
HAL Id: hal-02406569
https://hal.science/hal-02406569

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sequent Calculus for Opetopes
Cédric Ho Thanh, Pierre-Louis Curien, Samuel Mimram

To cite this version:
Cédric Ho Thanh, Pierre-Louis Curien, Samuel Mimram. A Sequent Calculus for Opetopes. LICS
2019 - Logic in computer science 2019, Jun 2019, Vancouver, Canada. �hal-02406569�

https://hal.science/hal-02406569
https://hal.archives-ouvertes.fr

1

A Sequent Calculus for Opetopes
Cédric Ho Thanh IRIF, University of Paris, France

Pierre-Louis Curien IRIF, University of Paris, France
Samuel Mimram LIX, Palaiseau, France

Abstract—Opetopes are algebraic descriptions of shapes cor-
responding to compositions in higher dimensions. As such, they
offer an approach to higher-dimensional algebraic structures,
and in particular, to the definition of weak ω-categories, which
was the original motivation for their introduction by Baez and
Dolan. They are classically defined inductively (as free operads
in Leinster’s approach, or as zoom complexes in the formalism of
Kock et al.), using abstract constructions making them difficult to
manipulate with a computer. Here, we present a purely syntactic
description of opetopes and opetopic sets as a sequent calculus.
Our main result is that well-typed opetopes in our sense are
in bijection with opetopes as defined in the more traditional
approaches. We expect that the resulting structures can serve as
natural foundations for mechanized tools based on opetopes.

I. INTRODUCTION

Opetopes were originally introduced by Baez and Dolan
in order to formulate a definition of weak ω-categories [2].
Their name reflects the fact that they encode the possible
shapes for higher-dimensional operations: they are operation
polytopes. Over the recent years, they have been the subject
of many efforts to provide a good definition that would allow
exploring their combinatorics [4], [10], [17]. One of the most
commonly used nowadays is the formulation based on polyno-
mial functors and the corresponding graphical representation
using “zoom complexes” [16].

In order to grasp quickly the nature of opetopes, consider a
sequence of four composable arrows

x y z t w
f g h i

There are various ways in which we can compose them. For
instance, we can compose f with g, as well as h with i, and
then g ◦ f with i ◦ h. Or we can compose f , g and h together
all at once, and then the result with i. These two schemes
for composing can respectively be pictured as simple cellular
complexes

x

y z t

w

f

g h

i

l

j k

⇓α ⇓β
⇓γ

x

y z t

w

f

g h

i

l

m
⇓δ

⇓ε
(1)

where x, y, z, t, w are 0-cells, f, g, h, i, j, k, l,m are 1-cells,
and α, β, γ, δ, ε are 2-cells.

From there, the general idea of getting “higher-dimensional”
is that we should take these compositions as “2-operations”,
which can be composed in various ways. For instance, in the
first case, we can compose α with γ, and then β with the
result, or all three at once, and so on. The opetopes describe

all the ways in which these compositions can be meaningfully
specified, in arbitrary dimension.

We can expect (and it is indeed the case) that the combi-
natorics of these objects is not easy to describe. In particular,
a representation which is adapted to computer manipulations
and proofs is desirable: we can for instance mention the
Opetopic proof assistant for higher categories [6], which is
based on opetopes. Recently, Mimram and Finster have used
type theory as a convenient tool to describe globular weak
ω-categories [7]. Our long-term goal is to achieve a similar
type-theoretic presentation for opetopic weak ω-categories
[2], [11], and we begin here by defining a representation of
opetopes and opetopic sets of type-theoretic flavor.

Opetopes. Let us now informally define opetopes by induc-
tion on their dimension. There is a unique 0-opetope, drawn
as a point. An (n+ 1)-opetope is made out of n-opetopes, and
has a source and a target. In small dimensions, opetopes can
be described using drawings of the kind above. For instance,
the following are, from left to right, the unique 0-opetope, the
unique 1-opetope, drawn as an arrow, and three 2-opetopes,
respectively,

. . .
.

. .

.
⇓

. .
⇓

.

⇓

while the following drawing represents a 3-opetope:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

In these drawings, the target of the 1-opetope is a point, the
target of the 2-opetopes is the arrow at the bottom, and the
target of the 3-opetope is the 2-opetope on the right, while
the source of the 1-opetope is again a point, the source of the
2-opetopes is a diagram made of arrows, and the source of
the 3-opetope is the diagram made of 2-opetopes on the left
of the central arrow.

At this stage, we can already make the following observa-
tions:

1) each drawing contains only one top-dimensional cell,
whose dimension determines the dimension of the
opetope,

2) if an opetope has a non empty source, then its source
and target have the same source (which might be empty)
and the same target,978-1-7281-3608-0/19/$31.00 ©2019 IEEE

2

3) if an opetope has an empty source, then its target has
the same source and target,

4) an (n + 1)-cell can have multiple n-cells in its source
(including none), but always has exactly one n-cell in
its target.

By the above remarks, an n-opetope has a unique top-
dimensional cell α, whose target consists of one cell β whose
source and target are the same as the ones of the source of α. It
follows recursively that the opetope is entirely determined by
the source of α, which we call the associated pasting scheme,
which is of dimension n − 1. The opetope associated to a
pasting scheme of dimension n can be obtained by adding a
single cell β of dimension n parallel to the pasting scheme,
and an (n + 1)-cell α from the pasting scheme to β.

One of the goals of the article is to introduce a syntax
to faithfully describe opetopes, and to characterize the terms
corresponding to opetopes using inference rules.

Generating opetopes. The sequent calculus introduced in
this article, called OPT, formalizes the observation that pasting
schemes are precisely all the shapes one can generate with the
following operations.

1) Introduction of a point. There is a a unique 0-opetope
(the point).

.

2) Shift to the next dimension. Given an n-opetope ω, we
can form the (n + 1)-extrusion whose source and target
are ω, as illustrated below:

.

. .

.
⇓

.

. .

.
⇓ ⇛

.

. .

.
⇓

3) Introduction of degeneracies. Given an n-opetope ω, we
can build an (n + 2)-opetope with empty source, whose
target is the extrusion of ω, as illustrated below for n = 0
and n = 1:

.

.

⇓

. .

. . ⇛
. .
⇓

4) Grafting. Given an (n + 1)-opetope α and an (n + 1)-
pasting scheme β such that the source of β contains an
n-cell of the same shape as the target of α, we can graft
α to β:

. . . .

. . .

.

.

.
⇓

.

. .

.
⇓

⇓

.

. .

.
⇓

⇓
.

⇓

Another fundamental operation we will use is substitution,
which consists in replacing an opetope in a pasting scheme
by another pasting scheme as illustrated below:

.

. .

.
⇓ ⇓

.

. .

.
⇓

.
⇓

.

. .

.
⇓ ⇓

.
⇓

Substitution and grafting are (recursively) mutually dependent.
We formally define our syntax and sequent calculus OPT in

II and illustrate them through examples in III. We recall the
traditional definition of opetopes in IV and show in section
V that they precisely correspond to the terms derivable in the
system OPT (14).

Opetopic sets. Collections of opetopes which are glued along
their faces are called opetopic sets. For instance, the following
is a depiction of an opetopic set

a b

f

g

h

⇓α (2)

consisting of two 0-opetopes, three 1-opetopes and one 2-ope-
tope. Note that it is not itself an opetope, nor even a pasting
scheme (i.e., the source of an opetope). Formally, as in other
traditional cases (e.g. simplicial or cubical sets), those can be
defined as presheaves on the category of opetopes, of which
a presentation was given in [12].

