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Abstract 
 

We identify the minimal interparticle interactions necessary for a particle dynamics 

simulation to predict the structure and flow behaviour of soft particle glasses (SPGs).  

Generally, two kinds of forces between the particles must be accounted for in 

simulations of SPGs: viscous or frictional drag forces and elastic contact forces. Far 

field drag forces are required to dissipate energy in the simulations and capture the 

effect of the rheology of the suspending fluid. Elastic forces are found to be dominant 

compared to near-field drag or other forms of friction forces and are the most 

important component to compute the rheology. The shear stress, the first and second 

normal stress differences for different interparticle force laws collapse onto universal 

master curves of the Herschel-Bulkley form by non-dimensionalizing the stress with 

the yield stress and the shear rate with the viscosity of the suspending fluid divided by 

the low-frequency shear modulus. The Herschel-Bulkley exponents are close to 0.5 

with a slight dependence on the repulsive pairwise elastic forces. 
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1 Introduction 

Soft particles glasses (SPGs) are composed of deformable particles that are 

jammed at volume fractions beyond close-packing. They cover a wide range of 

materials such as microgels, emulsions, block copolymer micelles, and star polymers.1  

They show elastic solid behavior at rest and flow under stresses larger than the yield 

stress. These characteristics make them useful for coating applications, paints, pastes, 

textured foods, and cosmetic products.2 Similar to hard sphere glasses, soft particles 

glasses demonstrate nonergodicity and caged dynamics.3 However, while hard sphere 

glasses only experience forces due to excluded volume interactions, soft particle 

glasses are compressed via a bulk osmotic force and interact through an elastic 

repulsive potential. The phase diagram of soft particle suspensions shows strong 

similarities with that of hard spheres.3 Many systems like emulsions or microgels 

exhibit the same sequence of fluid, entropic glass, and soft glass phases upon 

increasing the density.4,5 For relatively monodisperse suspensions, jamming takes 

place at a volume fraction of about 0.64. Above the jamming point, thermal or 

Brownian forces become negligible compared to contact forces, which determine the 

microstructure and macroscopic properties. 

The shear stress σ  of soft particle glasses is well represented by the Herschel-

Bulkley equation6: 

                                                           σ σ γ= + m
y k ,                                                    (1)   

where σy is the yield stress, k the consistency, and m the so-called Herschel-

Bulkley exponent. For a long time this equation has been considered as a purely 

empirical, albeit convenient, tool for characterizing the nonlinear rheology of yield 

stress materials. More recently the problem has stimulated a lot of research with the 

objective to connect the microscopic properties and the macroscopic rheology of soft 
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particle glasses.1,3,6  Important questions concern the origin and the prediction of the 

yield stress, the values of the parameters involved in the Herschel-Bulkley equation 

and in particular the exponent m. Careful experiments on well-characterized SPGs 

have demonstrated that the Herschel-Bulkley equation provides a good description of 

the flow properties of SPGs with an exponent close to 0.5.4, 7-13. In addition the flow 

curves measured for different particle densities have been found to collapse onto 

master curves when the stress and the shear rates are rescaled by appropriate 

parameters.4, 7, 10-13 These experimental findings have stimulated an intense theoretical 

activity resulting in a variety of descriptions based on scaling methods,14 STZ theory,15 

phenomenological models like the SGR model16, and elastoplastic models and its 

many variants.17-23 However many features of the flow properties of soft particle 

glasses remain poorly understood. 

Microscopic models have also been developed in order to describe and capture 

the macroscopic flow behavior of jammed suspensions in relation with their particle 

scale behavior.24-31 In 2D the particles are represented by circular disks which, when 

overlapping and only then, interact via repulsive forces. The repulsive force between 

two particles α and β depends on the overlap distance αβ α β αβ= + −h R R r , where αR  

and βR  are the radii of the particles and αβr  is their center-to-center distance. The 

second key ingredient is the viscous dissipation force, which in general is assumed to 

be the sum of the drag forces exerted on each particle by its neighbors. In general an 

external force is applied to keep the suspension moving and provide the applied shear 

strain and strain rate. Inertia is generally neglected or made negligible resulting in 

strongly overdamped motion. In his pioneering work, Durian took an elastic repulsive 

force derived from a harmonic potential and for simplicity computed the dissipation 

with respect to the imposed average linear shear velocity flow. Inertia was neglected. 



4 
 

The resulting flow curves were found to obey the Bingham equation (m = 1 in Eq. 1). 

