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A B S T R A C T

The Local Binary Pattern (LBP) is a very popular pattern descriptor for images that is
widely used to classify repeated pixel arrangements in a query image. Several exten-
sions of the LBP to surfaces exist, for both geometric and colorimetric patterns. These
methods mainly differ on the way they code the neighborhood of a point, balancing
the quality of the neighborhood approximation with the computational complexity. For
instance, using mesh topological neighborhoods as a surrogate for the LBP pixel neigh-
borhood simplifies the computation, but this approach is sensitive to irregular vertex
distributions and/or might require an accurate surface re-sampling. On the contrary,
building an adaptive neighborhood representation based on geodesic disks is accurate
and insensitive to surface bendings but it considerably increases the computational com-
plexity. Our idea is to adopt the kd-tree structure to directly store a surface described
by a set of points and to build the LBP directly on the point cloud, without consider-
ing any support mesh. Following the LBP paradigm, we define a local descriptor at
each point that is further used to define a global statistical Mean Point LBP (mpLBP)
descriptor. When used to compare shapes, this descriptor reaches state of the art per-
formances, while keeping a low computational cost. Experiments on benchmarks and
datasets from real world objects are provided altogether with the analysis of the algo-
rithm parameters, property and descriptor robustness.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

In the plethora of distinctive elements of a 3D model, relief2

and color patterns are crucial aspects for many applications that3

require a local object characterization. Examples of these appli-4

cations are the recognition of natural structures, like trees [1],5

the analysis of artworks styles [2], the classification of fabric6

patterns [3] or the categorization of objects [4].7

Patterns, as meant in this work, are decorative elements that8

are defined by small corrugations of the surface or simple color9
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arrangements repeated on the surface. We distinguish two types 10

of patterns: geometric patterns that represent small variations 11

on the surface geometry, e.g., repeated, small incisions, chis- 12

elings, bumps, etc.; and colorimetric ones, e.g., elements with 13

small painted decorations on the surface. Figure 1 shows exam- 14

ples of artworks and design objects characterized by geometric 15

and/or colorimetric patterns. Note that a single element or an el- 16

ement repeated only twice (like the nose or the eyes of a statue) 17

do not represent a pattern. Patterns are among the main fac- 18

tors when characterizing the type, material and style of natural 19

surfaces and many kinds of object decorations, such as archae- 20

ological findings [4]. 21

The analysis of patterns on surfaces is challenging for many 22

reasons, mainly because of the structure of the 3D representa- 23

tion of the object and the difficulty in keeping the computational 24
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(a) (b) (c) (d)

Fig. 1. Examples of two surfaces with geometric patterns (a-b) and two surfaces with colorimetric ones (c-d).

cost of the analysis low enough, to be usable in real world cases.1

The problem of pattern recognition on surfaces is still open [5].2

In this paper, we tackle the simpler and related problem of Pat-3

tern Retrieval: we consider models fully covered by a single4

pattern and our goal is to identify this pattern. Taking inspira-5

tion from the LBP [6, 7], which was introduced to characterize6

the binary distribution of the intensities on a ring around one7

pixel of an image, it is possible to extend it to tackle the prob-8

lem of surface pattern retrieval.9

To the best of our knowledge, this has been done in recent10

years by different authors, culminating in three different opera-11

tors: the meshLBP [8, 9], the edgeLBP [10, 11] and the Mean12

Point Local Binary Patterns (mpLBP for short) [12]. All these13

methods show that it is possible to tackle the pattern retrieval14

and classification problem using the LBP, with different degrees15

of success. Even considering other approaches (e.g., the SIFT +16

Fisher Vector on circular patches adopted in [13]), these meth-17

ods perform well, marking what is currently the state of the art18

in this research field. The mpLBP, in particular, yields excel-19

lent performance scores while keeping low the computational20

cost. The mpLBP operator defines a LBP-based descriptor able21

to deal with surfaces represented by sets of points. If the sur-22

face is given as a tessellation, this set of points can be the set of23

vertices, possibly supplemented by additional points sampled24

on the faces if the number of vertices is low (see Section 3).25

These points are organized in a kd-tree structure, which makes26

the navigation in the model representation easier and quicker27

[14].28

This paper extends [12], providing more discussions on the29

robustness of the mpLBP descriptor, also considering differ-30

ent surface bendings and presenting the mpLBP performance31

on models obtained from scans of archaeological fragments.32

Moreover, we analyze the efficiency of the descriptor and its33

characteristics when different neighborhood shapes and sam-34

pling rules are chosen.35

The remainder of this paper is organized as follows. Sec-36

tion 2 gives an overview of previous research for the retrieval37

and classification of patterns over surfaces. Section 3 intro-38

duces the punctual operator at the basis of the description, the39

mpLBP descriptor and presents four possible variants for the40

ring sampling. Section 4 presents the mpLBP experimental set-41

tings, introducing both the datasets and performance measures42

and the shape properties adopted for the mpLBP computation.43

Section 5 presents the results of all the tests performed on the44

mpLBP. In particular, Section 5.1 shows the retrieval and classi-45

fication performance of the method on two benchmarks [3, 15]46

and over a set of scans of archaeological fragments. Section 5.2 47

focuses on the method robustness with respect to noise and 48

different surface bendings, while Section 5.3 analyzes on the 49

mpLBP performances with different punctual descriptor sam- 50

pling schemes. Discussions, concluding remarks and feature 51

works are provided in Section 6. 52

2. State of the Art 53

The retrieval and classification of reliefs and textures on sur- 54

faces can be seen as an extension to surfaces of the texture 55

image retrieval problem. A large variety of methods for tex- 56

ture image analysis has been proposed in the literature. The 57

main challenge for the detection of specific texture patterns is 58

the recognition of the texture properties robustly to the possi- 59

ble variations [16]. A typical strategy to detect patterns on im- 60

ages is to consider local patches that describe the behavior of 61

the texture around pixels. Examples of statistical descriptions 62

are the Local Binary Patterns (LBP) [6, 7], the Scale Invariant 63

Feature Transform (SIFT) [17] and the Histogram of Oriented 64

Gradients (HOG) [18]. LBP-based methods are very popular 65

and a large number of LBP variants has been proposed [19]. 66

An extended taxonomy of 32 LBP variations and their perfor- 67

mance evaluation for texture classification has been proposed 68

in [20] where the LBP variations and 8 convolutional network 69

based features are evaluated over 13 datasets of 2D images. 70

Among the LBP variations considered, the overall best perfor- 71

mances are obtained by the so-called Median Robust Extended 72

LBP (MRELBP) that evaluates the descriptor over representa- 73

tive regions instead of single pixels. In terms of absolute per- 74

formances, the method based on CNN and Fisher Vectors [21] 75

obtains the best results but has a considerably higher compu- 76

tational complexity. In parallel, the aggregation of significant 77

feature points obtained by pooling the point descriptors, e.g. 78

SIFT+Fisher Vectors, was evaluated and obtained significant 79

texture classification performances [16]. Similarly to LBP, the 80

combination of a SIFT-based feature description with Convolu- 81

tional Neural Networks outperforms the feature-based descrip- 82

tions on classic benchmarks approximately by 10% at the cost 83

of a higher computational complexity, [21]. 84

For the characterization of patterns over surfaces, two strate- 85

gies have been adopted so far: (i) a reduction of the problem 86

to an image pattern one, for instance with the projection of the 87

data onto an well chosen plane (image) and the application of an 88

image pattern recognition algorithm to the projected data; (ii) 89

the definition of the pattern description directly on the surface, 90
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fact which is not straightforward because it involves handling1

