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ABSTRACT The magnetic configurations of cylindri-

cal Co-rich CoNi nanowires have been quantitatively 

analyzed at the nanoscale by electron holography and 

correlated to local structural and chemical properties. 

The nanowires display grains of both face-centered cu-

bic (fcc) and hexagonal close packed (hcp) crystal 

structures, with grain boundaries parallel to the nanowire axis direction. Electron holography evidences the exist-

ence of a complex exotic magnetic configuration characterized by two distinctly different types of magnetic con-

figurations within a single nanowire: an array of periodical vortices separating small transverse domains in hcp rich 

regions with perpendicular easy axis orientation, and a mostly axial configuration parallel to the nanowire axis in 

regions with fcc grains. These vastly different domains are found to be caused by local variations in the chemical 

composition modifying the crystalline orientation and/or structure, which give rise to change in magnetic aniso-

tropies. Micromagnetic simulations, including the structural properties that have been experimentally determined, 

allows for a deeper understanding of the complex magnetic states observed by electron holography.  

KEYWORDS magnetic configuration, magnetic nanowire, electron holography, vortex state, micromagnetic simulation, 

nanocylinder.
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One-dimensional magnetic nanostructures have for the past two decades been of increased interest for the develop-

ment of future spintronic devices1–4 motivated by concepts like Magnetic Race Track Memory5 and the wish to 

manipulate magnetic domain walls (DW). Cylindrical nanowires (NWs) are particularly interesting candidates to 

reach this goal, much due to the fast DW motion induced by an external magnetic field or electric current, where 

theoretical studies have anticipated the absence of a Walker breakdown.6,7 In addition, curvature effects have re-

cently been proved to induce effects related to topology, chirality, and symmetry,8 and unidirectional reversal pro-

cess has been reported by engineering the geometry in multi-segmented nanowires.9 However, to further technical 

developments in spintronics and a better control of DW motion, a thorough understanding of the fine structures of 

DWs in magnetic NWs, in which shape and crystal structure are contributing factors to the minimization of the 

system’s magnetic energy,10–13 is required. 

The magnetic configurations in various Co-based cylindrical nanowires have previously been studied in several 

publications,13–16 which have revealed a strong influence of the NW’s structural properties,17 and thus a dependence 

of their fabrication process.10,18,19 For instance, it has been shown that monocrystalline hcp phase can be obtained 

in pure Co NWs with the c-axis engineered with nearly perpendicular orientation to the NW axis.10,20 The corre-

sponding uniaxial magnetocrystalline anisotropy is then strong enough to challenge the large shape anisotropy of 

NWs.10,21,22 In CoNi-alloy NWs, the amount of Ni content can modify the crystallographic phase: while Co NWs 

with a low Ni content keep a hcp phase with a strong magnetic anisotropy and a resulting magnetic induction 

perpendicular to the NW axis, high Ni content generally leads to fcc crystal structure with a lower magnetocrystal-

line anisotropy23,24 and a parallel magnetic induction. Tuning the CoxNi1-x content then allows for adjusting the 

magnetic easy axis orientation from parallel (with cubic anisotropy) to perpendicular (with uniaxial anisotropy) 

relative to the nanowire axis,10,25 making CoNi-alloy NWs interesting as potential building blocks for future de-

vices. 

However, previous publications have shown a coexistence of fcc and hcp crystal phases in single CoNi alloy 

NWs,23,25 but there has been little or no report on how they mix and affect the magnetic configuration of the NW. 