Later on Langlois et al. allowed the particles to move independently so that the drag 

force between two particles was computed in proportion to their relative difference 

and not with respect to the background fluid velocity.27  A mass was attributed to 

particles but it was small enough to make inertia negligible. The flow curves were 

found to obey the Herschel-Bulkley equation with an exponent m close to 0.5.  

Different authors have implemented the soft-disk model with harmonic interactions 

and drawn similar conclusions.29,30 Tighe et al. identified four different shear rate 

dependent regimes, namely yield stress, transition, critical and viscous regimes.28  In 

the critical regime, the flow curve was characterized by a Herschel-Bulkley exponent 

of 0.5 whereas, in the viscous regime at very high shear rates, it followed the Bingham 

equation. The exponent m ≅ 0.5 has also been observed in molecular dynamic 

simulations of 2D athermal Lenard-Jones glasses.20,21,26,32 

These models are 2D in essence, which raises the question of whether they are 

representative of experiments. Actually, only a few 3D simulation schemes have been 

developed to investigate the flow of jammed materials.11,33,34 It is not yet clear if and 

how the microscopic ingredients of the models influence the macroscopic rheology 

and whether the results which have been obtained are general. The main questions 

concern the form of the repulsive forces acting on the particles and the nature of the 

viscous drag forces that controls the dissipation. In this paper we address these issues 

using a 3D micromechanical model that we have shown to successfully describe the 

linear and nonlinear rheology of jammed SPGs, and produce shear stress and normal 

stresses predictions in quantitative agreement with steady and oscillatory 

experiments.11,35 We implement different repulsive forces corresponding to varying 

softness and explore the role of the dissipative drag force between particles.  We show 
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that the non-linear rheological properties depend on the expressions of the viscous and 

elastic forces but that the shear stress and normal stresses difference can be rescaled on 

similar universal Herschel-Bulkley master curves once the elastic modulus is used as 

the control parameter. 

2 Computational method 

2.1 Model description and equations of motion 

The suspension consists of particles with a Young modulus E, dispersed in a 

solvent of viscosity ηS, at a volume fraction φ . As depicted in Fig.a, the jammed 

suspension flows in the x-direction and is subject to a velocity gradient γ  in the x-y 

plane. The motion of each particle is determined by the sum of the pairwise forces 

exerted by the neighboring particles, which can be categorized into dissipative drag 

forces α
dragf  and interparticle repulsive forces associated with elastic interactions αβ

elasf . 

The total drag forces are split into two contributions, namely the far-field drag force 

αβ
far-dragf  and the near-field drag force αβ

near-dragf . 

 
Fig. 1 Schematic representation of a sheared suspension (a) and pairwise interaction (b). 
 

2.1.1 Elastic forces αβf elas  

Elastic forces are the normal forces acting on the contacting facets between a 

particle and their neighbors. They are responsible for the mutual repulsion between 

two neighboring particles In the original version of the model,11 the repulsive elastic 
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force has the form of a modified Hertzian force, which is known to well represent the 

repulsive forces between two elastomeric particles:36  

𝐟 = 𝐶𝐸∗𝜀 𝑅 𝐧 ,                                             (2) 

where *E = 2/ 2(1 )ν−E  is the contact modulus based on the Young modulus E  

and Poisson ratio ν , / ( )α β α β= +cR R R R R  is the contact radius, ( ) /αβ α β αβε = + − cR R r R  

is the dimensionless overlap distance characterizing the degree of compression, and 

⊥n  is the unit vector perpendicular to the flat surface representing the particle-particle 

contact. The values of C  and n  change with αβε  as follows: when 0 0.1αβε< ≤ , n = 

1.5 and C = 1; when 0.1 0.2αβε< ≤ ,  n = 3 and C = 31.62;  when  0.2αβε > , n  = 5 and 

C = 790.6. This piecewise form takes into account the nonlinear elasticity of the 

particles and ensures that the elastic force for large overlap is larger than in classic 

Hertz theory.1, 36 This form is used in Section 3.1, where we investigate the influence 

of the drag forces on the flow curves. When inspecting the influence of the force law 

in Section 3.2, a simplified form of Eq. 2 is used where C is set to be 1 and the value 

of the elastic exponent n is set to be 1.5, 3 and 5 separately, which correspond to force 

laws with different softness.  

