this point, the value function J ? can be expressed as a function of the
unknown, real symmetric positive-definite matrix S(t)

J ?(v(t), t) =
1

2
vT(t)S(t)v(t). (A.9)

This expression can be derived in time J̇ ? =
1

2
vTṠ v, and with respect to the

state v, leading to the vector4 J ?v = Sv. Introducing this term in (A.8), and
considering that only the symmetric part of S(t)A contributes to the result, we
obtain

− vTṠ(t)v = vTQ1 v − vTS(t)BQ−1
2 BTS(t)v + vT

(
S(t)A+ATS(t)

)
v,

(A.10)
from which it is possible to obtain the differential Riccati equation since the
expression above is valid ∀v:

− Ṡ(t) = S(t)A+ATS(t)− S(t)BQ−1
2 BTS(t) +Q1. (A.11)

The optimal action is finally obtained as

u? = −Q−1
2 BTS v =: K v (A.12)

where K(t) is the optimal control gain obtained as solution to the LQR problem.
The corresponding time-invariant optimal control gain is obtained for T →∞,
leading to the continuous time algebraic Riccati equation. In perfect analogy,
it is possible to define an optimal estimation problem that, using the LQR
and thanks to the separation principle, leads to the Linear Quadratic Gaussian
compensator [26, 25].

As a conclusion, some observations can be made. First of all, since the
Riccati equation is not directly solvable for systems characterized by a large
number of degrees of freedom, say N > 104, the direct-adjoint system (A.4a)-
(A.4b) is often solved instead, see for instance [45] and [46]. Optimization
based on a finite sliding temporal window leads to the class of Model Predictive
Controllers, often characterized by a nonlinear loop; examples in fluid mechanics
are provided by the seminal work by[47] and the recent application by [48].

3Since Q2 is a positive definite matrix, the existence of Q−1
2 is guaranteed.

4Note also that if we compare the optimal control (A.7) determined with the Hamiltonian
and the one that can be deduced from the optimality condition (A.4c), we arrive to p = J ?

v =
S v.

21

References

[1] J. Kim, T. R. Bewley, A Linear Systems Approach to Flow Control, Ann.
Rev. Fluid Mech. 39 (2007) 39–383. doi:10.1146/annurev.fluid.39.

050905.110153.

[2] D. Sipp, P. J. Schmid, Linear closed-loop control of fluid instabilities and
noise-induced perturbations: A review of approaches and tools, Appl.
Mech. Rev. 68 (2) (2016) 020801. doi:10.1115/1.4033345.

[3] S. Brunton, B. Noack, Closed-loop turbulence control: Progress and chal-
lenges, Appl. Mech. Rev. 67 (5) (2015) 050801–050801–48.

[4] R. Becker, R. King, R. Petz, W. Nitsche, Adaptive closed-loop control on a
high-lift configuration using extremum seeking, AIAA Journal 45 (6) (2007)
1382–1392.

[5] M. A. Kegerise, R. H. Cabell, L. N. Cattafesta, Real time feedback control
of flow-induced cavity tones - part 1: Fixed-gain control, Journal of Sound
and Vibration 307 (2007) 906–923.

[6] M. A. Kegerise, R. H. Cabell, L. N. Cattafesta, Real time feedback control
of flow-induced cavity tones - part 2: Adaptive control, Journal of Sound
and Vibration 307 (2007) 924–940.

[7] N. Gautier, J.-L. Aider, T. Duriez, B. R. Noack, M. Segond, M. Abel,
Closed-loop separation control using machine learning, J. Fluid Mech. 770
(2015) 442–457. doi:10.1017/jfm.2015.95.

[8] R. S. Sutton, A. G. Barto, Introduction to reinforcement learning, Vol. 135,
MIT press Cambridge, 1998.

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Mastering the
game of go without human knowledge, Nature 550 (2017) 354–371.