Only statistical overviews of the structural and chemical information have been reported, as the crystal phase and 

composition in NWs are often determined by techniques like x-ray diffraction (XRD) and energy dispersive x-ray 

microanalysis (EDX) on assemblies or arrays of NWs.10,18 To gain control over the magnetization states and reversal 

mechanisms, a precise analysis of the local structure of a single nanowire, combined with its magnetic configura-

tion, is required. A quantitative study of both the structure and the magnetic properties obtained on the same area, 

and at the nano-scale, demands versatile and advanced techniques in combination with sufficient spatial resolution 

and sensitivity. Off-axis electron holography (EH) carried out in a transmission electron microscope (TEM) is an 

appropriate interferometric technique that allows for imaging of the magnetic configuration in nanostructures with 

nanometer resolution and high sensitivity.26–30 EH offers quantitative information on the in-plane components of 

the magnetic induction inside the sample, as well as of the stray field surrounding it (see supplementary information 

S2). As EH is based in a TEM environment, it offers the advantage of combining other TEM techniques, like high-
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resolution TEM (HRTEM), selected area electron diffraction (SAED) and electron energy loss spectroscopy 

(EELS), and thus allows for studying the crystal structure and composition of the same area of the same NW with 

a high spatial resolution. In this work, we have combined EH with conventional TEM, Scanning TEM (STEM)-

EELS and ASTAR measurements, a diffraction spot recognition technique based in the TEM (see supplementary 

information S3), to image and quantitatively determine the magnetic induction of small diameter cylindrical NWs 

of nominal composition Co85Ni15, i.e. NWs with a low Ni content, prepared by electrodeposition (see supplementary 

information S1), in relation to their local crystallographic structure and chemical composition. In addition, micro-

magnetic OOMMF simulations have been carried out for a deeper analysis of the local magnetic microstructure. 

This correlative study of TEM methods combined with micromagnetic simulations, allowed us to determine the 

key factors that govern the main parameters involved the magnetic configuration. 

For the sake of consistency, all the results presented in this work are taken from the same area of a single nanowire, 

representative for the whole sample. Similar results were obtained from other NWs of the same batch. 

RESULTS AND DISCUSSION 

Figure 1a displays a TEM image of a representative Co85Ni15 NW of 70 nm diameter. The over-focused Lorentz 

image depicted in Figure 1b reveals an inhomogeneous magnetic configuration in the stippled region of the NW. 

The length of the enclosed area is 1.7 µm. EH analysis was carried out in this area and is shown in Figure 1c and 

1d. Figure 1c displays the magnetic phase shift obtained at remanent state with a spatial resolution of 3 nm, and 

Figure 1d highlights the magnetic flux by applying a cosine function on the amplified version of the magnetic phase 

image in Figure 1c. A first analysis indicates that this NW displays a very complex magnetic configuration with 

four different magnetic regions, marked C1 to C4. The magnetic configuration in regions C1 and C4 in Figure 1c, 

presents isophase lines oriented parallel to the nanowire axis (x-axis as indicated by white arrows), evidencing an 

in-plane magnetic flux running along the NW axis and therefore a net component of the magnetization parallel to 

the NW axis. In contrast, the second prominent configuration of magnetic isophase lines, marked C2 in Figure 1c, 

displays a chain of circular patterns, aligned periodically in the middle of the nanowire. These curling isophase 

lines separate regions with magnetic flux pointing in opposite directions (marked by white arrows). This magnetic 

pattern corresponds to an antiparallel domain-like region whose magnetization is oriented perpendicular to the 

nanowire axis (marked by arrows along y-axis) with alternating opposite direction. Such a configuration is expected 

in NWs with magnetization easy axis oriented perpendicular to the nanowire axis as a consequence of a perpendic-

ular magnetocrystalline anisotropy strong enough to counterbalance the NW shape anisotropy, which tends to align 

the magnetization parallel to its axis. The antiparallel coupling between adjacent domains allows for minimizing 

the dipolar energy. Lastly, the region marked C3 in Figure 1c bears resemblance to region C2, but with the isophase 

lines slightly oriented towards the nanowire axis, when compared to the C2 region. C3 region thus seems to be an 

intermediate state between C4/C1 and C2 regions. Our results thus demonstrate that three distinctly different mag-

netic domains appear within a limited length of the NW. 
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Figure 1: (a) BF-TEM image and (b) over-focused Lorentz image of sample NW. (c) Unwrapped magnetic phase 

shift image of stippled region marked in (a) and (b) with magnetic phase shift in radians represented with color 

scale, and (d) magnetic flux lines obtained from the cosine of (c) with amplification factor 4. (e) Plot of measured 

phase shift of cross sections in regions marked by red and gray arrows in (c).  