Just as for opetopes, it is desirable to be able to manipulate
and reason about (finite) opetopic sets in a syntactic fashion.
Therefore, on top of the sequent calculus OPT, we give in
section VI a syntax and a sequent calculus OPTSET that allows
us to derive terms corresponding precisely to finite opetopic
sets (19). Finally, in section VII, we give a variant of this
system called OPTSETM, where the stratification opetopes vs
opetopic sets is removed, and show that it has the same
expressive power as OPTSET. We conclude in section VIII.

Related works. We were inspired by the polynomial opetopes
(also called “zoom complexes”) of Kock et al. [16], which we
briefly recall in section IV. Those are themselves equivalent
to Leinster’s opetopes [17]. It is known that the latter are
incompatible with Cheng’s opetopes [4], which should be
thought of as a symmetric variant. There is a closely related
notion of multitope [11], [9] which is defined in terms of
multicategories (whence the multi) instead of operads (ope);
the two notions can be shown to be equivalent [12]. A syntax
for multitopes was proposed in [11], it is closely related to
the one given here and allows to faithfully represent opetopes;
however, to our knowledge, their description is incomplete in
the sense that those terms corresponding actually to opetopes
are not characterised by formal rules.

The Opetopic proof assistant [6] for weak higher categories
relies on the notion of higher-dimensional tree. In that system,
the notion of opetope is built-in, so that we have to trust the
implementation. In contrast, the present approach allows us
to reason about the construction of opetopes. We moreover
believe that the ability to reason by induction on the proof
trees, together with the very explicit nature of our syntaxes,

3

will allow for optimizations in the automated manipulations of
opetopes. Another proof assistant for weak higher categories,
called CaTT [7], starts from the same idea of generating well-
formed pasting schemes through inference rules. However, it
is based on globular shapes instead of opetopic ones, making
a comparison with the present work difficult: since their
introduction, people have unsuccessfully tried to compare the
resulting respective categorical formalisms; we hope that their
formulation in a common logical language might be of help
in this task. We should also mention here the Globular proof
assistant [3], also based on globular shapes, which is quite
popular, notably thanks to its nice graphical interface. In order
to witness for the effective character of our sequent calculus,
a Python implementation was performed [13] and will be
presented in details elsewhere [5].

II. OPT: A SEQUENT CALCULUS FOR OPETOPES

Syntax. We first introduce our syntax for describing pasting
schemes (which is equivalent to describing opetopes, see 6).

As explained in the introduction, a typical pasting scheme
is pictured on the left of (1). We shall use some of the names
of the cells of this picture as variables, and encode the pasting
scheme as

γ(j←α, k←β)
Here, j, k, α, β, γ are now variables, equipped with a dimen-
sion (1 for j, k and 2 for α, β, γ), and the notation is meant
to be read as “the variable γ in which α (resp. β) has been
formally grafted on the input labeled j (resp. k)”. Such a term
will be given a type

i(t←h(z←g(y←f)))⊷ x⊷ ∅

which expresses the fact that the source is the “composite”
i ◦ h ◦ g ◦ f , the source of the source is x. Since the pasting
scheme was 2-dimensional, there is no further iterated source,
and we conclude the sequence by a ∅ symbol (which can be
read as the only (−1)-dimensional pasting scheme).

A type essentially describes a zoom complex in the sense
of [16], from which we borrow the symbol ⊷. Similarly, the
degenerate pasting scheme on the left below will be denoted
by the typed term figured on the right:

x

f
⇓α

α ∶ x⊷ x⊷ ∅

where the term x denotes a degenerate 1-dimensional pasting
scheme with x as source.

Variables. We suppose fixed a N-graded set V of variables,
the grading being called the dimension of the variable. Given
n ∈ N, we write Vn for the set of variables of dimension n
and always suppose that this set is countably infinite. By
convention, we set V−1 to be the empty set.

Terms. The terms are likewise graded by a dimension
n ∈ {−1} ⊔N. The sets Tn of n-terms, or syntactic n-pasting
schemes, are defined by induction as follows:

• T−1 = {∅} (i.e. the unique (−1)-term is ∅),

• for n ≥ 0, the n-terms are either of the form u, for
u ∈ Tn−1, or are produced by the grammar

t ::= x(y1←t1, . . . , yk←tk) (3)

with x ∈ Vn, y1, . . . , yk ∈ Vn−1, and t1, . . . , tk ∈ Tn.
The terms of the form u (resp. the other terms) are called
degenerate (resp. non-degenerate) terms, or empty (resp. non-
empty) syntactic pasting schemes. By convention, the sequence
y1←t1, . . . , yk←tk above is always considered up to permu-
tation: for σ a bijection of the set {1, . . . , k}, the terms
x(y1←t1, . . . , yk←tk) and x(yσ(1)←tσ(1), . . . , yσ(k)←tσ(k)) are
considered equal. Note that the above definition entails that
T0 = V0 (in particular, there are no degenerate 0-terms).

For instance, if f, g ∈ V1, and a ∈ V0, then the following
is an element of T1:

g(a←f ())
To make notations lighter, we omit the parentheses “()”, so that
the previous 1-term can be more concisely written as g(a←f).
A term of the form g(a1←f1, . . . , ak←fk) will oftentimes
be abbreviated as g(−−−−−→ai←fi), leaving k implicit. Note that an
expression of the form t(x←u) is not a term when t is not a
variable. However, the grafting notation can be conveniently
extended to give a meaning to such terms, see 1. Given a term
t ∈ Tn, we write t• for the set of variables of dimension n
occurring in t, sometimes called the nodes of t.

Types. A type A of dimension n, or n-type, is a sequence of
terms written as follows:

A = sn⊷ sn−1 ⊷ ⋯⊷ s0 ⊷ ∅

with si ∈ Ti for 0 ≤ i ≤ n. A typing of a term t ∈ Tn+1 is
a pair of the form t ∶ A, for A an n-type. For a typing t ∶ A
as above (correctly derived in our system), we call sn+1−i the
i-th (iterated) source of t. We then write s t≔ sn, s si = si−1,
and s

i
t≔ sn+1−i for the iterated sources. We also set s0 t≔ t.

Contexts. As traditionally, a context Γ is a mapping from
variables to types, denoted as usual as a list of typings
x ∶ A (where we do not distinguish between two contexts
differing only by the ordering of the typings they contain).
We write VΓ,k for the set of k-variables typed in Γ, and
we set VΓ ≔⨆k∈N VΓ,k. We write TΓ,k for the set of k-
terms whose variables (in any dimension) are in VΓ, and
we set TΓ ≔⨆k∈N TΓ,k. Our typing system will maintain the
following invariant: for a derivable context Γ, if x occurs in
the typing of a variable of Γ, then x ∈ VΓ. Note that in any
context Γ, if a variable x ∈ VΓ,k occurs in the type of y ∈ VΓ,l,
then k < l, and thus there can never be any cyclic dependency
among variables.

Sequents. A sequent is an expression of the form

E ▹ Γ ⊢ t ∶ A

where Γ is a context, and the right hand side is a typing. We
sometimes write ⊢n instead of ⊢ when we want to highlight
the fact that t ∈ Tn. Additionally to this traditional data, our
sequents contain a set E which is a graded equational theory
on VΓ, i.e., a set of formal equalities beween variables of Γ of

4

same dimension. We write =E for the congruence it induces
on terms. If x =E y ∈ t

•, then by convention x ∈ t•, so that x
and y really are interchangeable.

In the following, sequents are implicitly considered up
to α-equivalence: two sequents (E ▹ Γ ⊢ t ∶ A) and
(F ▹ ∆ ⊢ u ∶ B) are α-equivalent when there exists a
dimension-preserving bijection σ of V with

(E ▹ Γ ⊢ t ∶ A) = (Fσ ▹∆
σ
⊢ u

σ
∶ B

σ) ,

where (−)σ is the obvious substitution according to σ.