[10] R. Lawhead, A. Gosavi, A bounded actor-critic reinforcement learning al-
gorithm applied to airline revenue management, Engineering Applications
of Artificial IntelligenceTo appear.

[11] R. Bellman, Dynamic programming and stochastic control processes, In-
formation and control 1 (3) (1958) 228–239.

[12] A. A. Gorodetsky, S. Karaman, Y. M. Marzouk, Efficient high-dimensional
stochastic optimal motion control using tensor-train decomposition, in:
Robotics: Science and Systems, 2015, pp. –.

[13] A. A. Gorodetsky, S. Karaman, Y. M. Marzouk, High-dimensional stochas-
tic optimal control using continuous tensor decompositions, The Interna-
tional Journal of Robotics Research 37 (2-3) (2018) 340–377.

22

http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1115/1.4033345
http://dx.doi.org/10.1017/jfm.2015.95

[14] F. Guéniat, L. Mathelin, M. Hussaini, A statistical learning strategy for
closed-loop control of fluid flows, Theo. Comput. Fluid Dyn. 30 (2016)
1–14.

[15] C. Pivot, L. Cordier, L. Mathelin, F. Guéniat, B. R. Noack, A continuous
reinforcement learning strategy for closed-loop control in fluid dynamics, in:
35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 2017, p.
3566.

[16] C. Pivot, A. A. Gorodetsky, L. Mathelin, L. Cordier, Toward control of
weakly observed nonlinear dynamical systems using reinforcement learning,
in: SIAM UQ 18, Garden Grove, CA, USA, 2018, pp. –.

[17] S. Verma, G. Novati, P. Koumoutsakos, Efficient collective swimming by
harnessing vortices through deep reinforcement learning, Proceedings of the
National Academy of Sciences 115 (23) (2018) 5849–5854. arXiv:https:

//www.pnas.org/content/115/23/5849.full.pdf, doi:10.1073/pnas.

1800923115.
URL https://www.pnas.org/content/115/23/5849

[18] J. Rabault, M. Kuchta, A. Jensen, U. Reglade, N. Cerardi, Artificial neu-
ral networks trained through deep reinforcement learning discover con-
trol strategies for active flow control, J. Fluid Mech. 865 (2019) 281–302.
doi:10.1017/jfm.2019.62.

[19] P. Holmes, J. Lumley, G. Berkooz, Turbulence Coherent Structures, Dy-
namical Systems and Symmetry, Cambridge University Press, 1996.

[20] T. Bohr, M. H. Jensen, G. Paladin, A. Vulpiani, Dynamical systems ap-
proach to turbulence, Cambridge University Press, 2005.

[21] P. Cvitanović, R. L. Davidchack, E. Siminos, On the state space geometry
of the kuramoto–sivashinsky flow in a periodic domain, SIAM Journal on
Applied Dynamical Systems 9 (1) (2010) 1–33.

[22] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

[23] D. E. Kirk, Optimal control theory: an introduction, Courier Corporation,
2012.

[24] B. Recht, A tour of reinforcement learning: The view from continuous
control, Annu. Rev. Control Robot Auton. Syst.

[25] F. L. Lewis, D. Vrabie, V. L. Syrmos, Optimal control, John Wiley & Sons,
2012.

[26] T. Glad, L. Ljung, Control Theory, Taylor & Francis, London, 2000.

[27] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control, Analysis to
Design, 2nd Edition, Wiley, 2005.

23

https://www.pnas.org/content/115/23/5849
https://www.pnas.org/content/115/23/5849
http://arxiv.org/abs/https://www.pnas.org/content/115/23/5849.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/115/23/5849.full.pdf
http://dx.doi.org/10.1073/pnas.1800923115
http://dx.doi.org/10.1073/pnas.1800923115
https://www.pnas.org/content/115/23/5849
http://dx.doi.org/10.1017/jfm.2019.62
http://www.deeplearningbook.org

[28] D. P. Bertsekas, Dynamic programming and optimal control, Vol. 1, Athena
Scientific Belmont, Massachusetts, 1996.