We start a deeper analysis of the magnetic phase image by focusing our attention on the C1 and C4 areas, presenting 

a net component of the magnetization parallel to the NW axis. By measuring the magnetic phase shift across the 

NW in each of the C1-4 regions (marked in Figure 1c by red and grey arrows, and plotted in Figure 1e) and assuming 

a circular NW cross section with a uniform magnetization along the x-axis, we can extract the value of the in-plane 

magnetic induction parallel to the NW axis in the selected regions (see supplementary information S2). Using 

equation 6 from S2, we measure a magnetic induction of 0.7 T in C1 and 1 T in C4, while the expected saturation 

magnetization in Co85Ni15 alloy NWs, with all magnetic moments aligned parallel to the NW axis, is 1.6 T.31 It then 

comes out of our experimental measurements that either the composition of the Co85Ni15 alloy is far from the one 

expected, leading to a strong decrease of the magnetization, or there is no region with a uniform magnetization 

parallel along the NW, even though the isophase lines in regions C1 and C4 indicate at it to be at least partly aligned 

along the axis. However, the hypothesis concerning a large deviation of the alloy composition is not valid: such 

magnetization values would correspond to a high Ni content of more than 70%. This is in contradiction with our 

TEM spectroscopy measurements  as well as previous studies performed on similar NWs elaborated by the same 

procedure,31 where a mean value of 15% Ni is expected. We thus conclude that the magnetization is not uniform 

and present a rotating component around the NW. In addition, the difference between measured values in regions 

C1 and C4 clearly indicates that even if the magnetic configuration looks similar in these regions, their total mag-

netic induction components parallel to the NW axis are different, and lower in the former compared to the latter. 
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This is qualitatively evidenced in Figure 1d, where the magnetic flux line density is much higher in the C4 region 

compared to C1. 

Like all other TEM methods, EH is a projection technique: the phase shift of the electron beam related to the in-

plane magnetic induction components, is integrated along the beam path. In addition, EH is only sensitive to the 

components of the magnetic induction perpendicular to the beam path, i.e. in-plane magnetic components (see 

Supplementary Information S2 for details).  In case of a rotation of the magnetization around the NW axis, no 

integrated in-plane magnetic induction would be detected by EH as each magnetic induction component would 

have an equal, but opposite counterpart or will contain an out-of-plane component. As a result, the integration along 

the beam line would give zero phase shift, and only the remaining component along the NW axis would contribute 

to the phase shift. Accordingly, the magnetic configuration and the low phase shift value measured by EH in regions 

C1 and C4, indicate that a part of the magnetic induction presents a rotation around the NW axis. Two magnetic 

configurations, combining both rotating and parallel magnetic components, could in principle be considered: either 

a vortex state or a partial magnetic curling state around the NW axis. The possibility of vortex state is disregarded 

as it should give rise to inhomogeneous magnetization. The magnetic curling state has been reported by Ruiz-

Gómez et al.32 and is described by a magnetization at the core of the NW pointing in the direction of the nanowire 

axis, surrounded by a helical magnetic configuration. As previously stated, we observe a change in measured in-

duction between regions C1 and C4 (Figure 1e) that could arise from a difference in size of the core of such a vortex 

state as discussed by Bran et al. and Ivanov et al.31,33 or from a change in rotation angle of the curling with respect 

to the nanowire axis. The distribution of the magnetic shift and deeper analysis suggest that it is the curling state 

that occur in our system, where the highest phase shift value in region C4 comes from a smaller curling angle, i.e. 

a more elongated rotation along the nanowire axis, and thus a stronger measured magnetic induction.  