Inference rules. The inference rules for our sequent calculus
OPT, shown below, should be read along with the illustrations
provided in the introduction. The most subtle rule is graft,
which requires the graft notation and the substitution oper-
ation, introduced below, and requires side conditions which
ensure that the grafting implements a pushout (see section
IV).

• Introduction of points: introduces 0-cells, also called
points.

x ∈ V0 point
▹x ∶ ∅ ⊢0 x ∶ ∅

• Shift to the next dimension: takes a term t and introduces
a new cell x having t as source.

E ▹ Γ ⊢n t ∶ A x ∈ Vn+1, x ∉ VΓ
shift

E ▹ Γ, x ∶ t⊷ A ⊢n+1 x ∶ t⊷ A

• Introduction of degeneracies: derives cells whose source
is an empty pasting diagram.

E ▹ Γ ⊢n x ∶ A x ∈ Vn, δ ∈ Vn+2, δ /∈ VΓ degen
E ▹ Γ, δ ∶ x⊷ x⊷ A ⊢n+2 δ ∶ x⊷ x⊷ A

• Grafting: glues an n-cell x onto an n-term t along a
variable a ∈ s•n−1 with sn−1 ≔ s t.

E ▹ Γ ⊢n t ∶ sn−1 ⊷ . . . F ▹∆ ⊢n x ∶ A graft
G ▹ Γ∪∆⊢n t(a←x) ∶ sn−1[sx/a]⊷sn−2⊷ ⋯

where G is the union of E, F , and potentially a set of ad-
ditional equalities incurred by the substitution sn−1[sx/a]
(see below). When using this rule, we always assume that
the following side-conditions are fulfilled:

– x is a variable (we make this assumption because
grafting variables is sufficient to generate all terms,
but we could easily generalize to the grafting of an
arbitrary term),

– t ∈ Tn is non-degenerate,
– a ∈ (s t)•: ensures that a has not been used for

grafting beforehand,
– s a = s sx: ensures that x may indeed be glued onto a

by enforcing a certain globularity condition,
– Γ and ∆ are compatible: for all y ∈ V, if
y ∈ VΓ ∩V∆, the typing of y in both contexts match
modulo the equational theory E ∪ F ; furthermore,
the only variables typed in both Γ and ∆ are a and
the variables occurring in the sources of a:

VΓ ∩ V∆ = {a} ∪ ⋃
1≤i≤n−1

(si a)• .

The notations t(a←x) and s1[sx/a] are presented below.
We sometimes write graft-a to make explicit that we
grafted onto a.

Definition 1 (Graft notation). In the rule graft, we consider
expressions of the form t(x←u), where t, u are non degenerate
terms. According to the grammar (3), this is not a well-formed
term in general, but it can be reduced to one by repeated use
of the following rewrite rule: if t = y(−−−−−→zi←vi), then

t(x←u) ⟿

{y(z1←v1(x←u), z2←v2, . . . , zn←vn) if x ∈ (s v1)•

y(−−−−−→zi←vi, x←u) if x ∈ (s y)•.
(4)

Example 2. Consider the term t = α(g←β) in a suitable
context Γ (see the left figure below). We have

t(f←γ) = α(f←γ, g←β) t(i←γ) = α(g←β(i←γ))
which can respectively be pictured as in the middle and right:

x

y w

f
g

h

i
⇓α

⇓β

x

y w

f

g

h

i
⇓α

⇓βj γ
⇒

x

y w

f
g

h

i
⇓α

⇓β jγ
⇐

Definition 3 (Substitution). The substitution u[t/a], as used
in the graft rule, is the term obtained by full reduction
according to the following rule:

x(−−−−−→yi←ui)[t/a] ⟿

{x(. . . , yi←ui[t/a], . . .) if a ∈ u•i
t(−−−−−→yi←ui) if x = a

(5)

and then, in the case t = b, by performing the following
actions:

• for subterms of the form x(. . . , a←b, . . .) remove the
grafting “a←b” and add a = b to E,

• for subterms of the form x(a←b(b←u), . . .) replace the
grafting “a←b(b←u)” by “a←u” and add a = b to E,

• and finally replace any remaining subterms b(b←u) by u.
Note that the situation b[t/a] never occurs.

Example 4. Consider the term α corresponding to the picture
on the right, as well as βx and βy:

Γ ⊢ α ∶ g(y←f)⊷ x⊷ ∅
Γ ⊢ βx ∶ x⊷ x⊷ ∅
Γ ⊢ βy ∶ y⊷ y⊷ ∅ x

y

z

f g
⇓α

Then the sources α(f←βx) and α(g←βy) are respectively

g(y←f)[x/f] = g(y←x) = g
g(y←f)[y/g] = y(y←f) = f

x

y

z

g
⇓α

⇓βx

x

y

z

f
⇓α
⇓βy

and, in the first case, the equation x = y is added to E.

A uniqueness property of typing. Our system is convenient,
because it displays a lot of information, but it is quite
redundant, as we now show. We associate with a context Γ
its “meager” version Γ, obtained by replacing each x ∶ A
with x ∶ sx (i.e., by removing all but the top of the tower of

5

terms in A). In the theorem below, we show that the type of
a term t and the context Γ are unique in the sense that they
are determined by t and Γ. The key observation is that we can
read off the following equalities from the typing system:

sx = x s (t(a←x)) = (s t)[sx/a] (6)

Theorem 5. For (E▹Γ ⊢ t ∶ sn−1 ⊷ sn−2 ⊷ ⋯⊷ s0 ⊷ ∅)
a derivable sequent, one can reconstruct uniquely Γ and
sn−1, . . . s0 from Γ and t.

Proof. This is an easy consequence of (6): the only infor-
mation that is not (recursively) derivable is the source of
variables, which is recorded in Γ.

Syntactic pasting schemes and opetopes. Among the derivable
terms, we distinguish those reduced to a variable and call them
syntactic opetopes (this terminology will be justified in V).
Therefore, a context consists of a set of syntactic opetopes
together with their (iterated) sources.

Notice that a derivable syntactic n-pasting scheme t induces
a derivation of an (n+1)-dimensional variable α:

E ▹ Γ ⊢n t ∶ A
shift

E ▹ Γ, α ∶ t⊷ A ⊢n+1 α ∶ t⊷ A

This correspondence is in fact bijective, since the term can
be recovered as t = sα. This allows us to formalize the
correspondence between pasting schemes and opetopes as
follows in our system:

Lemma 6. The above transformation induces a bijection
between syntactic n-pasting schemes and syntactic (n+1)-
opetopes.

Let us point out that we (seemingly) leave an ambiguity
as to whether to consider the variable α above as a syntactic
(n+1)-opetope or as a term reduced to a variable, in which case
it in fact stands for a syntactic (n+1)-pasting scheme corre-
sponding by the bijection in the lemma to an (n+2)-opetope
(an extrusion). It turns out that there is no harm in confusing
these two interpretations of α, since we do distinguish between
a syntactic pasting scheme and the syntactic opetope of which
it is a source: the above bijection is not an identification!