of three-dimensional data.2

As an example of reduction strategy, the method in [1] for3

tree species classification represents the geometric variations of4

the tree trunk models with a 3D deviation map over a best fit-5

ting cylinder obtained with the Principal Component Analysis6

(PCA) technique. Then, the cylinder is flattened on a plane7

and the geometric textures are compared using variations of the8

complex wavelet transform. Similarly, [2] adopts a height map9

to project the reliefs and engraves of rock artifacts into an image10

and classify them. The LBPI and CMC approaches proposed11

in the SHREC’17 contest [3] adopt, respectively, an image pat-12

tern method over a depth-buffer projection of the surface (LBPI)13

and the comparison of the principal curvatures in the mesh ver-14

tices using morphological image analysis techniques (CMC).15

Recently, [13] has proposed to use an opportune parametriza-16

tion around a patch centroid to project the mean curvature val-17

ues into an image and then, to adopt the SIFT + Fisher Vector18

[16] strategy to compare the parametric images.19

The Mesh Local Binary Pattern (meshLBP) approach [22, 8,20

9, 23] proposed the first extension of the LBP description [6]21

to triangle meshes. The main idea behind the meshLBP is that22

triangles play the role of pixels; there, the 8-neighborhood con-23

nectivity of images is ideally substituted by a 6-neighborhood24

connectivity of the vertices. The role of the gray-scale color is25

replaced by a function that is meant to capture the main pattern26

characteristics (usually Gaussian or mean curvatures, shape in-27

dex [24] or mesh color if such information is provided). The28

edgeLBP [10, 25, 11, 3, 15, 4] performs an LBP evaluation that29

is based on the rings built over the mesh edges. Adopting a30

surface-aware characterization the edgeLBP is able to outper-31

form the meshLBP in terms of quality of the query results but32

it pays a higher computational cost. To overcome the compu-33

tational limitation of the edgeLBP, the mpLBP has been intro-34

duced in [12]. In this case, to speed the extraction of the de-35

scriptor, the mpLBP takes advantage of the kd-tree structure36

and therefore it deals directly with point clouds.37

For point clouds, local surface patches can also be con-38

structed by regression using the neighborhood around one point39

[26, 27, 28, 29] and those patches can be compared in the pa-40

rameter space. In most recent approaches, the surface was lo-41

cally characterized as a digitized height field over the regression42

surface which may be a plane [30] or a quadric (see [31] for an43

application to super-resolution).44

3. mpLBP descriptor45

This section introduces a statistical descriptor that is global to46

the shape, that aggregates values of local descriptors computed47

at a set of positions on the surface. The input surface model can48

be a point cloud or a triangulation (in the last case, the vertices49

are input points for the descriptor).50

The mpLBP procedure can be described by two main steps:51

the creation of the punctual descriptor (Section 3.1) and LBP52

evaluations that are further combined to create the mpLBP de-53

scriptor (Section 3.2). In Section 3.3 we discuss the definition54

and tuning of the parameters of the method.55

3.1. Punctual descriptor 56

Let S be a point set embedded in the 3D Euclidean space 57

and a surface property defined on S , h : S → R, a function 58

defined on S whose values depends on the pattern we want to 59

describe (e.g.: curvature-based values in case of geometric pat- 60

terns, a color-based property in case of depicted decorations, 61

etc.). Let us consider the point p̃ ∈ S and the set S [ p̃] of the 62

points pi ∈ S at a distance from p̃ at most equal to R, i.e., 63

S [ p̃] = {pi ∈ S |d( p̃, pi) ≤ R}. We will discuss the choice of the 64

radius R in Section 3.3. Gathering the sets S [ p̃] means visiting 65

the points of S several times. Since 3D models with patterns 66

must be at high resolution (thus described by a high number of 67

points), the way the distance relations between points are com- 68

puted must be efficient. In our implementation, these relations 69

are computed using a kd-tree. This structure is computed once 70

per model (with a computational cost of n log(n)). 71

Points in S [ p̃] are projected on a plane π, obtained using lin- 72

ear regression on S [ p̃]. When the density is high enough and if 73

the radius is chosen carefully, that plane may be interpreted as 74

an approximation of the tangent plane. The projected points are 75

sorted in nrad concentric rings based on their distances from p̃. 76

The number of rings is given by the parameter nrad, that we
call radial resolution. Each ring is defined, for j = 1 · · · nrad, as
follows:

S [ p̃] j =
{
pi ∈ S [ p̃]|d(p̃, pi) ∈ [R j−1,R j]

}
, R j = j

R
nrad

Each S [ p̃] j is divided in P j sectors, delimited y some regu-
larly spaced angle values θk. Note that P j may vary along the
rings, in order to obtain sectors with similar areas. We call P j

the spatial resolution. More formally, we define the sector k of
the ring j (sector ( j, k) for short) of the point p̃ as:

S [ p̃]k
j =
{
pi ∈ S |d( p̃, pi) ∈ (R j−1,R j], θi ∈ (θk−1, θk]

}
,

where θk = k 2π
P j
, k = 1 · P j. Finally, we assign to each sector 77

( j, k) a value sec( p̃)k
j as the representative of the function h in 78

that sector. Figure 2 represents the pipeline to build the punctual 79

descriptor. Note that the punctual descriptor can be seen as a 80

feature vector by simply stacking the values of the descriptor 81

on each ring. 82

As it usually happens in the LBP implementations, we ex- 83

cluded the computation of the punctual descriptor at points that 84

are close to the boundary of the model (if any). If the bound- 85

ary of the model is known, it is enough to consider only the 86

points that are at least at distance R from the boundary. In addi- 87

tion, if a point punctual descriptor has more than 1
4
∑

j P j empty 88

sectors, we considered it invalid and discard that point. When 89

the intersection of the sphere of radius R with the point cloud 90

generates multiple surface components like those in Figure 3 91

(Right), we consider such a configuration non acceptable and 92

refine the point neighborhood by selecting a smaller value for 93

R. Indeed, for a given model M we assume that the projection 94

onto π is injective and that the surface locally captured by the 95

sphere is locally homeomorphic to a topological disk. More- 96

over, we assume the existence of a radius R̃max, which is the 97

maximum value for the parameter R such that all the points on 98

M have an acceptable description. 99
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(a) (b) (c) (d) (e) (f)

Fig. 2. A mpLBP descriptor at point p̃ (marked with a light-blue star in (a)). (b): neighborhood S [ p̃] of p̃ is shown with a dark sphere. (c): point density
in S [ p̃]. (d): regression plane π , (e): clustering into sectors. (f): resulting punctual descriptor, represented as a ’circular’ feature vector.

Fig. 3. Left: illustration of the Gaussian filter adopted to weight the points
(in white) in a given sector (in purple). The colors of the Gaussian range
from blue (0) to yellow (1). Right: example of a neighborhood that could
occur if the radius R is larger than R̃max: points are samples on two discon-
nected parts.