2.1.2 Far-field drag force α
far-dragf  

The far-field drag force α
far-dragf  on particle α is a hindered Stokes drag 

originating from the velocity difference between the imposed flow field and particle α:  

( )
6( ) ( )α β α α α
π η γ

φ
= − = −f u u e ufar-drag s

x
Rb y

f
.                                   (3) 

It is referred to as a far-field drag term in relation with Stokesian dynamics. It has the 

same form as in the initial Durian model except for the expression of the dissipation 



7 
 

constant in the prefactor. The latter involves the average radius of the particle R, the 

interstitial fluid viscosityηs , and a term 𝑓(𝜙) that is the hindered settling coefficient 

that accounts for the reduced mobility of the particles at high volume fractions. The 

value of 0.01 used for this coefficient in the following is the estimated value for a 

suspension of spheres near close-packing.37 It can be easily shown that changing ( )φf  

affects the characteristic time scale for dissipation and is thus equivalent to translating 

the flow curves along the shear rate axis. 

2.1.3 Near-field drag force αβ
near-dragf   

The particles do not collide like in granular materials but come into close 

contact forming lubricated facets which generate elastic and near-drag forces. The 

near-field drag force αβ
near-dragf  is the tangential force acting on the flat contacting surface 

between neighboring particles as shown in Fig. 1b. Two different forms of near-field 

drag forces are used in the simulation to test the importance of the near-field 

contribution: an elastohydrodynamic drag force (EHD) αβ
EHDf  and a Coulombic 

frictional force αβ
Cf .   

The elastohydrodynamic drag force αβ
EHDf arises from a coupling between the 

hydrodynamic pressure in the lubrication film separating two particles and the elastic 

repulsion force between them and is given by 

𝐟 = −(𝜂 𝐶𝑢 ,∕∕𝐸∗𝑅 ) / 𝜀( )/ 𝐧 ,∕∕.                                     (4) 

where 𝐧 ,// =  𝐮 ,/// 𝐮 ,//  is a unit vector parallel to the relative velocity in the 

direction parallel to the contact surface, 𝐮 ,//. This formula was originally derived for 

a single particle dragged along a smooth surface.38 Parameters C, E*, Rc, and αβε  are 

as defined in Eq. 2. The EHD force is computed using the difference between the 
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center of mass velocities. It is to note that, in the jamming regime, the local elastic 

forces that trap the particles hinder their rotation, which accordingly is not considered 

in the simulations.39 

The tangential Coulombic frictional force αβ
Cf  is defined with respect to the 

normal repulsive force αβf elas  assuming a simple linear relationship: 

𝐟 = −𝜇𝑓 𝐧 ,∕∕,                                                      (5) 

where again 𝐧 ,// is a unit vector parallel to the tangential velocity 𝐮 ,//. Because 

the contacts between soft repulsive particles like particle gels or emulsion droplets are 

lubricated by the solvent, it is assumed here that there is little or no static friction.40   

2.1.4 Equation of motion 

In SPGs the movement of the particles is slow and highly constrained by their 

jammed environment. For typical SPGs simulations, 3 310 kg / mρ ≈ , 
710 m−≈R , 

310 Pa sη −≈ ⋅s and the shear rate γ  falls between 9 1 3 110 s 10 s− − − −− . The Reynolds number 

2Re /ργ η=  sR  ranges from 10-17 to 10-11, and so inertia can be neglected, resulting in 

overdamped motion. Since all forces on each particle are balanced: 

( )+α αβαβ
β

+ = 0far-drag near-drag elasf f f .                                                  (6) 

The equation of motion that describes the trajectory of particle α is derived by 

expanding the α
far-dragf  term in Eq. 6 using its form given by Eq. 3, 

( )+x
d y M
dt

α
α α α αβαβ

β
γ= = +  near-drag elasx u e f f ,                                (7) 

where γ  is the shear rate, αy  is the vertical location of the particle and xe  is the unit 

vector in the x direction; ( ) 6α φ π η= sM f R  is the mobility and is equivalent to the 
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inverse of the dissipation constant in the Durian’s model.24, 25 αβ
near-dragf  can take the 

form of either the elastohydrodynamic drag force αβ
EHDf  or the Coulombic-like frictional 

force αβ
Cf . In the following, the flow behavior is investigated using different models of 

αβ
near-dragf  and αβ

elasf .  