III. EXAMPLES

In this section, we provide two examples illustrating our
sequent calculus. We omit the contexts for concision since
they can easily be constructed by aggregating every variable
declarations in the proof tree.
Example 7. The 3-opetope

a

b c
f

g

h

i

⇓α
⇓β

ω
⇛

a

b c
f

g

h
⇓γ

is derived as follows. First, α can be derived by
point

⊢0 b ∶ ∅
shift

⊢1 g ∶ b⊷ ∅

point
⊢0 a ∶ ∅

shift
⊢1 f ∶ a⊷ ∅

graft-b
⊢1 g(b←f) ∶ b[a/b]⊷ ∅

shift
⊢2 α ∶ g(b←f)⊷ a⊷ ∅

where b[a/b] = a, and similarly for β:
point

⊢0 c ∶ ∅
shift

⊢1 h ∶ c⊷ ∅

point
⊢0 a ∶ ∅

shift
⊢1 i ∶ a⊷ ∅

graft-c
⊢1 h(c←i) ∶ c[a/c]⊷ ∅

shift
⊢2 β ∶ h(c←i)⊷ a⊷ ∅

where c[a/c] = a. Finally,

⋮

⊢2 β ∶ h(c←i)⊷ a⊷ ∅

⋮

⊢2 α ∶ g(b←f)⊷ a⊷ ∅
graft-i

⊢2 β(i←α) ∶ h(c←i)[g(b←f)/i]⊷ a⊷ ∅
shift

⊢3 ω ∶ β(i←α)⊷ h(c←g(b←f))⊷ a⊷ ∅

where the grafting on i is well defined since s i = a = s sα,
and h(c←i)[g(b←f)/i] = h(c←g(b←f)).
Example 8 (A degenerate case). The 3-opetope

a

f

⇓β

⇓α
⇛

a

⇓

is derived as follows:

point
⊢ a ∶ ∅

shift
⊢ f ∶ a⊷ ∅

shift
⊢ α ∶ f ⊷ a⊷ ∅

point
⊢ a ∶ ∅ degen

⊢ β ∶ a⊷ a⊷ ∅
graft-f

⊢ α(f←β) ∶ a⊷ a⊷ ∅
shift

⊢ A ∶ α(f←β)⊷ a⊷ a⊷ ∅

IV. POLYNOMIAL FUNCTORS AND OPETOPES

We will see in the next section that our definition of
opetopes coincides with the traditional one based on polyno-
mial functors. We quickly recall here this definition, referring
the reader to [14], [15], [16] for a more detailed exposition.

Polynomial functors. A diagram of sets of the form

I E B J
s p t (7)

may be interpreted as the specification of a collection of
corollas with inputs coloured in I and output coloured in J .
Namely, we can regard an element b ∈ B as specifying a
corolla with set of inputs (or arity) p−1(b) = {eb1, . . . , ebnb}.
Each input ebk is assigned a colour ibk = s(ebk) in I and the
output has colour j = t(b) in J :

b

i
b
1 i

b
2 . . .

i
b
kb

j

By abuse of language, we call such a diagram a polynomial
functor from I to J (to be precise, a polynomial functor would
be a functor Set/I → Set/J induced in a certain way by such
a diagram [8], [14]). These can be composed (the composite
of P and Q has, as corollas, trees of depth 2, consisting of a
corolla of Q at the bottom and corollas of P at the top). The
unit for this composition is provided by the polynomial functor
made of three identity functions. A morphism of polynomial

6

functors maps a corolla to a corolla, with a colour-preserving
specified bijection between the inputs of the two corollas.
We write Poly for the 2-category with sets as objects and
polynomial functors and their morphisms as 1- and 2-cells. A
polynomial monad is a monad internal to this 2-category.

We also need a more relaxed notion of morphism between
polynomial endofunctors P ∶ I → I and Q ∶ J → J , where
now additionally a map from I to J is provided, and the
specified bijections are required to be compatible with this
map. This gives rise to a category PolyEnd whose objects
are polynomial endofunctors and whose morphisms are such
extended morphisms.

Trees. Following [15], we show how to recover rooted trees
(with possibly open-ended leaf edges), simply called trees
therafter, as special polynomial endofunctors.

A polynomial endofunctor of the form (7) with I = J is a
tree, with B and I as sets of nodes and edges respectively,
when

• the sets I , B and E are finite,
• the map t ∶ B → I is injective (it associates to a node its

output edge),
• the map s ∶ E → I is injective and the complement of its

image consists of a single element, the root edge ε∣, and
• all nodes have the root node as iterated successor, where

the root node ε is the node such that t(ε) = ε∣, and the
successor function τ , defined as τ = p◦s−1 ◦ t, associates
to a node its parent node.

We write T • (resp. T ∣) for the set of nodes (resp. of edges)
of a tree T and T

↑
⊆ T

∣ for the set of leaves (a leaf being
an edge that is not in the image of t). Moreover, we always
consider that s is an inclusion and write ∂• (resp. ∂∣) instead
of p (resp. t), so that a tree T is of the form

T
∣

T
∣ \ {ε∣} T

•
T

∣∂
•

∂
∣

By convention (which is in tune with those used in our
opetopic syntax), we shall use x, y, . . . as generic names for
either edges or nodes, indifferently.

We write Tree for the full subcategory of PolyEnd con-
sisting of trees; its morphisms can be shown to be embeddings.

The free polynomial monad. Given a polynomial endo-
functor P as in (7), we write tr(P) for the set of trees built
from the corollas in P , which we call P -trees. A P -tree
can be described as an isomorphism class of objects in the
category Tree/P , whose objects are pairs (T, ` ∶ T → P),
where T is a tree and ` is a morphism in PolyEnd. Unrolling
the definition of (extended) morphism, the data of l can be
decomposed in three parts:

• `
• ∶ T •

→ B labels the nodes of T with corollas of P ,
• `

∣ ∶ T ∣ \ {ε∣} → E provides for each node x of T a
bijection between its set of incoming edges in T and the
arity of `•(x),

• and finally ` labels the root edge ε
∣ of T with a

colour `c(ε∣) in I .

Note that these data induce in fact a colour labeling for all
edges of T , setting `

c(x) = s(`∣(x)) for a non-root edge x.
Finally, we require the following compatibility, for all x ∈ T •:

t(`•(x)) = `c(∂∣
x). (8)

In the sequel, we shall omit the superscripts on `. For a node
x of T , we shall also write sx T for `(x) (leaving the labeling
function implicit). Similarly, we shall allow ourselves to
abbreviate (T, `) loosely as T , when the context makes it clear
that we are speaking of a P -tree. We also use interchangeably
the words “labeling”, “decoration” and “colouring”.

In more concrete terms, a P -tree T can be described
recursively as follows:

• a colour i gives rise to a trivial P -tree without any node
and with a single edge (being both the root and the unique
leaf) decorated with i,

• if T1, . . . , Tn are P -trees whose root edges are decorated
with i1, . . . , in respectively, if b is a corolla, and if
κ ∶ {1, . . . n} → p

−1(b) is a bijection such that

ij = s(κ(j))

for all j ∈ 1, . . . n (this is what (8) amounts to), then
the tree formed by plugging each Tj on the input κ(j) of
corolla b is a P -tree.

In summary, P -trees are trees whose nodes are labeled with
corollas in B and whose edges are labeled with colours in I
in a compatible way.

We write tr
↑(P) for the set of P -trees equipped with a

distinguished leaf. It can be shown that the free polynomial
monad P

∗ on a polynomial endofunctor P is given by
• the polynomial endofunctor

I tr
↑(P) tr(P) I (9)

where the function in the middle is the obvious forgetful
one, and the functions on the left and on the right return
the colour of the distinguished leaf and of the root edge
of the tree, respectively,

• equipped with a multiplication and unit [15], [16], where
the multiplication is an unbiased version of grafting of
trees (defined below) and the unit assigns to each i the
tree reduced to a leaf, coloured by i, that we already
encountered above.

Grafting. Fix a polynomial endofunctor P as in (7). Given
i ∈ I , we write Ii ∈ tr(P) for the unit at i (cf. above), and,
given b ∈ B, Yb for the P -tree consisting of only one corolla
whose node is decorated with b:

Ii = {i} ∅ ∅ {i}

Yb = Eb + {t(b)} Eb {b} Eb + {t(b)}

with Eb = p
−1(B).

Remark 9. Note that with the above choices of sets, all nodes
and edges of Ii and Yb coincide wih their labels, i.e., their
labeling functions are identities.