Fig. 4. LBP evaluation for an image. Top-left: in red, the pixel p is high-
lighted with a dot together with the circle of radius R centered at p. The
values of h around p are reported in the bottom-left image.

3.2. Local Binary Pattern evaluation1

The punctual descriptor introduced in Section 3.1 is the point2

neighborhood representation to which we apply the LBP encod-3

ing technique.4

The LBP paradigm is very popular for images and many ver-5

sions are available [19]. We extend the LBP description to sur-6

faces following closely the image approach [7] which we briefly7

summarize. For each pixel p, the set of pixels p̃ j within distance8

R from p is called a ring of pixels. Visiting each ring from the9

top-left pixel in counterclockwise order, a binary array with as10

many elements as the pixels in the ring is created, adding 0 if11

h(p̃ j) ≤ h(p) and 1 otherwise. Then the LBP value of p is the12

sum of the numbers in the binary array (it varies from 0 to the13

number of pixels in the ring). Note that, in this context, it does14

not matter the order of the comparisons p and all the p̃ j. The15

histogram H of the LBP values for all the image pixels is the16

LBP descriptor of the image. Figure 4 shows this process for a17

single pixel (Left) and a possible final descriptor (Right). Mul-18

tiple rings can be considered, increasing the size and descriptive19

capability of the descriptor.20

In our case we consider p̃ defined as in Section 3.1. If the
radius R is small enough with respect to the curvature and the

thickness of the object, we can suppose that the rings of the
punctual descriptor are locally close to concentric rings using
geodesic distance to p̃. Thus, each sector can be seen as the
evaluation of h at a sample of the surface. For all the points p̃
in S , we define LBP( p̃) the feature vector of nrad elements as
follows:

LBP( p̃) j =
∑

k

(str[ p̃] j)k,

(str[ p̃] j)k =

{
0 i f sec(p̃)k

j < h(p̃)
1 otherwise

Then, the mpLBP descriptor of S (mpLBP(S )) is the his- 21

togram of the LBP values of the points of S . As a final step, 22

the mpLBP is normalized, i.e., all the entries of mpLBP(S ) are 23

divided by the number of points considered in the histogram, 24

enhancing the stability of the descriptor. 25

The mpLBP(S ) is a
∑

j(P j + 1) sized feature vector. Intu- 26

itively, we can visualize it as a horizontal concatenation of the 27

rings of the multiple feature vectors in Figure 2(f). In particular, 28

the j− th ring generates a feature vector of P j +1 entries, where 29

mpLBP(S )( j,m) is equal to the number of points p̃ in S such that 30

LBP( p̃) j = m (with j = 1, ..., nrad and m = 0, ..., P j). 31

It is worth mentioning that if the neighborhood of a point is 32

rotated significantly around the normal of the point, its punctual 33

descriptor changes. On the contrary, if the rotation is small, the 34

punctual descriptor is stable; indeed, the Gaussian filter adopted 35

to weight the points is stable under rotations smaller than a frac- 36

tion of the angular sector. In other words, if the grid of sectors 37

(Figure 2(e)) is slightly rotated, the punctual descriptor does not 38

vary significantly. Moreover, we recall that the LBP value per 39

ring (as intended in this paper) is rotation invariant (because it 40

is a sum of 0 and 1 values on the whole ring), we can conclude 41

that the pattern descriptor of the mpLBP is robust to rotations 42

of the surface. This fact has been verified by applying a ran- 43

dom rotation to each point neighborhood: the results indicate 44

almost a perfect stability in this sense. More detail on this fact 45

are provided in Section 5.1. 46

3.3. Parameter settings 47

The three parameters of the mpLBP are the radius R (used 48

to set the neighborhood size around each point of S ), the radial 49

resolution nrad and the spatial resolution P j. This is similar to 50

the parameter set of the edgeLBP as described in [10], the main 51

difference being that for the edgeLBP the parameter P is fixed 52

across all the rings. In the following, we present some hints on 53

how these parameters should be tuned. The intuition suggests 54

that the mpLBP ability of detecting a pattern depends on the 55

size of the neighborhood of each point, i.e, the size of the disk 56
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must be related to the pattern size. Moreover, the denser the1