2.2 Simulation and characterization method 

The model is implemented using a particle dynamics simulation scheme on 

random packings of 10,000 elastic spheres confined in a cubic box that is periodically 

replicated. The radii of the spheres have a 20% polydispersity to avoid forming shear-

induced structures at high shear rates.41,42 Suspensions with different volume fractions 

are prepared as follows. A glass-like structure is first created using the compression 

algorithm introduced by Lubachevsky and Stillinger.43 The close-packed 

configurations are compressed by reducing the box size in small steps until the desired 

volume fraction is achieved. Because the Poisson ratio for the particles is ½, their 

volume upon deformation remains constant. The volume fraction of the suspension is 

computed as the ratio between the total volume of the particles and the volume of the 

box. After each size variation, the system is allowed to relax using the conjugate 

gradient algorithm so there is no net force on any of the particles. This procedure 

ensures that each particle has reached a mechanical equilibrium and no internal stress 

is trapped inside the suspension.44 The volume fractions investigated range from 0.70 

to 0.90.   

Constant shear rate simulations are performed using the granular package of 

LAMMPS.45 The shear rate is applied via Lees-Edwards boundary conditions. The 

position and the velocity of each particle are obtained by solving the N equations of 

motion above using the Euler integration algorithm.46 An explicit time integration 
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scheme is used to solve the equations. First, the forces on the right hand side are 

evaluated from the position and velocity from the last time step; then the velocity and 

position on the left hand side are evaluated in the current time step.  

The stress tensor that characterizes the flow properties is computed from the 

Kirkwood formula47: 

1 ( )αβ α β
β α β>

= − − f x x
N N

V
σ ,                                                 (8) 

where V  is the volume of simulation box, αβf  is the total force between neighboring 

particles α and β including near-field drag force and elastic force, αx  and βx  are the 

position vectors of α and β. Three component of the stress are reported later in the 

paper: the shear stress yxσ σ= ; the first normal stress difference 1 xx yyN σ σ= − ; and the 

second normal stress difference 2 yy zzN σ σ= − .   

The applied dimensionless shear rate *
s Eη γ  varies from 10-12 to 10-4, 

depending on the specific repulsive force law. Simulations are conducted at 

sufficiently low shear rates to access the yield point of the suspension. All suspensions 

are sheared for 100 strain units to ensure that they reach steady state and that no 

crystallization or layering occurs.41,42 Simulations at each volume fraction and shear 

rate are performed starting from at least three different initial configurations of 

particles in the periodically replicated suspension.  Each initial configuration has the 

requisite volume fraction and polydispersity and is statically stable, i.e., the net force 

on the particles is zero. It is found that the initial condition does not affect the steady 

state flow curves. 

As values of the stresses fluctuate throughout the simulation, average stress 

values over the last 80 strain units are calculated for each initial configuration. Then 



11 
 

the stresses obtained for the different initial configuration are averaged and the 

standard deviations are calculated and plotted in the figures as error bars. Some error 

bars are smaller than the symbols. For each volume fraction, the variations of the 

shear, first, and second normal stress differences with the shear rate define flow curves 

that are fitted to the Herschel-Bulkley equation. For each flow curve, all the data 

available are included in the fits and the standard deviation of the individual data of 

the flow curves are taken into account. The quality of the fits is characterized by the 

95 % confidence limits of the standard deviation reported for the parameters in the 

Supplemental Information (SI).   

The low-frequency shear modulus G is an important characteristic property of 

the suspension at rest. It can be computed either by subjecting the packing to an 

oscillatory shear deformation at small strain amplitude35 or equivalently by applying a 

quasi-static uniaxial stretching deformation.48,49 In this work we use the second 

method. The packing is deformed step by step by increasing the uniaxial deformation 

in small increments in a quasi-static way. At each step, the periodic box is stretched by 

a small amount and the particles are allowed to adjust their position with respect to 

their neighbors, so that they reach their local energy minimum. When the final 

deformation is reached, the extension ratio is 1 + δ  (δ<<1) and the low frequency 

modulus G is computed from the net change in energy ΔU with respect to the 

undeformed state:35,48,49 

 2
2

3δ
Δ≅ UG
V

.       (9) 
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3 Results  

3.1 Static properties 

In this section, we examine the effect of the repulsive force law on the low-

frequency modulus and structural properties of SPGs. We compute the low-frequency 

modulus, the average contact number and the particle overlap from equilibrated 

packing configurations which are mechanically stable using different force laws given 

by Eq. 2 when C = 1 and n = 1.5, 3, and 5. Since there is no flow, the far-field and 

near-field hydrodynamic contributions are not included.    