Moving on, region C2 in Figure 1c bears evidence of antiparallel magnetic domain-like regions oriented perpen-

dicular to the nanowire axis (along the y-axis), separated by states depicting a circular shape. These antiparallel 

domain-like regions are separated by a series of vortex states where the magnetization direction of the vortex core 

is oriented perpendicular to the nanowire axis (along the z-axis) with alternating chirality (rotation of the in-plane 

magnetization) or polarity (magnetic core orientation). Note the surprising exotic magnetic configuration where the 

transverse domain-like regions are significantly smaller in size than the vortex states. Finally, the C3 segment in 

Figure 1c looks like a transition region between the two already presented magnetic configurations (perpendicular 

vortex chain, and curling state) in C2 and C4: from C2 the vortex states disappear and the magnetic flux parallel to 

the NW axis increases as we move towards C4. 
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Figure 2: Experimental results of structural analysis of nanowire region. (a) Virtual bright field image of scanned 

nanowire area. (b)-(d) Crystal orientation map showing orientation of [111] and [0001] axis of respectively fcc 

grains and hcp grains by color code after angular displacement with respect to (b) x (c) y and (d) z axis. (d) Virtual 

crystal phase map of region in (a), where blue represent highest match for fcc phase, and red for hcp. (f) Superim-

posed magnetic phase shift image and virtual crystal phase map of the same nanowire region where only the hcp 

phase regions are visible. (g) The hcp and fcc facets from the orientation color code maps in (b)-(d) 

 

To understand why this nanowire presents this complex magnetic configuration, we performed structural and chem-

ical analysis on the same nanowire area, as shown in Figure 2a-e. ASTAR measurements  were carried out to 

determine the local crystalline structure within the NW by retrieving precession diffraction patterns of the nanowire 

region (Figure 2a show mapped area), which were then analyzed by comparison to a database of calculated diffrac-

tion patterns using the automatic pattern recognition software of ASTAR NanoMEGAS34,35 (See supplementary 

information S3 for more details). The results, as seen in Figure 2b-e, show that the region generally consist of three 

crystal grains: two fcc and one hcp crystal phase grains were found to coexist in the nanowire segment. The ap-

pearance of two phases has already been documented in CoNi alloyed NWs in literature.23,25,31 Contrary to previous 

results where different phases were observed in different regions of the NW, we here see that the grain boundaries 

between the fcc and hcp phases are running almost parallel to the NW axis (Figure 2e). Thus, the two phases are 

coexisting within the same cross-section in regions of the NW but not with the same proportion along the NW. 

ASTAR experiments (Figure 2c) also indicate that the grains’ close-packed directions [111]fcc and [0001]hcp are 

close to perfectly aligned with respect to the y-axis (perpendicular to the nanowire axis), making a transition from 

one crystal phase to the other possible by stacking fault. Figure 2c-d also show that the c-axis of the hcp structure 

is on average oriented 78 relative to the nanowire axis, i.e. almost perpendicular to it.  

By overlapping the magnetic phase shift image onto the same region of the crystal phase map extracted from 

ASTAR (Figure 2f), we observe that the chain of vortex states (regions C2) is located on the area which consist 
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mainly of hcp phase, indicating a direct correlation between the perpendicular magnetic configuration and the hcp 

structure with the [0001] direction (c-axis) at 78 relative to the NW axis (Figure 2c). It is well known that fcc and 

hcp crystal phases have different types magnetocrystalline anisotropy (uniaxial for hcp phase, and cubic for fcc 

phase), with different values of the anisotropy constant,24,36 and consequently different easy axis directions. The 

local change of crystal phase is therefore assumed to be the origin of changes in magnetic configuration, and it is 

likely the magnetocrystalline anisotropy of the hcp phase that favors the magnetization alignment along the c-axis, 

as it is strong enough to challenge the shape anisotropy of the NW, which in turn promotes a stronger transverse 

magnetic component.37  

 

 

Figure 3: Results from micromagnetic simulation. (a) 3D representation of the simulation showing the magnetic 

vectors with their x-y-direction indicated by the color wheel. Zoomed images of the vortex state displayed below 

in (a). (b) Magnetic phase image and (c) magnetic flux lines obtained from the simulation.  