7

Now suppose given a P -tree S whose root edge is decorated
with i and a P -tree T with a distinguished leaf x decorated
with i. The grafting T ((x←S)) of S in T along x is defined as
the following pushout (in PolyEnd)

Ii T

S T ((x←S))

x

⌜

which informally corresponds to taking the disjoint union of S
and T and identifying the root of S with the leaf x of T . More
generally, given a tree T with distinct distinguished leaves
x1, . . . , xk and trees S1, . . . , Sk whose roots are labeled as
the corresponding leaves, one can define their simultaneous
grafting T ((x1←S1, . . . , xk←Sk)) as the adequate colimit in
Tree/P . Every P -tree can be obtained by iteratively grafting
corollas Yb, starting from an edge Ii.

The (−)+ construction. Given a polynomial endofunctor P
as in (7), we write tr

•(P) for the set of P -trees equipped with
a distinguished node, i.e., morphisms Yb → T in PolyEnd,
with b ∈ B, and T ∈ tr(P). Given a polynomial monad P ,
the so-called plus construction [2], [16] associates to P a new
polynomial monad P + defined as

B tr
•(P) tr(P) B

s p t

where s(Yb → T) = b, p(Yb → T) = T , and t(T) is given
by the unique morphism from the free operad P

∗ to P .
Concretely, t(T) is computed by viewing T as a program
instructing to compose its nodes using the multiplication and
the unit of the monad P . The multiplication of the monad P +

can be described as follows. An element of P + ◦ P + is a
tree where every node of given arity n is decorated with a
tree with n inputs (and matching colours). The multiplication
µ ∶ P + ◦ P +

→ P
+ returns the tree obtained by substituting

each node with its label. For instance,

µ
↦

Opetopes. Consider the identity polynomial endofunctor Z0,
where all sets are singletons:

Z
0
= 1 1 1 1

t

It is a polynomial monad, so we may define Zn+1
≔(Zn)+, for

n ∈ N. We set, for all n ≥ 0

Z
n
= On O•

n+1 On+1 On
t

with
• O0,O1,O

•
1 singletons,

• On+1 = tr(Zn−1), O•
n+1 = tr

•(Zn−1) , for n ≥ 1.

Definition 10. The set of n-opetopes is On.

In the polynomial setting, an (n+2)-opetope is thus a tree
whose nodes (resp. edges) are decorated with (n+1)-opetopes
(resp. n-opetopes). We write ⬩ (resp. �) for the unique
0-opetope (resp. 1-opetope).

The (−)+ construction induces, for every opetope ω ∈ On
with n ≥ 1, a bijection ℘ω ∶ ω

↑
→ (tω)•, called readdressing,

between the leaves of ω and the nodes of its target. Also,
note that, given an (n+1)-opetope ω (i.e., a labeled tree) and
an edge x of ω which is not the root edge, the label `(x)
of x is an element of tr

•(Zn), which should be seen as the
corresponding node of the opetope decorating ∂•x.

Remark 11. In fact, we could have started our construction
from

Z
−1

= 1 0 1 1

Indeed, we have Z0
= (Z−1)∗.

Example 12. The pasting scheme corresponding to the opetope
of 7 is recalled on the left and, on the right, we give its
representation as a tree

a

b c

d

f

g

h

i

k

⇓α

⇓β

k

β
iα
h

f g

(10)

In this tree,

• the nodes α and β are labeled by the opetope
.

.

.
⇓

• the edges f to k are labeled by the opetope . .

Moreover, the pasting scheme of the target of the opetope and
the corresponding tree are

a b c d
f g h f g ha b c d (11)

As explained above, the leaves (f , g and h) of the tree (10),
are in bijection with the nodes of the tree (11) of the target.

The category of opetopes. Note that for each opetope
ω ∈ On+1 and node x of ω, we have sx ω ∈ On and
tω ∈ On. Working out the relations satisfied by those mor-
phisms, see [12], leads us to define the category of opetopes
O as the category whose objects are the opetopes (of any
dimension), and whose morphisms are generated by

s
ω
x ∶ sx ω → ω t

ω
∶ tω → ω

indexed by ω ∈ ⨆n∈N On and x ∈ ω• (we sometimes omit the
superscript ω in the following), and subject to the following
“globularity” relations, called here opetopic identities:

1) for ω ∈ O and x ∈ ω↑,

s`x s∂•x ω = s℘x tω tω

s∂•x ω

s
s∂•x
`x

s
tω
℘x

t
ω

s∂•x

8

recall that ℘ establishes a bijection between the leaves
of ω and the nodes of tω ; this diagram expresses the
fact that ℘ preserves the decoration :

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

2) for ω ∈ O,

t tω = t sε ω sε ω

tω ω

t
tω

t
sε ω

s
ω
ε

t
ω

aking to the previous identity, the latter expresses that
the decoration of the root edge of ω matches tω :

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

3) for ω ∈ O and x ∈ ω•,

t sx ω = s`(∂∣x) sτ (x) ω sτ (x)

sx ω ω

t
sx ω

s
sτ (x) ω

`(∂∣x)

s
ω
τ (x)

s
ω
x

which means that two nodes (here x and τ (x)) sharing
an edge should agree on the decoration of that edge ;
this is depicted in the following pasting diagram :

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

4) for ω degenerate,

t tω = sε tω tω

tω ω

t
tω

s
tω
ε

t
ω

t
ω

this last identity expressed the fact that the target of
degenerate opetopes are “loops” :

•

⇓

The relations can be illustrated on the opetope ω of 7 (see
also 12) as follows:

1) with x = g ∈ ω↑, we have

s`g s∂•g ω = s`g sα ω = s`g α = g = s℘g γ = s℘g tω

2) we have
t tω = t γ = k = tβ = t sε ω

3) with x = α, we have

t sα ω = tα = i = si β = s`(∂∣α) sτ (α) ω

4) for the following degenerate opetope ω

a b a b
f ω

⇛

f

⇓α
f

we have

t tω = tα = f = sε α = sε tω .

V. EQUIVALENCE WITH POLYNOMIAL OPETOPES

In this section, all sequents are assumed derivable in
OPT. We show that syntactic opetopes, considered up to
α-conversion, are in bijective correspondence with polynomial
opetopes (10), by constructing an explicit bijection ⟦−⟧On from
syntactic n-opetopes up to α-conversion to n-opetopes, with
inverse ⟦−⟧⊢n.

Polynomial coding. We give an inductive construction map-
ping a syntactic n-pasting scheme, i.e., a sequent typing a term
(E ▹ Γ ⊢n t ∶ T), to an (n+1)-opetope ⟦t⟧On+1 (leaving the rest
of the sequent implicit), that we call its polynomial coding. The
construction maintains the following invariant: all the names
of nodes and edges of all the involved underlying trees of the
opetopes that are recursively constructed are picked from VΓ

(modulo the equivalence relation E) in a dimension-respecting
way. The inductive definition is as follows:

⟦∅⟧O0 ∶= ⬩ (12)

⟦x⟧O1 ∶= � (13)

⟦x⟧O
n+1

∶= I⟦sx⟧On−1
, (14)

⟦x(−−−−−→yi←ui)⟧
O
n+1 ∶= Y⟦sx⟧On ((

−−−−−−−−−−−→
yi← ⟦ui⟧On+1)). (15)

Note that in (15), yi is indeed a node of ⟦sx⟧On by the invariant,
and hence a leaf of Y⟦sx⟧On by remark 9.

It is clear that the coding function is well defined in 14.
The following proposition ensures that this is also the case
for (15):

Proposition 13. With the notations of 15, for every index i,
we have t sε ⟦ui⟧On+1 = syi sε ⟦x⟧

O
n+1.