3.1.1 Low-frequency modulus 

Figure 2 shows the variation of G computed for the different force laws. For each 

value of n, G increases with the volume fraction. However, we observe significant 

quantitative differences between the three graphs. The variations of G can be interpreted by 

considering that it is the product of the spring constant 1
αβ ε ε −∝ ∂ ∂ ∝elas nk f and the number 

of excess contacts Z -Zc, where Zc is the number of contacts at the jamming transition:50-52 

( )∝ − cG k Z Z The dimensionless overlap distance ε being small, the potential becomes 

softer when n increases and the elastic modulus is smaller. ε, k, Ζ, and G are power law  

Fig. 2 Variations of the low frequency modulus G versus the volume fraction for different values of the force 
law exponent n; from left to right: n = 1.5 (a), 3 (b), and 5 (c). The continuous lines are fits of the data to 
expression (10d) with γ = 1 (φc = 0.651 ± 0.001), γ = 2.5 (φc = 0.645 ± 0.002), γ = 4.5 (φc = 0.641 ± 0.002) for 
(a) to (c), respectively. 
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functions of the distance to the jamming point:48,50 

 0 ( )ε ε φ φ= − c ,                 (10a) 

1
0( )φ φ −= − n

ck k  ,                          (10b) 

0 ( )ζφ φ− = −c cZ Z Z  ,                          (10c) 
0( )γφ φ= − cG G  ,                 (10d) 

where γ = n+ζ - 1; φc is the jamming volume fraction; Zc is the average contact number 

at the jamming point; ε0, k0, and Z0 are prefactors. For monodisperse packings and in 

the asymptotic limit of large systems, the exponent ζ is equal to 1/2, Zc = 6, and φc ≅ 

0.64. 

The elastic moduli shown in Fig. 2 are well-fitted to Eq. 10d with γ = 1, 2.5, 

and 4.5, which are the values of γ expected for n = 1.5, 3, and 5 respectively. Letting 

the jamming point φc be a fitted parameter, we find that it consistently occurs at 

φc = 0.65 ± 0.01. Note that the value of φc is larger for polydisperse than for 

monodisperse suspensions. The details of the fitting parameters are presented in 

Supplemental Information.   

3.1.2 Structural properties of SPGs for different elastic force laws 

  Figures 3a-b show the variations of the contact number Z and the dimensionless 

average overlap distance ε versus the volume fraction for different values of the 

exponent n in equilibrated packings. Because the elastic repulsive forces are smaller 

for greater values of the exponent n, packings with greater n have larger average 

overlap distances for the same volume fraction. To compensate for larger overlap and 

still have the same volume fraction, they thus have fewer average contacts.  
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In Fig. 3a we have fitted the data to Eq. 10c assuming that jamming occurs at 

φc = 0.65, the value which was determined from the shear modulus variations in Fig. 2. 

The data are well represented by Eq. 10c. We find that the average number of contacts 

at φc is approximately six and the exponent ζ is close to 0.5, which are the values 

expected for monodisperse suspensions.48,50 The fitting parameters are given in the SI. 

Finally, we have fitted the data for the average overlap distance in Fig. 3b to the linear 

 
Fig. 3 Variations of the average contact number Z (a) and overlap distance ε (b) for different values of exponent 
n. The solid lines in (a) are fits to Eq. 10c with φc = 0.65 yielding: Zc = 6.0±0.1, 6.3±0.1, 6.0±0.1 and 
ζ = 0.49±0.02, 0.54±0.02, 0.49±0.02, for n = 1.5, 3, 5 respectively. The solid lines in (b) are fits to Eq. 10a 
yielding:  φc = 0.63±0.01 (n = 1.5); φc = 0.62±0.01 (n = 3); φc = 0.62±0.01 (n = 5). 
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expression given by Eq. 10a. The resulting values of φc are slightly different from 

those previously determined but both determinations remain within the interval of 

confidence which is admissible (see also SI Section).  

3.2 The effect of the near-field drag force on the flow properties 

In this section we investigate the effect of near-field contributions on the shear stress, 

first and normal stress differences. The elastic force law is has the generalized Hertz form in 

Eq. 2 and the far-field Stokes force is included in the simulations.  