[29] R. F. Stengel, Optimal control and estimation, Dover, 1994.

[30] R. Bellman, A markovian decision process, Journal of Mathematics and
Mechanics (1957) 679–684.

[31] R. Bellman, Adaptive control processes: a guided tour, Princeton Univer-
sity Press, 1961.

[32] S. Ruder, An overview of gradient descent optimization algorithms,
arXiv:1609.04747.

[33] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992) 279–
292.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529.

[35] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, S. Thrun, Principles of Robot Motion: Theory, Algorithms, and
Implementations, MIT Press, Cambridge, MA, 2005.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learn-
ing, in: International conference on machine learning, 2016, pp. 1928–1937.

[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, D. Wierstra, Continuous control with deep reinforcement learning,
arXiv:1509.02971.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, De-
terministic Policy Gradient Algorithms, in: International Conference on
Machine Learning, 2014, pp. –.

[39] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay,
arXiv:1511.05952.

[40] J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-free prediction of
large spatiotemporally chaotic systems from data: a reservoir computing
approach, Physical review letters 120 (2) (2018) 024102.

[41] J. Greene, J.-S. Kim, The steady states of the kuramoto-sivashinsky equa-
tion, Physica D: Nonlinear Phenomena 33 (1-3) (1988) 99–120.

[42] S. K. Kar, A semi-implicit runge–kutta time-difference scheme for the two-
dimensional shallow-water equations, Monthly weather review 134 (10)
(2006) 2916–2926.

24

[43] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions,
arXiv:1710.05941.

[44] N. Fabbiane, O. Semeraro, S. Bagheri, D. S. Henningson, Adaptive and
model-based control theory applied to convectively unstable flows, Appl.
Mech. Rev. 66 (6) (2014) 060801. doi:10.1115/1.4027483.

[45] T. Bewley, P. Luchini, J. O. Pralits, Methods for solution of large optimal
control problems that bypass open-loop model reduction, Meccanica 51 (12)
(2016) 2997–3014. doi:10.1007/s11012-016-0547-3.

[46] P. Luchini, A. Bottaro, Adjoint equations in stability analysis, Ann. Rev.
Fluid 46 (2014) 493–517. doi:10.1146/annurev-fluid-010313-141253.

[47] T. R. Bewley, P. Moin, R. Temam, Dns-based predictive control of tur-
bulence: an optimal benchmark for feedback algorithms, J. Fluid Mech.
447 (2) (2001) 179–225. doi:10.1017/S0022112001005821.

[48] S. Cherubini, J.-C. Robinet, P. De Palma, Nonlinear control of unsteady
finite-amplitude perturbations in the blasius boundary-layer flow, J. Fluid
Mech. 737 (2013) 440–465. doi:10.1017/jfm.2013.576.

25

http://dx.doi.org/10.1115/1.4027483
http://dx.doi.org/10.1007/s11012-016-0547-3
http://dx.doi.org/10.1146/annurev-fluid-010313-141253
http://dx.doi.org/10.1017/S0022112001005821
http://dx.doi.org/10.1017/jfm.2013.576

	1 Introduction
	2 From nonlinear optimal control to Reinforcement Learning
	2.1 Definition of the control problem
	2.2 Hamilton-Jacobi-Bellman equation
	2.3 Bellman equation

	3 Reinforcement Learning
	3.1 Several classes of RL algorithms
	3.2 Deep Deterministic Policy Gradient as an actor-critic algorithm for RL

	4 Control of the Kuramoto-Sivashinsky model
	4.1 Dynamics of the Kuramoto-Sivashinsky equation
	4.1.1 Numerical Simulations

	4.2 Controlled system
	4.2.1 Implementation of the control policies
	4.2.2 Results

	5 Conclusions
	Appendix A Solving the linear optimal problem: Variational and HJB approaches