ring sampling, the more complete information is stored, at the2

cost of a larger storage size.3

• R: neighborhood radius shown as a dark bubble in Fig-4

ure 2(b). R should be set so that neighborhoods contain5

at least one part of the pattern that we want to describe6

(e.g.: if the pattern is defined by chiseled circles, the bub-7

ble should contain at least one circle entirely).8

• nrad: it defines the radial resolution and should be fixed9

together with P j (see below).10

• P j: it represents the spatial resolution and varies over the11

different rings.12

Choice of the rings and sampling scheme. The original mpLBP13

description proposed in [12] adopts as the point description a14

set of circular rings such that the spatial resolutions P j guar-15

antee that all the sectors have the same area. For this reason,16

we selected P j = multP(2 j − 1), multP ∈ N+. In this case, P j17

depends on nrad. This degree of freedom was tuned by the pa-18

rameter multP (that replaces the P j parameters). For instance,19

in Figure 2(c) the parameters are nrad = 7 and multP = 2, which20

means that S [ p̃] has 7 rings, where S [p̃]1 has 2 sectors, S [ p̃]221

has 6 sectors and S [p̃]3 has 10 sectors, etc.22

However, similarly to the LBP for images, different types of23

rings may be used. Both the shape (like square, elliptical...)24

and the sampling scheme (or rather considering only part of the25

neighborhood) may be changed in order to better suit a given26

dataset. In general, anisotropic sampling schemes are a valid27

option in this context. Indeed, the punctual descriptor con-28

verts a patch of a surface into a sort of image. Therefore, it29

would make sense to straightforwardly adopt a square neigh-30

borhood and its variations, following the image literature on31

pattern recognition. In general, it is also possible to define var-32

ious scheme variations of the standard punctual descriptor. We33

focus on different sampling areas of the point neighborhood. In34

the following, we depict some possible neighborhood and sam-35

pling strategies. In Section 5.3 we quantitatively discuss the36

performance of these neighborhood choices over a well-known37

benchmark.38

• Scheme 1: same concept of the mpLBP punctual descrip-39

tor, but both the descriptor and the sectors are shaped as40

squares. Figure 5(a) shows how the square neighborhood41

of the points are divided in sectors. The parameters of this42

descriptor are half the diagonal of the square (a sort of ra-43

dius, thus we still refer to it as R) and the square root of the44

number of sectors (or rather, the number of sectors along45

the sides of the square) labelled with pxres.46

• Scheme 2: same as the mpLBP punctual descriptor, but47

only alternate sectors are kept on each ring (e.g., sectors 1,48

3, etc.). In our tests we selected only odd sectors; anyway49

also even indices could be equally considered. In practice,50

adopting such a strategy we half the number of samplings.51

• Scheme 3: similar to Scheme 1, but the first rings are52

kept in their entirety. The implicit assumption behind this53

scheme is that smaller rings need a denser sampling.54

• Scheme 4: same as the mpLBP punctual descriptor, only 55

the sectors with an index j such that j = 1+4n with n ∈ N, 56

are considered. Similarly, to the Scheme 1, this strategy 57

aims at decreasing the number of samples. 58

A representation of these variations are showed in Figure 5. 59

The results of these tests are described in Section 4, see Table 5. 60

61

4. Experimental settings 62

The mpLBP was tested on recent benchmarks in order to 63

evaluate its performances. Moreover, with respect to what re- 64

ported in [12], we run additional tests on the benchmarks con- 65

sidered in the previous word and two additional datasets are 66

considered, extracted from a collection of archaeological frag- 67

ments. 68

4.1. Datasets 69

SHREC17 Benchmark, geometric patterns. The SHREC’17 70

benchmark dataset [3] on the retrieval of relief patterns is com- 71

posed by 720 triangle meshes derived from knitted objects. 72

There are 15 classes of models. Each class was created from 73

the acquisition of the same textile pattern digitized in 12 differ- 74

ent embeddings (Figure 6) yielding 180 different models. Then, 75

each model was re-sampled four times (reaching 720 models). 76

Two datasets were derived: the first one is composed by the 77

original 180 models (called Original Dataset), while the other 78

is made by all the 720 models (called Complete Dataset). The 79

latter mainly aims at evaluating the overall robustness and sta- 80

bility of methods with respect to different mesh representations. 81

82

SHREC18 Benchmark, colorimetric patterns. The SHREC’18 83

benchmark [15] originated from 20 base models without any 84

texture or colorimetric information to which were applied 15 85

gray and white texture each. By combining these, 300 models 86

are obtained [15]. In addition, the luminosity of the textures was 87

modified by using a random value to obtain the same pattern 88

with 20 different shades. Around 30% of the model surfaces 89

are covered by one of the 15 patterns and the remaining part of 90

the surface is only black or only white. The last five patterns 91

are mixed versions of the initial 10 patterns (see Figure 7). Two 92

different datasets are provided: one containing only the models 93

with a single pattern (the set of 200 models characterized by 94

one of the first 10 patterns, called Single pattern dataset) and 95

the other including all the models (all the 300 models, called 96

Complete dataset). 97

GRAVITATE use-case. The GRAVITATE dataset was derived 98

from laser scans of cultural heritage artifacts stored in the Sci- 99

ence and Technology in Archaeology Research Center (STARC 100

for short) repository [32]. The fragments came from different 101

collections. They were selected as test beds for the Gravitate 102

EU project [33, 34]. The models are stored as triangulations. 103

Each model is available in several versions, each at a different 104

level of detail, ranging from 50K to millions of vertices. The 105

models are characterized by both colorimetric and geometric 106
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(a) (b) (c) (d)

Fig. 5. Various sampling schemes. In (a) we show the grid used to create the the square punctual descriptor (Left) and the final punctual descriptor (Right).
In (b,c,d) we highlight the sectors that are considered in Schemes 2,3, and 4.

Fig. 6. The knitted patterns of the SHREC17 contest.

patterns. In case of colorimetric patterns, the RGB values are1

stored at each mesh vertex. In addition to the archaeological2

documentation, the fragments were grouped by experts and cu-3

rators according to the types of patterns present on their surface,4

thus we use such a classification as a groundtruth to better eval-5

uate our results [4]. By manually cutting out the patterns from6

the models that were considered to be significant by the experts,7

we created two datasets of patterns on surface [4].8

• The GRAVITATE(geo) dataset contains 6 classes of geo-9

metric patterns, represented in Figure 8. There are 1010

models per class, for a total of 60 models. Each patch11

has around 20K vertices.12

• The GRAVITATE(col) dataset contains 10 classes of col-13

orimetric patterns, represented in Figure 8. The number14

of elements per class varied from 4 to 7, for a total of 4915

models. Every patch was made of approximately 40K ver-16

tices.17

4.2. Evaluation Measures18

The following evaluation measures are considered to asses19

our results.20

Nearest Neighbor, First Tier, Second Tier. These measures21

check the fraction of models in the query’s class that appears22

within the top k retrievals. By changing the value of k to 1,23

|C| − 1 and 2(|C| − 1), we consider, respectively, 3 measures:24

Nearest Neighbor (NN), First Tier (FT) and Second Tier (ST).25

These values range from 0 (worst result, it means that none of26

the retrieved elements belong to the class of the query) to 1 27

(best result, it means that all the retrieved models belonging to 28

the class of the query 29

Normalized Discounted Cumulative Gains. The Discounted 30

Cumulative Gain (DCG) derives from the Cumulative Gain, 31

which sums the graded relevance values of all results in the list 32

of retrieved objects of a given query. The DCG assumes that 33

relevant items are more useful if they appear earlier in a query 34

list. Thus, it weights the distances with respect to a relevance 35

value. In the experiments we adopt the nDCG, which is a nor- 36

malized mean of the DCG computed on each model. We used 37

the implementation proposed in [35]. 38

Average Precision and e-measure. The Precision and Recall 39

are two common measures for evaluating search strategies. Re- 40

call is the ratio of the number of relevant records retrieved to the 41

total number of relevant records in the database, while precision 42

is the ratio of the number of relevant records retrieved to the size 43

of the return vector [36]. We consider the mean Average Pre- 44

cision (mAP), which is the area under a precision-recall curve 45

[37]. The e-measure e [38] was also introduced as a quality 46

measure of the first models retrieved for every query. Formally, 47

e = 2
Precision−1+Recall−1 . 48

4.3. mpLBP settings 49

The choice of the function h used to build the punctual de- 50

scriptor is driven by the kind of pattern we want to describe. 51

In the case of geometric patterns, we may consider one of the 52

many existing curvature-based properties, while for colorimet- 53

ric information we can consider different color embeddings. 54

While the original mpLBP relied on maximum curvature, we 55

test other options: Minimum curvature, Mean curvature, Gaus- 56

sian curvature and Shape Index. These properties are com- 57

puted using the Matlab implementation in [39]. This choice was 58

driven by the curvature measure comparisons in [40]. While 59

this implementation works on triangulations, and estimates the 60

curvature on vertices, it is possible to rely on [28, 41, 27] for 61

estimating these quantities for point clouds. 62

Moreover, we consider the height-field (HF for short) as an 63

additional approximation of the surface properties. Indeed, the 64

HF represents a first-order local approximation of the surface. 65

When h = h f , a value is assigned to each point Pi in the neigh- 66

borhood of P, which is equal to the point-plane distance be- 67

tween the point and the plane π defined in Section 3.1. The 68
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Base model Patterns Surfaces with patterns

Fig. 7. The 20 base models used in the SHREC’18 benchmark are shown on the left. Each pattern (middle) was applied to all of the base models and
changed in terms of their luminosity (examples of the final models are shown on the right).

GRAVITATE(geo) GRAVITATE(col)

Feathered Pattern of Spirals
Pattern Circlets

Line Smooth Hatched
Pattern Fringe Fringe

Guilloche Six Petals Chequer Striped Band Pattern of circlets
(P.o.C) (Painted)

Lotus and Buds Scales v1 Scales v2 Guilloche v2 Pattern of Curves

Fig. 8. One sample per each class of the GRAVITATE datasets. Class labels are given by experts of the field [4].