 

To gain a deeper understanding of the complex magnetic configuration observed by EH, we performed a static 

micromagnetic simulation of the remnant state by the use of OOMMF code.38 We used the magnetic parameters for 

a Co85Ni15 monocrystalline hcp phase structure for the hcp grain,31 with saturation magnetization Ms = 1273 kAm-

1, 31 a value of the exchange constant A = 26 x 10-12 Jm-1, and using an uniaxial magnetocrystalline anisotropy value 

of K1 = 350 kJm-3 oriented at 78 relative to the NW axis, as found by ASTAR for the hcp grain in the NW 

sample. Figure 3 shows the main results of the micromagnetic simulations, where Figure 3a shows the three-di-

mensional simulated magnetization at remanent state obtained from OOMMF calculations, where the x-y-plane of 

the magnetic vectors are represented by the colored directions of the color wheel. Figure 3b shows the simulated 

magnetic phase image calculated from the micromagnetic simulations, and the corresponding flux image is shown 

in Figure 3c We obtain a nice agreement between the experimental (region C2 in Figure 1c) and the simulated phase 

image (Figure 3b), allowing for a determination of the involved magnetic parameters through the OOMMF simu-

lation.  
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Figure 4: Experimental results of compositional analysis. (a) Bright field image. (b) Magnetic phase shift image of 

corresponding region. (c) and (d) show compositional maps of respectively Co and Ni composition from squared 

region in (a). 

 

Local chemical analyses were performed by spectrum images in Scanning Transmission Electron Microscopy – 

Energy Electron Loss Spectroscopy (STEM-EELS) mode to elucidate the origin of the observed hcp/fcc structure 

change. We focused our STEM-EELS analysis around the hcp-fcc grain boundary, which is visible in the bright 

field TEM image in Figure 4a and corresponds to the magnetic configuration shown in Figure 4b. From spectrum 

imaging experiment carried out on the L2,3 edge of Co and Ni, we have extracted Co and Ni content maps (Figure 

4c and 4d) using multiple linear least squares (MLLS) fitting.39 These maps reveal a difference in composition 

between the two grains; the region of hcp structure show a higher Co concentration (average of 89% Co and 11% 

Ni in square I in Figure 4c) as compared with the fcc structure (average of 80% Co and 20% Ni in square II in 

Figure 4d), which appears contain less Co. This agrees well with Co-Ni phase diagrams, where hcp phase appears 

in Co-rich [Co-Ni] alloys.24 The lowest Co content in square I is 85.5%, while the highest Co content in square II 

is 82%. This point to a compositional threshold around 80-85% of Co to stabilize hcp phase, which is higher than 

the previously reported threshold of 70-75% Co24,40 at room temperature for film or in the bulk. However, a more 

systematic and extensive study of this must be made to clearly conclude an accurate threshold, which partly depends 

on the elaboration process. 

The chain of vortex states is located in the large grain of mainly hcp phase (C2), and the curling state seems to be 

located in regions with a coexistence of fcc and hcp phase grain (C1 and C4). Spectrum imaging and ASTAR 

experiments indicate that the magnetic transition region C3 is located almost along the hcp/fcc grain boundary, 

where both the structure and the composition is likely to change. The drastic changes in magnetic configuration 

appear to be caused by local changes in crystal structure induced by inhomogeneous composition of the NW. Even 

for small-to-moderate changes in composition (Detected Ni content of 8-25%, excluding edge measurements), re-

sults in a change in the crystal structure, and from this, a drastic difference in the local magnetic configuration.  
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CONCLUSIONS 