Polynomial decoding. Conversely, to every n-opetope ω, we
associate a syntactic (n−1)-pasting scheme ⟦ω⟧⊢ defined by
induction, using point, shift, degen, and graft, respec-
tively:

⟦⬩⟧⊢
⟦ω⟧⊢

⟦Yω⟧⊢
⟦ω⟧⊢

⟦Iω⟧⊢
⟦ω⟧⊢ ⟦τ⟧⊢

⟦ω((a←Yτ))⟧⊢
(16)

All along this induction, names are introduced (rules point

and shift), and α-conversions have to be performed to fulfill
the side-conditions of graft.

For ω non-degenerate, it can be shown that this assignment
of a pasting scheme is independent (up to α-conversion) of the
choice of decomposition of ω as a sequence of graftings, and
that this thus defines an interpretation ⟦ω⟧⊢ for every opetope
ω which is unique (up to α-conversion), so that we can finally
conclude:

9

Theorem 14. The functions ⟦−⟧O and ⟦−⟧⊢ induce a bijection
between syntactic (n−1)-pasting schemes (or, equivalently,
syntactic n-opetopes) modulo α-conversion and n-opetopes.

VI. A SEQUENT CALCULUS FOR OPETOPIC SETS

We now present OPTSET, a sequent calculus for opetopic
sets in the sense that derivable terms (or, more precisely,
contexts) correspond to finite opetopic sets. This system is
based on OPT in the sense that it starts from sequents in
this last system. This is however not essential and a more
homogeneous variant is studied in VII. We recall that opetopic
sets are the object of the category Ô of presheaves over the
category O.

Syntax. One of the main distinguishing features of the system
OPT is that only source faces (as opposed to target ones)
of whichever cell is currently being derived are specified.
Nonetheless, all the information about targets remains. To
adapt our previous calculus to opetopic sets, all faces, includ-
ing targets, need to be explicitly specified.

Sequents. An opetopic set will be specified by a context
Γ together with an equational theory E. We thus consider
sequents of the form

E ▹ Γ

which we call an opetopic context modulo theory, or OCMT.

Inference rules. It is well known that the Yoneda embedding
O ∶ O → Ô exhibits Ô as a free completion of O under col-
imits [18, section I.5], and the restriction to finite presheaves
corresponds to completing under finite colimits, as every slice
of O is finite. It is also well known that those colimits can be
obtained from the initial object, binary sums, and coequalizers,
so our strategy is to add rules syntactically ensuring their
existence. We show in 19 that terms in the resulting system
actually correspond to finite opetopic sets.

The rules of the system OPTSET are as follows.
• Introduction of all targets: takes an opetope

(E ▹ Γ ⊢n x ∶ X) derivable in OPT, and completes
it by adding all the “missing target cells” making it
into an OCMT (more abstractly, this corresponds to
computing the representable opetopic set associated to
an opetope).

E ▹ Γ ⊢n x ∶ X x ∈ Vn repr
E
′ ▹ Γ

′

where Γ
′ is obtained from Γ by adding a new variable

x
t
k
a
∶ s
k+1

a⊷ s
k+2

a⊷ ⋯

for every a ∈ VΓ,m and 1 ≤ k ≤ m ≤ n (in the following,

we write t
k
a instead of xt

k
a and sometimes ≈E instead

of E ′ and x̂ instead of Γ
′), and E ′ is obtained from E by

adding
– t a = b for all b←a(⋯) occuring in a type in Γ,
– t t a = t sε s a for all a ∈ VΓ′,k with non-degenerated

source with 2 ≤ k ≤ n,
– t

k+2
a = b if tk a ∶ b⊷ b⊷ ⋯ with 0 ≤ k ≤ n − 2.

• Zero: introduces the empty OCMT.
zero

▹

• Binary sums: takes two disjoint opetopic sets (i.e., whose
cells have different names), and produces their sum.

E ▹ Γ F ▹∆

E ⊔ F ▹ Γ ⊔∆
sum (17)

where we suppose Γ ∩∆ = ∅.
• Quotients: identifies two parallel cells in an opetopic set

by extending the underlying equational theory:

E ▹ Γ

E ⊔ {a = b} ▹ Γ
glue (18)

where we suppose a, b ∈ VΓ, s a =E s b and t a =E t b.
We sometimes write glue-(a=b) to make explicit that we
added {a = b} to the theory.

Equivalence with finite opetopic sets. We now show that
the OCMTs are in bijection with finite opetopic sets. As in V,
this is done by providing explicit inverse bijections.

From OCMT to opetopic sets. Given an OCMT E▹Γ, we write
Γ/E for the set VΓ quotiented by the equivalence relation
generated by E. We will see that this set can be equipped with
the structure of an opetopic set. In order to do so, our first task
is to show that this is the case for representable OCMTs, i.e.,
whose derivation ends with

E ▹ Γ ⊢n x ∶ X repr
≈x ▹ x̂

which is achieved in 16 below, by induction. We first need
a technical lemma. Given a sequent (E ▹ Γ ⊢n x ∶ X) and
(a ∶ A) ∈ x̂, the a-restriction of the sequent is the sequent
E∣a ▹Γ∣a ⊢k a ∶ A where E∣a (resp. Γ∣a) is the restriction of
E (resp. Γ) to variables and terms whose variables belong to
the variables of A.

Lemma 15. Given a derivable sequent in OPT and a variable
a of its context, its a-restriction is also derivable.

In a situation as in the previous lemma, we have, by induction,
a well-defined opetope. This induces a map ⟦−⟧O ∶ Vx̂ → O,
which can be shown to factor through x̂/≈x. We now construct
source and target maps between the fibers of this map. Suppose
that a is of dimension k.

• Sources: given b ∈ (⟦a⟧O
k
)• then, by construction, see (15),

there is a unique variable in Vx̂∣a,k−1 up to the ambient
equational theory, which corresponds (under the bijection)
to b, which we still write b, and we define sb a = b.

• Target: for a ∈ Vx̂,k, we define t a = t a, the latter being
the variable introduced by the repr rule.

Theorem 16. With the structure maps introduced above,
x̂/≈x is an opetopic set, which is isomorphic to the repre-
sentable O(⟦x⟧O).
Proof. The fact that x̂/≈x is an opetopic set can be checked
by directly verifying that the relations for source and target,
induced by those of the definition of O, are satisfied. The

10

opetopic set x̂/≈x clearly has one maximal element and is
thus, by the Yoneda lemma, a quotient of the associated
representable O(⟦x⟧O). Finally, the two can be shown to be
isomorphic by proving by induction that they have the same
number of cells in every dimension.

By induction, we can now associate with every derivable
OCMT E ▹ Γ in OPTSET an opetopic set noted

Γ/E (19)

(equipped with suitable source and target maps) together with,
for every variable a ∈ VΓ, a map

ã ∶ O(⟦a⟧O) → Γ/E
defined as follows, depending on the last rule used in the
derivation of the OCMT:

• repr: as described above,
• zero: then Γ/E is the initial opetopic set,
• sum: with the notations of (17), (Γ ⊔ ∆)/(E ⊔ F) is the

coproduct Γ/E ⊔∆/F ,
• glue: with the notations of (18), Γ/(E ⊔ {a = b}) is the

opetopic set defined as the coequlizer

O(⟦a⟧O) = O(⟦b⟧O) Γ/E Γ/(E ⊔ {a = b})
b̃

ã

It is easy to see that for every proof tree of E▹Γ, the opetopic
set Γ/E is

Γ/E ≅

⨆a∈VΓ
O(⟦a⟧O

k
)

E

(where, as explained before, on the right, we leave implicit
the bijection between the variables of Γ and the cells of the
associated opetopic set). Thus,

Lemma 17. For (E ▹ Γ) a derivable OCMT in OPTSET, the
structure of opetopic set on Γ/E does not depend on the proof
tree of E ▹ Γ.