(a) (b)

Fig. 9. Visual representation of how the height-field is computed. Starting
from a point P, the plane of linear regression is computed (a) and a scalar
value h f is assigned each point P j in the neighborhood of P (b). The area
represented in (b) is the same as the light blue one on (a), with only P j
represented here for the sake of clearness.

value is negative if −→n P ·
−−→PiP < 0, where −→n P is the normal of the1

point P. A point common to the neighborhoods of two different2

points may have different height values with respect to the two3

neighborhood regression planes. Figure 9 shows how the HF is4

computed.5

For colorimetric patterns, only the CIELab color-space [42,6

43] is considered (the L-channel in particular, which encodes7

the luminosity of the colors).8

5. Experimental results and discussions 9

This Section summarizes the mpLB performances over the 10

different datasets with the different settings described in Sec- 11

tion 5.1. Then, in Section 5.2 we analyze the robustness of the 12

mpLBP descriptor to surface noise, different bendings a pat- 13

tern may be embedded in and different neighborhood sampling 14

schema. Finally, Section 5.4 shows the timing comparisons be- 15

tween the mpLBP and the edgeLBP. 16

5.1. Experimental results 17

Before discussing the results, it is worth noticing that the 18

evaluation scores of the mpLBP reported in this paper are 19

slightly different than those in [12]: a regression plane align- 20

ment bug was found in our previous implementation and it is 21

now corrected. 22

Performances on the SHREC’17 benchmark. In addition to the 23

methods of [3] that obtained the best performances, we com- 24

pare the mpLBP with the edgeLBP [10] and the SIFT-based 25

method in [13]. Among all the settings tested, the best per- 26

forming ones are R = 14, nrad = 7 and multP = 4. Since most 27
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Original Dataset
Method NN 1-Tier 2-Tier mAP e nDCG
CMC-2 0.633 0.363 0.494 0.390 0.293 0.662

KLBO-FV-IWKS 0.522 0.295 0.412 0.307 0.247 0.603
edgeLBP - run2 0.911 0.689 0.844 0.725 0.590 0.865
T/mC/SIFT/FV 0.872 0.710 0.849 0.741 0.457 0.883
mpLBP - Cmax 0.933 0.706 0.845 0.744 0.449 0.871
mpLBP - Cmin 0.922 0.732 0.861 0.738 0.442 0.862

mpLBP - Cmean 0.911 0.733 0.861 0.763 0.447 0.888
mpLBP - Cmean* 0.917 0.733 0.863 0.761 0.427 0.875
mpLBP - Cmean* 0.922 0.728 0.862 0.763 0.426 0.877
mpLBP - Cgauss 0.939 0.707 0.845 0.744 0.483 0.872

mpLBP - SI 0.911 0.729 0.835 0.749 0.440 0.876
mpLBP - HF 0.672 0.353 0.451 0.431 0.281 0.658

Complete Dataset
Method NN 1-Tier 2-Tier mAP e nDCG
CMC-2 0.763 0.272 0.389 0.271 0.261 0.686

KLBO-FV-IWKS 0.986 0.333 0.449 0.339 0.332 0.759
edgeLBP - run2 0.986 0.634 0.780 0.669 0.421 0.902
T/mC/SIFT/FV 0.993 0.712 0.850 0.739 0.647 0.929
mpLBP - Cmax 0.994 0.678 0.820 0.738 0.653 0.931
mpLBP - Cmin 0.997 0.677 0.815 0.733 0.653 0.931

mpLBP - Cmean 0.994 0.702 0.841 0.759 0.665 0.938
mpLBP - Cgauss 0.994 0.678 0.820 0.738 0.653 0.931

mpLBP - SI 0.997 0.688 0.813 0.737 0.650 0.930
mpLBP - HF 0.999 0.383 0.480 0.431 0.419 0.802

Table 1. Results on the SHREC’17 benchmark, both the Original (Top)
and the Complete (Bottom) Dataset. Runs marked with ∗ are those which
point neighborhood are rotated by a random angle around the normal of
the respective point.

of the models in the dataset have a low number of vertices, we1

resampled them to 40000 vertices using the Remesh tool [44].2

Table 1 reports the mpLBP scores together and compares them3

with the other methods, with respect to NN, FT, ST, e-measure,4

mAP and nDCG. In this table we also include the results ob-5

tained when testing the independence from the cut of the grid6

on the neighborhood of the points. We mark with ∗ the runs7

to which we added to each point neighborhood a small rotation8

of the tangent parametrization around the point normal (from9

0 to 2π). The results show that adding this rotation does not10

influence critically the results of our method.11

The mpLBP scores equivalently or slightly better than the12

edgeLBP and T/mC/SIFT/FV over the SHREC’17 benchmark13

on geometric patterns, with small variations depending on the14

surface property chosen. Overall, over this benchmark, the15

mpLBP performs well with all the curvature-based properties;16

in particular, the mean curvature provides slightly better re-17

trieval performances. However, the NN performance over the18

complete dataset of mpLBP with the height field highlights how19

this property is able to characterize a model and its re-samplings20

but it less robust to different surface bendings.21

Performances on the SHREC’18 benchmark. The performance22

of mpLBP on this benchmark is compared against those ob-23

tained in [15] and [11]. The parameters settings with the best24

evaluations are R = 0.10 nrad = 7 multP = 1 (set1) and25

R = 0.14 nrad = 7 multP = 1 (set2). Table 2 summarizes26

the best scores obtained (more runs and methods are available27

in [15] and [11]).28

Over this benchmark, mpLBP and edgeLBP perform equiv-29

alently, even if the time for evaluating the edgeLBP on this30

dataset is approximately twenty times higher than the mpLBP31

(details on the computation costs are provided in Section 5.4).32

Single Pattern Dataset
Run NN FT ST mAP e nDCG

TWB3 0.755 0.502 0.688 0.577 0.455 0.795
V2 0.82 0.51 0.731 0.593 0.481 0.808

edgeLBP-R4 0.915 0.717 0.879 0.766 0.60 0.898
edgeLBP-R5 0.950 0.740 0.892 0.790 0.606 0.911
mpLBP - set1 0.965 0.739 0.862 0.781 0.600 0.910
mpLBP - set2 0.960 0.744 0.864 0.762 0.590 0.900

Complete Dataset
Run NN FT ST maP e nDCG

TWB3 0.593 0.417 0.564 0.460 0.376 0.711
V2 0.79 0.433 0.594 0.493 0.39 0.753

edgeLBP-R4 0.903 0.673 0.827 0.722 0.557 0.878
edgeLBP-R5 0.923 0.667 0.805 0.727 0.546 0.878
mpLBP - set1 0.903 0.739 0.862 0.668 0.520 0.850
mpLBP - set2 0.907 0.573 0.735 0.639 0.510 0.840

Table 2. Performance scores over the Single pattern dataset and Complete
dataset of the SHREC’18 benchmark.