Quantitative and local studies of the magnetic, structural and chemical changes have been performed on cylindrical 

textured Co-rich CoNi nanowires. A complex and inhomogeneous magnetic configuration has been revealed, con-

sisting of a periodical configuration of exotic antiparallel transverse domain-like regions separated by transvers-

vortex states of alternating chirality and/or polarity at the hcp rich region. In turn, in the more fcc rich regions, 

mostly axial domains are observed. A transition between these two regions has also been identified. The experi-

mental results have been compared to micromagnetic simulations, revealing that the vortex chain is formed inside 

hcp phase of the Co-rich CoNi alloy. Correlated local changes in composition and crystal structure have been high-

lighted as the origin of the different magnetic configurations: the vortex chain is a result of the hcp phase whose 

magnetic easy axis (c-axis) is oriented 78 relative to the NW axis (x-axis), and counterbalances the shape anisot-

ropy. A curling state with a magnetic induction component oriented along the NW axis is appearing in regions with 

fcc phase grains where the easy axis and shape anisotropy act in the same way. A transition region between these 

two configurations is observed at the fcc/hcp grain boundary running almost parallel to the NW axis. 

This study demonstrates the strong correlations between crystal structure and composition, and consequently on 

the magnetic configurations in CoNi NWs. The effect of local crystalline changes due to a slight variation of com-

position is found to drastically change the magnetic configuration in the NW, and can therefore not be neglected 

when attempting to explain and analyze the magnetic structure. A correlative microscopy investigation has been a 

great advantage in this work, as it offers magnetic, structural and spectroscopic analysis of the exact same area, 

since the same sample can be inspected by the different microscopic techniques. 

METHODS 

Cylindrical CoNi nanowires were prepared by electrodeposition into self-assembles pores of anodic aluminum ox-

ide templates. For a detailed description of the synthesis, see supplementary information S1. The NWs were drop 

casted onto a TEM carbon grid for the EH, STEM-EELS and ASTAR measurements.  

Studies of the magnetic configuration of the CoNi NWs were performed by EH using a Hitachi HF-3300 (I2TEM-

Toulouse) transmission electron microscope operated at 300kV. This microscope is equipped with a cold field emis-

sion gun, a spherical aberration corrector, and a double biprism setup, which makes it a dedicated microscope for 

interferometry experiments. The experiments were carried out in the normal stage of the I2TEM, at remanence state 

(with objective lens switched off), after an application of 1.8 T perpendicular to the sample, by switching the ob-

jective lens on and off again. The holograms were acquired by the use of a software for fringe position correction 

developed by C. Gatel,41 with an exposure time of 160 seconds per hologram, an inter-fringe distance of 1.5 nm, 

allowing for a spatial resolution of 3 nm for the treated magnetic phase images. For a more detailed description of 

the electron holography technique, see supplementary information S2. 

Studies of the structural configuration of the NWs were performed on a Philips CM20-FEG TEM at 200kV using 

the NanoMEGAS ASTAR system, a TEM based automatic crystal orientation and phase mapping technique.35 
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The data was acquired using precession electron diffraction with spot size ~ 1 nm, camera length 235 mm, mapped 

with step size of 4 nm. See supplementary information S3 for a description of the ASTAR system. 

Studies of the compositional distribution of the NWs were performed using STEM-EELS at a JEOL ARM200F 

TEM operated at 200kV. This microscope is probe-corrected and equipped with a cold FEG. The data was acquired 

using GIF Quantum ER imaging filter and an energy resolution of 0.33 eV (measured at the FWHM of the zero 

loss peak) in dual EELS mode, acquiring low loss and high loss spectra at the same time. For the data treatment we 

used MLLS fitting algorithm in Gatan Microscopy Suite®’s Element Quantification tool in order to analyze the 

signal from the overlapping Co and Ni edges. See supplementary information S4 for a description of the MLLS 

fitting procedure. 

Micromagnetic simulations were performed using OOMMF38 with the following magnetic parameters: saturation 

magnetization, Ms-hco = 1273 kAm-1 31; exchange constant, Ahcp = 26 x 10-12 Jm-1, magnetocrystalline anisotropy, K1-

hcp = 350 kJm-3(uniaxial anisotropy, easy axis oriented 78 relative to NW axis). A representative 3D shape of the 

NW, with diameter of 70 nm, was built by stacking magnetic unit cells of 5 x 5 x 5 nm3. 
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