Equivalence. The syntactic category of OPTSET is the cate-
gory Ctx whose objects are the sequents and a morphism

f ∶ E ▹ Γ → F ▹∆

is a substitution, i.e., , a function f ∶ V∆ → VΓ, which
• respects the dimension of variables,
• respects equality: for x, y ∈ V∆, x =F y implies
f (x) =E f (y),

• respects typing: for a typing (x ∶ A), f (x) has type
A
′
=F f (A) in ∆, where f is extended as a morphism on

terms and types in the expected way.
We write Ôfin for the full subcategory of Ô whose objects are
finite presheaves X , i.e., such that the set ⨆ω∈OXω is finite.
Our aim is to show that we have an equivalence of categories
Ctx

op
≅ Ôfin. We begin by noticing that morphisms preserve

representable opetopes:

Lemma 18. Let f ∶ (E ▹ Γ) → (F ▹ ∆) be a morphism of
OCMT, and a ∈ VΓ,k. Then ⟦a⟧O

k
= ⟦f (a)⟧O

k
.

The stratification functor S ∶ Ctx
op
⟶ Ôfin is defined on

objects by S(E ▹Γ) = Γ/E and on morphisms by S(f) = f op.

Theorem 19. The stratification functor S ∶ Ctx
op
→ Ôfin is

an equivalence of categories.

Proof. An object in the image of S is a finite opetopic set
of the form Γ/E for some OCMT (E ▹ Γ). It contains all
representables (by 16) as well as the initial object, and it is
closed under finite sums and quotients (by definition (19)).
It is thus essentially surjective on objects since every finite
opetopic set is a finite colimit of representables. By definition,
S is faithful. It remains to show that it is full.

Given a morphism of finite opetopic sets
f ∶ S(E ▹ Γ) → S(F ▹ ∆), we define a morphism of
OCMT f̃ ∶ F ▹ ∆ → E ▹ Γ by fixing f̃ (x) to be a chosen
element of the equivalence class f (x) for any x ∈ V∆. We
show that this morphism respects the typing by induction
on the dimension k of the variable x of type X . The
result is immediate for k = 0 since in this case X = ∅
and f (X) = ∅ = f (∅). Otherwise, the type X of x is
sx ⊷ s sx ⊷ . . . ⊷ ∅ and the type Y of tx in Γ is
s sx ⊷ . . . ⊷ ∅. By induction, the type of f (tx) in ∆ is
f (Y), and since f (tx) = t f (x) ∶ s s f (x)⊷ ⋯⊷ ∅, we have

(f (s sx)⊷ ⋯⊷ ∅) = f (Y) =F (s s f (x)⊷ ⋯⊷ ∅) ,
or in other words, s

i
f (x) =F f (si x), for 2 ≤ i ≤ k.

It remains to show that the latter formula holds in the
case i = 1 (the case i = 0 is tautological). Towards a
contradiction, assume s f (x) ≠F f (sx). Then there exists
y ∈ (⟦x⟧O

k
)• = (⟦f (x)⟧O

k
)• such that sy f (x) ≠F f (sy x), which

contradicts the fact that f is a morphism of opetopic sets.
Consequently, s f (x) =F f (sx), and f (X) is the type of f (x)
in ∆ modulo F . We can conclude that S is full and thus an
equivalence of categories.

Models. As traditionally, a model of the type theory OPTSET
is a functor Ctx → Set which preserves finite limits, and
we write Mod(Ctx) for the resulting category, with natural
transformations as morphisms. Here, models are precisely
opetopic sets:

Theorem 20. We have an equivalence of categories
Ô ≅ Mod(Ctx).
Proof. We apply Gabriel-Ulmer duality [1]: the category Ô
is a category of presheaves over a locally small cat-
egory and thus a locally presentable category, and fi-
nite opetopic sets are the finitely presentable objects, thus
Mod(Ctx) ≅ Mod(Ôop

fin) ≅ Ô.

VII. THE MIXED SYSTEM FOR OPETOPIC SETS

The OPTSET system, presented in VI, suffers from the
following drawback: derivations of opetopic sets using the rule
repr require, as a precondition, a derivation in the system OPT
of II. This makes derivations somewhat unintuitive. Indeed,
every finite opetopic set X can be written as

X =
⨆iO(ωi)

∼

where ∼ represents some quotient. Thus to derive X in
OPTSET, the representables O(ωi) have to be derived in OPT

11

first, and only after the repr rule has been used on each,
can the sums and gluings be performed. In this section, we
present system OPTSETM (the m standing for “mixed”) for
opetopic sets, which does not depend on OPT, and that allows
introducing new cells, making disjoint unions, and gluing cells
in any sound order.

Syntax. The syntax of system OPTSETM relies on sequents
from OPT (see II) and OCMTs from OPTSET (see VI).
Specifically, we have two types of judgments:

• E ▹ Γ, stating that (E ▹ Γ) is a well formed OCMT,
• E ▹ Γ ⊢ t ∶ T , stating that in OCMT (E ▹ Γ), the

term t is well formed, and has type T ; we may also write
E ▹ Γ ⊢n t ∶ T if t ∈ Tn.

Inference rules. The inference rules of the sequent calculus
OPTSETM are as follows.

• Introduction of points: introduces 0-cells.
x ∈ V0 point
▹x ∶ ∅

• Introduction of degenerate pasting diagrams: creates a
new degenerate pasting diagram.

E ▹ Γ, x ∶ X
degen

E ▹ Γ, x ∶ X ⊢k x ∶ x⊷ X

• Introduction of non-degenerate pasting diagrams: creates
a new non-degenerate pasting diagram consisting of a
single cell.

E ▹ Γ, x ∶ X
pd

E ▹ Γ, x ∶ X ⊢k x ∶ X
• Grafting: extends a previously derived non-degenerate

pasting diagram by grafting a cell.

E ▹ Γ ⊢n t ∶ s1 ⊷ s2 ⊷ ⋯
F ▹∆ ⊢n x ∶ X

graft
G ▹ Γ ∪∆ ⊢n t(a←x) ∶ s1[sx/a]⊷ s2 ⊷ ⋯

where we suppose that the same side conditions as for rule
graft of system OPT (see II) are satisfied. Above, G is
the union of E, F , and potentially additional equalities
incurred by the substitution s1[sx/a].

• Shift to the next dimension: takes a previously derived
pasting diagram (degenerate or not), and introduces a new
cell having this pasting diagram as source. It also intro-
duces all its targets, and extends the ambient equational
theory with the required identities.

E ▹ Γ ⊢n t ∶ T x ∈ Vn+1
shift

E
′ ▹ Γ

′

with x ∉ VΓ and where Γ
′ is obtained from Γ by adding

fresh variables

x
t
k
x
∶ s
k+1

x⊷ s
k+2

x⊷ ⋯

for 0 ≤ k ≤ n (by convention xt
0
x is x and we write t

k
x

instead of xt
k
x in the following) similarly to rule repr

of VI and E ′ is obtained from E by adding t
k+2

x = t
k
x

for 0 ≤ k < n − 1 if t is degenerate, say t = y(−−−−−→zi←ui), E ′

is obtained from E by adding t
2
x = tx (if n > 0) and

a = b for every b←a(⋯) occurring in t.

• Zero: introduces the empty OCMT.
zero

▹

• Binary sums: takes two disjoint OCMTs, and produces
their sum.

E ▹ Γ F ▹∆ sum
E ⊔ F ▹ Γ ⊔∆

where we suppose Γ ∩∆ = ∅.
• Quotients: identifies two parallel cells in an opetopic set

by extending the underlying equational theory.
E ▹ Γ glue

E ⊔ {a = b} ▹ Γ
where we suppose a, b ∈ VΓ, s a =E s b and t a =E t b.