Indeed, to guarantee the decorations were intelligible, the orig- 33

inal surfaces were densely sampled (100K vertices, each) and 34

this corresponds to a demanding task for the edgeLBP. On the 35

contrary, this is a good basis for mpLBP because the key issue 36

for its success is that the point cloud is dense enough, i.e., most 37

of the sectors of the descriptors should not be empty. 38

Performances on the GRAVITATE dataset. We run the mpLBP 39

on both datasets with 4 different settings. The results are com- 40

pared with those reported in [4] for edgeLBP on the GRAVI- 41

TATE datasets. In particular, on GRAVITATE(geo) we used the 42

Shape Index as h function, as it is done in [4]. In Table 3, the 43

best mpLBP run we had is compared to the edgeLBP results. 44

As a general premise, since the dataset classes contain few 45

models (less than 10), even a variation of 0.1 in the scores 46

means that only one model is miss-classified. The performances 47

of the edgeLBP and mpLBP are comparable, with differences 48

that depend on the type of pattern and the quality of the model. 49

This can be observed by the overall performances of the runs. 50

Looking at the single class performances, the NN measures are 51

almost identical, with the edgeLBP being slightly more efficient 52

on the geometric patterns. The opposite is true on the colori- 53

metric ones, where the patterns are more degraded. This may 54

be explained by the fact that since the mpLBP scouts an en- 55

tire area for each sampling (sector) rather than a single point 56

to code the evolution of the ring properties, it slightly averages 57

the local surface properties simulating a slight smoothing effect. 58

This can be positive in case of noisy colorimetric patterns but 59

it could lead to a confusion between geometric noise and actual 60

small surface variations. 61

5.2. Robustness of the descriptor 62

In [12] we already explored the robustness of the mpLBP de- 63

scriptor to noise. In this work, we also analyzed the robustness 64

of the pattern descriptor of a fixed pattern when the latter lies 65

on surfaces with different bendings. All this robustness analysis 66

are reported in this Section. 67

Robustness to noise. The popularity of scanning devices that 68

can digitize objects increased the number of acquired 3D mod- 69

els available, but not all of them have perfect sensors. Thus, 70
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GRAVITATE(geo) results

edgeLBP settings: nrad = 7, N = 15, R = 0.6cm
Class considered NN FT ST e nDCG
Feathered Pattern 1.000 0.722 0.911 0.434 0.934
Pattern of Circles 1.000 0.922 0.978 0.439 0.989

Spirals 1.000 0.644 0.756 0.385 0.911
Line Pattern 0.700 0.300 0.367 0.263 0.661

Smooth Fringe 1.000 0.467 0.500 0.229 0.804
Hatched Fringe 1.000 0.400 0.589 0.371 0.773

Overall 0.950 0.576 0.683 0.354 0.845

mpLBP settings: nrad = 5, multP = 4, R = 1cm
Class Label NN FT ST e nDCG

Feathered Pattern 1.000 0.511 0.767 0.410 0.849
Pattern of Circles 1.000 0.889 0.944 0.439 0.976

Spirals 1.000 0.544 0.700 0.400 0.870
Line Pattern 0.800 0.289 0.444 0.302 0.685

Smooth Fringe 1.000 0.522 0.533 0.239 0.818
Hatched Fringe 1.000 0.400 0.500 0.366 0.765

Overall 0.967 0.526 0.648 0.359 0.827

GRAVITATE(col) results

edgeLBP settings: nrad = 5, P = 15, R = 0.5cm
Class Label NN FT ST e nDCG

Guilloche v1 1.000 1.000 1.000 0.171 1.000
Six Petals 0.500 0.500 0.767 0.270 0.720
Chequer 0.857 0.571 0.738 0.271 0.811

Striped band 0.800 0.200 0.400 0.222 0.544
P.o.C. (Painted) 1.000 1.000 1.000 0.171 1.000
Lotus and Bud 0.500 0.333 0.583 0.171 0.666

Scales v1 0.429 0.310 0.619 0.316 0.579
Scales v2 1.000 1.000 1.000 0.171 1.000

Guilloche v2 1.000 1.000 1.000 0.171 1.000
Pattern of Curves 0.500 0.250 0.250 0.086 0.424

Overall 0.735 0.582 0.723 0.217 0.758

mpLBP settings: nrad = 7, P = 15, R = 0.5cm
Class Label NN FT ST e nDCG
Guilloche v1 1.000 1.000 1.000 0.171 1.000

Six Petals 0.500 0.400 0.767 0.270 0.709
Chequer 1.000 0.714 0.976 0.316 0.924

Striped band 0.600 0.250 0.500 0.189 0.567
P.o.C. (Painted) 1.000 1.000 1.000 0.171 1.000
Lotus and Bud 0.500 0.417 0.583 0.143 0.566

Scales v1 0.571 0.357 0.643 0.263 0.680
Scales v2 0.750 0.333 0.667 0.171 0.673

Guilloche v2 1.000 1.000 1.000 0.171 1.000
Pattern of Curves 0.500 0.167 0.250 0.100 0.427

Overall 0.742 0.693 0.918 0.211 0.755

Table 3. Results on the GRAVITATE datasets, and comparison with those of the edgeLBP.

acquired data can be corrupted by acquisition noise. Further-1

more, objects can be degraded by time or other factors, which2

can lead to corruption of the patterns that lie on the surface of3

the object.4

Noise in general is an unwanted variation of a signal (the5

surface, in this case) usually of small scale. Patterns also are6

usually small, thus the noise is a problem that is worth address-7

ing. We added noise with various amplitudes to some of our8

test models. Such variations change the h function and as a9

consequence the whole punctual descriptor. Depending on the10

pattern nature, we considered different noise addition. The ge-11

ometrical patterns are corrupted with a Gaussian noise on the12

vertices, based on a parameter λg, expressed as a percentage of13

the diameter of the smallest bounding sphere. The values of λg14

considered are 0.2 and 0.4. See Figure 10 (Top) for an example15

of mesh degradation.16

Colorimetric patterns are instead corrupted by adding small17

variations to the RGB values stored on the model vertices. Such18

variation is bounded to the parameter λc, an integer value added19

to each RGB channel (we assume the three channels to range20

from 0 to 255). For example, λc = 5 added three random offsets21

in the interval [−5,+5] to each color channel. In our tests, we22

used λc ∈ {5, 7} (see Figure 10 (Bottom)).23

The noise tests are run on the SHREC’17 Original dataset24

for the geometric patterns and on the SHREC’18 Single pattern25

dataset for the colorimetric one. Results are reported in Ta-26

ble 4. We observe that the performances significantly decrease27

in presence of heavy noises, while the mpLBP is robust in case28

of lighter ones. We think that this behaviour derives from the29

strategy we adopt to evaluate a property in the sectors. Indeed,30

the use of the weighted mean for each sector balances the small31

variations of the h function, while it starts being less efficient32

in case of higher variations (in this case, all the sectors become33

similar).34

λg = 0 λg = 0.2 λg = O.4

λc = 0 λc = 5 λc = 7

Fig. 10. Pattern distortion when noise is randomly added. Top row: a geo-
metric pattern is corrupted using increasing Gaussian noise. Bottom row,
an increasing random noise is added to each RGB color channel.

SHREC’17: Original Dataset, geometric noise
Method NN 1-Tier 2-Tier mAP e nDCG

mpLBP - set1 Clean 0.917 0.711 0.859 0.743 0.420 0.861
mpLBP - set1, λg = 0.2 0.911 0.693 0.846 0.733 0.380 0.790
mpLBP - set1, λg = 0.4 0.872 0.618 0.769 0.664 0.350 0.753

SHREC’18: Single Pattern Dataset, colorimetric noise
Method NN 1-Tier 2-Tier mAP e nDCG

mpLBP - set1 Clean 0.965 0.739 0.862 0.781 0.600 0.910
mpLBP - set1, λc = 5 0.915 0.514 0.653 0.586 0.440 0.822
mpLBP - set1, λc = 7 0.75 0.332 0.445 0.457 0.355 0.741

Table 4. mpLBP performance for data corrupted with noise. Top: the
Original Dataset of the SHREC’17 benchmark, Bottom: Single Pattern
Dataset of the SHREC’18 benchmark.
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Flat Surface Bending1 Bending2 Bending3 Bending4

Distances of each pattern descriptor of the bent surfaces
from the same pattern embedded into a flat one

Bending 1 Bending2 Beinding3 Bending4
Circles 0.237 0.032 0.058 0.0794
Crosses 0.089 0.084 0.100 0.105

Fig. 11. Examples of two patterns embedded on surfaces with gradually
stronger bendings. The table reports the distances between the pattern
descriptor of the pattern embedded on the flat surface and on the bent
surfaces. The L2 norm is used to compute such distances.

Robustness to surface bendings. A very relevant feature of a1

pattern descriptor on surfaces is its robustness to different bend-2

ings of the underlying surface. To test this, we created a pattern3

of circlets and applied it to surfaces with more and more severe4

bendings. These models are reported in Figure 11 (First row).5

Since they are generated from a synthetic surface and adopting6

an isotropic bending we are guaranteed that the models possess7

the same pattern. In the second row of Figure 11, the corre-8

sponding descriptors are showed. A similar test is done using9

a pattern made up by small crosses (see Figure 11 - Third and10

Fourth rows). From the results, one can observe that the pattern11

descriptor changes depending on the embedded pattern. More-12

over, it remains quite close, although not perfectly identical, for13

the same pattern across the bending changes. This show that14

the descriptor is more sensible to changes in the patterns it de-15

scribes and far less sensitive to the surface bending.16

Robustness to different model samplings. In the experiments17

shown in Section 5.1, the models with a low resolution were18

re-sampled, increasing the vertex density to reach a reasonably19

dense representation. Therefore, it is worth exploring the be-20

haviour of the pattern descriptor when it is computed for differ-21

ent sampling density of the same model. We used the SHREC1722

Original Dataset for this experiment. We selected two of the23

models of this dataset (one from class 8 and one from class 12)24

and down-sampled it from 40000 vertices to 3000 vertices, with25

various steps, using the default sampling scheme implemented26

in [44]. Figure 12 shows the pattern descriptor computed. It27

is easy to notice that the pattern descriptor holds its shape and28

changes when the number of vertices considerably decreases29

(although in the examples 7000 is still sufficiently stable with30

respect to the higher samplings we noticed that around 1000031

vertices is a good quality compromise). This test shows that it32

Model 1 (class 8)

Model 2 (class 12)

Fig. 12. Pattern descriptor robustness to different samplings. The number
of vertices of the model is on top of the respective pattern descriptor.

is possible to have similar performances when re-sampling with 33

different vertex resolutions, but it is necessary to have a mini- 34

mum vertex density in order to have more stable pattern de- 35

scriptors (in this case, approximately 10000 vertices or more). 36

Robustness to different choices of the parameters. The choice 37

of the mpLBP parameters (R, nrad and multP) is crucial for the 38

performance of the method because they are related strictly re- 39

lated at the resolution a pattern is analysed. Anyway, we noticed 40

that the performance of the mpLBP is quite stable for small 41

variations of the parameters. In other words, slightly chang- 42

ing the parameters (all three of them) will not jeopardise the 43

performances of the method. This fact was experimentally con- 44

firmed by selecting 27 variations of the best mpLBP run over 45

the SHREC17 original dataset (see Table 1). The performance 46

in terms of NN, FT and ST scores of the mpLBP are reported 47

in Figure 13 for all these 27 settings. On the horizontal axis we 48

report the parameter setting, while the vertical axis represents 49

the performance score (different colours are used for the NN, 50

FT and ST, respectively). The performances are very similar 51

for all the settings. The maximum discrepancy observed across 52

all the evaluation measures is around 0.05, which is very tiny, 53

especially considering that it occurs only once in 27 runs. 54
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Fig. 13. The performances of 27 different mpLBP runs on the SHREC17 dataset, with different parameter settings. The dashed lines represent the mean
value of the respective evaluation measure.

5.3. Different choices of the ring sampling scheme1

We took the four possible variants of the point neighborhood2

sampling schemes described in Section 3.3 and we evaluated3

them on the SHREC’17 Original dataset. As shape proper-4

ties, we considered the height-field as defined in Section 4.35

because of its simplicity and rough shape description and the6

Mean curvature because it generally performs well over geo-7

metric patterns. With reference to the labels defined in Section8

3.3, Scheme 1 is computed using R ranging from 7 to 15 and9

pxres ranging from 10 to 16. To evaluate Schemes 2, 3 and10

4 we extracted the standard punctual descriptor with parame-11

ters R = 14, nrad = 7 and multP = 4 and we considered only12

the sectors highlighted in the schemes. In this Section, we re-13

port only the most significant runs. Table 5 summarizes the14

results of the tests of mpLBP with these settings. In particu-15

lar, when using sampling scheme 1 with h equal to the Mean16

Curvature, we use R = 10 and pxres = 16, while when using17

sampling scheme 1 with h = HF, we set R = 7 and pxres = 12.18

Note that the size of the mpLBP descriptor varies according19

to the different neighborhood sampling schemes. Looking at20

the retrieval performances, we notice that mpLBP with scheme21

1 (with a square-based point neighborhood) performs poorly22

compared to the other schemes. This is not really surprising23

because a square-like point neighborhood inserts an orientation24

and an anisotropic sampling of the model. Unlike images where25

a square-like neighborhood is compliant with the intrinsic grid26

structure, for a surface, a circle or a geodesic neighborhood bet-27

ter reflect the intrinsic surface metric. Schemes 2 and 3 high-28

light that other sampling strategies over a circular neighborhood29

are possible and lead to good performances. On the contrary a30

too sparse sampling like the one proposed the Scheme 4 jeopar-31

dises the mpLBP performance. These results highlight that the32

mpLBP technique can be adapted to different schemes and that33

it is possible to keep limited the size of the descriptor compared34

to the original mpLBP settings [12] that probably generated a35

descriptor with redundant information.36

5.4. Computational time37

The mpLBP algorithm is implemented in around 200 MAT-38

LAB lines of code. The most expensive part, in terms of com-39

putational cost is the creation of the punctual descriptor, which40

SHREC’17: Original Dataset, scheme variants
Parameters NN 1-Tier 2-Tier mAP e nDCG

Scheme 1 - Mean C. 0.739 0.395 0.534 0.481 0.324 0.705
Scheme 1 - HF 0.794 0.504 0.622 0.560 0.360 0.755