Equivalence with opetopic sets. We prove in 23 that the sets
of OCMTs derivable in OPTSETM and OPTSET are the same.
This is done by rewriting proof trees in OPTSET to proof trees
in OPTSETM (21) and conversely (22). In the proofs below, we
shall decorate the rules of the systems OPT and OPTSET by
a prime (e.g. shift’), in order to differentiate them from the
rules of system OPTSETM.

Proposition 21. Every OCMT derivable in system OPTSET is
also derivable in system OPTSETM.

Proof. A proof in OPTSET begins with derivations in OPT
followed by rules repr’ followed by a derivation in system
OPTSET. Since the rule glue’ is exactly the rule glue and
likewise for sum, it is enough to show that a rule of OPT
followed by repr’ can be rewritten as repr’ followed by a
rule in OPTSET, which can be done by case analysis, thus
“pushing the repr’ rules towards the leaves”.

Proposition 22. Every OCMT derivable in system OPTSETM

is also derivable in system OPTSET.

Proof. The idea is to perform the converse of the proof of
previous proposition. Starting from a proof in OPTSETM, we
can locally permute rules in order to obtain a proof consisting
of rules point or degen or pd or graft or shift only
followed by rules glue and sum only. Then, starting from
the leaves, we introduce instances of repr’, and by “pushing
them down”, i.e. by using the inverse rewriting rules of 21,
we rewrite the proof tree to one in system OPTSET.

We can thus conclude:

Theorem 23. The two systems OPTSETM and OPTSET are
equivalent.

Example. We now derive the opetopic set (2) in system
OPTSETM. For clarity (or due to space reasons), we sometimes
omit the type (or part of the type) of variables. First, the cell
f is derived as follows:

point
▹ a ∶ ∅

pd
▹a ⊢0 a

shift
▹a, t f ∶ ∅, f ∶ a⊷ ∅

Note how the shift rule instance not only introduces f ,
but also its target t f . The introduction of point b and its

12

identification with t f will happen later in the proof tree. The
cell g is derived from there in a similar fashion:

⋮
▹a, t f, f

pd
▹a, t f, f ⊢0 a

shift
▹a, t f, t g ∶ ∅, f, g ∶ a⊷ ∅

We could also derive h from here, but decide to do so in a
different branch:

point
▹ b ∶ ∅

pd
▹b ⊢0 b

shift
▹b, th ∶ ∅, h ∶ b⊷ ∅

Next, we join those two proof trees by using rule sum, and
identify b with t f and t g:

⋮
▹a, t f, t g, f, g

⋮
▹b, th, h

sum
▹a, b, t f, t g, th, f, g, h

glue-(b= t f)
b = t f ▹ a, b, t f, t g, th, f, g, h

glue-(b= t g)
b = t f = t g ▹ a, b, t f, t g, th, f, g, h

Next, we derive the last missing cell, α:

⋮
b = t f = t g ▹ a, b, t f, t g, th, f, g, h

pd
b = t f = t g ▹ a, b, t f, t g, th, f, g, h ⊢1 f

shift

E1 ▹ a, b, t f, t g, th, t
2
α ∶ ∅, f, g, h, tα ∶ a, α ∶ f

where E1 stands for b = t f = t g, t
2
α = t f . Note that in

addition of α, this last step also introduces tα and t
2
α, as

well as the identity t
2
α = t f , since sα = f . The rest of the

derivation addresses the remaining gluings:

⋮

E1 ▹ a, b, t f, t g, th, t
2
α, f, g, h, tα, α

glue-(b= t2 α)
E2 ▹ a, b, t f, t g, th, t

2
α, f, g, h, tα, α

glue-(g= tα)
E3 ▹ a, b, t f, t g, th, t

2
α, f, g, h, tα, α

glue-(a= th)
E4 ▹ a, b, t f, t g, th, t

2
α, f, g, h, tα, α

where E2, E3, E4 stand for E1, b = t
2
α, E2, g = tα, and

E3, a = th, respectively.

VIII. CONCLUSION AND FUTURE WORKS

In this article, we have introduced sequent calculi in order
to manipulate opetopes and opetopic sets. We are currently ex-
perimenting with an implementation [13], in order to evaluate
how natural such systems are to use in practice.

We are also investigating variants of those systems, see [5].
In particular, instead of using named variables modulo α-con-
version, we identify them by the address of the corresponding
node in trees (the address being here the sequence of edges
one should follow in order to reach the node starting from the
root). This gives rise to “de Bruijn-like” notations, which are

more difficult to read on paper, but can be more efficiently
implemented because they avoid the renaming issues.

As explained in the introduction, we believe that this work
is a first step toward a type-theoretic definition of opetopic
weak ω-categories.

ACKNOWLEDGMENT

The first author has received funding from the European
Union’s Horizon 2020 research and innovation program under
the Marie Sklodowska-Curie grant agreement number 665850.

REFERENCES

[1] Jiřı́ Adámek and Jiřı́ Rosický. Locally presentable and accessible
categories, volume 189 of London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, 1994.

[2] John C. Baez and James Dolan. Higher-dimensional algebra. III. n-
categories and the algebra of opetopes. Advances in Mathematics,
135(2):145–206, 1998.

[3] Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online
proof assistant for higher-dimensional rewriting. arXiv e-prints, page
arXiv:1612.01093, December 2016.

[4] Eugenia Cheng. The category of opetopes and the category of opetopic
sets. Theory and Applications of Categories, 11:No. 16, 353–374, 2003.

[5] Pierre-Louis Curien, Cédric Ho Thanh, and Samuel Mimram. Syntactic
approaches for opetopes. arXiv:1903.05848 [math.CT], March
2019.

[6] Eric Finster. Opetopic.net. http://opetopic.net, May 2016.
[7] Eric Finster and Samuel Mimram. A Type-Theoretical Definition of

Weak ω-Categories. In 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 1–12, 2017.

[8] Nicola Gambino and Joachim Kock. Polynomial functors and polyno-
mial monads. Mathematical Proceedings of the Cambridge Philosophi-
cal Society, 154(1):153–192, 2013.

[9] Victor Harnik, Michael Makkai, and Marek Zawadowski. Computads
and multitopic sets. arXiv:0811.3215 [math.CT], 2008.

[10] Claudio Hermida, Michael Makkai, and John Power. On weak higher
dimensional categories. I. 1. Journal of Pure and Applied Algebra,
154(1-3):221–246, 2000. Category theory and its applications (Montreal,
QC, 1997).

[11] Claudio Hermida, Michael Makkai, and John Power. On weak higher-
dimensional categories. I. 3. Journal of Pure and Applied Algebra,
166(1-2):83–104, 2002.

[12] Cédric Ho Thanh. The equivalence between opetopic sets and many-to-
one polygraphs. arXiv:1806.08645 [math.CT], 2018.

[13] Cédric Ho Thanh. opetopy. https://github.com/altaris/
opetopy, April 2018.

[14] Joachim Kock. Notes on polynomial functors. http://mat.uab.es/

~kock/cat/polynomial.pdf.
[15] Joachim Kock. Polynomial functors and trees. International Mathemat-

ics Research Notices, 2011(3):609–673, January 2011.
[16] Joachim Kock, André Joyal, Michael Batanin, and Jean-François Mas-

cari. Polynomial functors and opetopes. Advances in Mathematics,
224(6):2690–2737, 2010.

[17] Tom Leinster. Higher Operads, Higher Categories. Cambridge Univer-
sity Press, 2004.

[18] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic.
Universitext. Springer-Verlag, New York, 1994. A first introduction to
topos theory, Corrected reprint of the 1992 edition.