Scheme 2 - Mean C. 0.928 0.707 0.835 0.746 0.447 0.878
Scheme 3 - Mean C. 0.928 0.667 0.804 0.715 0.436 0.861
Scheme 4 - Mean C. 0.856 0.596 0.745 0.658 0.418 0.813

Table 5. Retrieval results of the various sampling schemes on the
SHREC’17 Original Dataset.

is based on a kd-tree. This characteristic allows the mpLBP 41

algorithm to run in a much shorter time if compared, for exam- 42

ple, with the edgeLBP, while keeping similarly high evaluation 43

scores. By running both edgeLBP and mpLBP on meshes with 44

different number of vertices (from 5000 gradually to 120000 45

vertices) and different parameter settings, we can see the huge 46

gap between the timings of the two methods (see Table 6). 47

Tests are run on a personal computer Intel Core i7 processor 48

(at 4.2 GHz) with 32Gb RAM. The edgeLBP (as currently im- 49

plemented) has the number of sectors per ring constant across 50

all the rings. In order to have a fair comparison, we also set the 51

number of sectors to be constant for mpLBP (i.e., P j = P with 52

P ∈ N fixed). We observed that nrad and P do not affect the com- 53

putation times that much. Indeed, the radius size and the num- 54

ber of vertices are the biggest bottlenecks. Figure 14 provides 55

another computational time comparison between edgeLBP and 56

mpLBP showing the much more sever increase of the edgeLBP 57

computational cost compared to the cost increase of the mpLBP. 58

These timings are those obtained on the 120k vertices mesh, 59

with R = 4.5, nrad = 4 P = 15. We do not report the same trend 60

representation for other mesh and parameters for brevity rea- 61

sons, but those trends are almost identical to the ones reported 62

(only the time scale (y-axis scale) changes based on the radius). 63

6. Discussions and concluding remarks 64

We extended the LBP concept to surfaces represented as 65

point clouds and defined a novel description, called mpLBP. 66

Such a descriptor is able to keep state of the art performance and 67

run more efficiently than its analogous edgeLBP which is based 68

on a surface tessellation, see Section 5.4. Overall, the mpLBP 69

performance is in par or superior (by a thin margin) with the 70
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Fig. 14. Computational time trends for the mpLBP and edgeLBP.

5K R=2,5 R=3,5 R=4,5
nrad = 4, P = 12 22.04/2.88 16.89/1.38 19.06/1.35
nrad = 7, P = 12 15.74/1.59 19.91/1.55 24.54/1.60
nrad = 4, P = 18 11.40/1.27 15.89/1.48 17.12/1.38
nrad = 7, P = 18 16.14/1.95 20.39/1.88 30.18/2.55

10K R=2,5 R=3,5 R=4,5
nrad = 4, P = 12 59.33/4.23 79.09/4.62 92.31/5.09
nrad = 7, P = 12 71.69/4.35 95.58/4.93 116.51/5.46
nrad = 4, P = 18 52.92/3.95 76.55/4.77 83.54/4.95
nrad = 7, P = 18 72.43/5.01 95.86/5.53 140.23/6.25

15K R=2,5 R=3,5 R=4,5
nrad = 4, P = 12 81.13/5.31 118.42/7.48 143.29/8.00
nrad = 7, P = 12 107.26/6.63 143.08/7.52 178.01/8.40
nrad = 4, P = 18 81.92/5.96 115.85/7.38 128.10/7.49
nrad = 7, P = 18 107.83/7.53 143.77/8.19 188.56/9.32

30K R=2,5 R=3,5 R=4,5
nrad = 4, P = 12 341.81/19.90 516.53/28.52 651.99/33.08
nrad = 7, P = 12 454.23/23.30 618.36/28.36 805.07/33.72
nrad = 4, P = 18 348.93/20.43 507.31/28.21 583.39/30.31
nrad = 7, P = 18 456.26/25.10 621.50/29.75 811.99/35.25

90K R=2,5 R=3,5 R=4,5
nrad = 4, P = 12 2378.79/109.32 3661.28/158.43 4344.93/196.08
nrad = 7, P = 12 3024.61/122.58 4142.54/157.74 5200.46/194.75
nrad = 4, P = 18 2344.02/110.05 3481.22/160.97 3989.87/179.15
nrad = 7, P = 18 3034.85/128.34 4145.79/163.19 5704.31/201.03

120K R=2,5 R=3,5 R=4,5
nrad = 4, P = 12 4314.18/165.65 6612.18/260.30 8341.62/335.82
nrad = 7, P = 12 5583.24/189.33 7812.26/260.18 9954.04/332.90
nrad = 4, P = 18 4236.92/170.22 6586.75/262.25 7626.82/309.25
nrad = 7, P = 18 5596.74/198.12 7806.80/266.27 10438.45/348.40

Table 6. Computational times for edgeLBP and mpLBP (in seconds). The
top-left cell of each table indicates the number of vertices.

current state of the art, whether these methods are based on 1

engineered and/or learned descriptors. Due to the way the de- 2

scriptor is evaluated over the rings (the mean of the values of a 3

function on a set of points), the mpLBP remains stable to noise. 4

Indeed, in presence of a small noise intensity that simulates the 5

possible perturbation of a common scanning device, the perfor- 6

mances are competitive with the current state of art methods. 7

Moreover, it is robust to different surface bendings and is able 8

to support different sampling schemes, as discussed in Section 9

5.3. 10

Other competing methods such as the T/mC/SIFT/FV 11

method in [13] implicitly assumes that the same geodesic 12

‘sphere’ centered in every patch is able to parameterize all the 13

models. The sphere radius is unique and can be obtained eas- 14

ily for the SHREC’17 dataset because the patches have com- 15

parable size but it is hard to obtain on datasets with models of 16

different size. Moreover, such a single patch parameterization 17

approach is not suitable to deal with datasets containing models 18

with handles and protrusions, like some of SHREC’18 dataset. 19

Indeed, T/mC/SIFT/FV translates the problem into a texture im- 20

age comparison and requires a resampling with 20K vertices, 21

while mpLBP works directly on the 3D model (mesh or point 22

cloud). From these considerations, T/mC/SIFT/FV can be un- 23

derstood as a global descriptor that down-samples the model 24

vertices as a pre-processing step. On the contrary, the mpLBP 25

descriptor is local and its computation depends on the number 26

of vertices, therefore the time complexities are not directly com- 27

parable, while also scoring similar performances. 28

While most patterns considered in this work are well de- 29

scribed by a single scalar function for each point of the model, 30

the possibility of describing patterns based on two or more 31

properties (e.g.: curvature plus color, multiple color channel 32

and so on) is of interest and one of the future research paths. Fu- 33

ture reasoning will be devoted to the punctual descriptor used 34

by the mpLBP. Since its resolution can easily be customized 35

and it is not tied to a specific surface property (curvatures, col- 36

ors, height-fields and so on), the punctual descriptor itself could 37

be used as a feature vector to encode different surface details 38

and/or as the starting point for more advanced local descrip- 39

tions. A further extension is the application of the punctual 40

descriptor to the problem of pattern recognition over surfaces. 41

This last is still an open problem, as observed in [5], and a quick 42

and well performing technique such as the mpLBP is a promis- 43

ing contribution towards a possible solution. 44
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