3.2.1 Elastohydrodynamic (EHD) drag force 

Figures 4a-c show the results of the dimensionless shear stress σ, the first 

normal stress difference N1 and the second normal stress difference N2 versus the 

dimensionless shear rate at different volume fractions with and without EHD drag 

forces. All three quantities are well-fitted to Herschel-Bulkley equations over the 

entire range of shear rates investigated. It is also interesting to note that the first and 

second normal stress differences N1 and N2 are similar in magnitude and opposite in 

sign for the same volume fraction at the same shear rate. So-called film fluids, such as 

emulsions and foams, exhibit this property due to the storage of elastic energy in their 

interfaces53.  Here, the elastic energy is stored in the local deformations at contact. 

Interestingly, the results show little difference between the model with EHD drag 

forces and the one without EHD drag forces, which demonstrate the non-essential role 

of the near-field EHD drag forces in predicting shear stress and normal stress 

differences in the range of shear rates considered. 
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Fig. 4 Top: role of the near-field elastohydrodynamic force; dimensionless shear stress (a), first normal stress 
difference (b) and second normal stress difference (c) versus dimensionless shear rate at φ = 0.70, 0.80 and 0.90 
with EHD (red symbols) and without (black symbols). Bottom: role of Coulombic drag forces; dimensionless 
shear stress (d), first normal stress difference (e), and second normal stress difference (f) versus dimensionless 
shear rate at φ = 0.8 with coefficient μ = 0, 0.01, 0.1, 0.5. The results for φ = 0.70 and 0.90 also show negligible 
difference for different values of μ at φ = 0.80 and are not shown for clarity. Solid lines are fitted curves for 
simulations with no drag forces to the Herschel-Bulkley equations 𝜎/𝐸∗ = 𝜎 /𝐸∗ + 𝑘 (𝛾𝜂 /𝐸∗)  and 𝑁 /𝐸∗ = 𝑁 /𝐸∗ + 𝑘 (𝛾𝜂 /𝐸∗)  with parameters reported in SI (Ni refers to N1 or –N2). 

3.2.2 Coulombic frictional drag force 

Figures 4d-f show the results for the dimensionless shear stress and 

dimensionless normal stress differences versus the dimensionless shear rate at φ  = 0.8 

when Coulombic frictional drag forces with different friction coefficients μ are 

included in the simulations. Four cases are tested with μ  set to be 0, 0.01, 0.1 or 0.5. 

The results show little difference among flow curves for all the friction coefficients. 

Similar to the near-field EHD, Coulombic frictional drag forces play a negligible role 

in determining the shear stress versus shear rate flow curve. 
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3.3 The effect of the repulsive force law on the flow properties 

In this section we investigate the effect of the repulsive force law on the shear stress, 

first and normal stress differences. The force law is given by Eq. 2 with C = 1 and n = 1.5, 3, 

and 5. Only the far-field Stokes force is included in the simulations; the near-field 

contributions being negligible from the previous section are not included. 

3.3.1 Shear stress and first and second normal stress differences  

The flow curves computed for exponents n =1.5, 3 and 5 at different volume 

fractions are shown in Figs. 5a-c. At large shear rates and low values of the shear 

modulus, a microstructural transition could be observed, where the initially disordered 

suspension was evolving to a partially ordered structure with layers parallel to the 

flow-vorticity plane.41 Those corresponding shear stress data are not plotted in Fig. 5. 

For the same volume fraction, shear stresses are larger for smaller n. Large shear 

stresses are generated for large overlap distances which occur for large volume 

fractions and small n. The corresponding dimensionless first and second normal stress 

differences in Figs 5d-f and Figs 5g-i show the same trend as the shear stresses. They 

all exhibit a yield normal stress at small shear rates. Second normal stress differences 

N2 are slightly larger in magnitude than N1 and opposite in sign. The differences 

between N1 and N2 are greater for lower volume fraction, higher shear rates and larger 

n. Microstructures and pair distribution functions for different n are also investigated, 

which exhibit the same qualitative behavior as reported earlier.11,35,52 Irrespective of 

the interparticle force law, the flow curves can be fitted to the canonical Herschel-

Bulkley equation. The parameters m, σy and k as well as pair distribution functions are 

reported in the SI. The exponent m lies in the range between 0.4 and 0.5 with weak 

dependencies on the volume fraction and the exponent of the force law. The exponent 

m decreases slightly when the volume fraction increases. This trend has also been  
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Fig. 5 Dimensionless shear stress (a-c), dimensionless first (d-f) and second normal stress differences 
(g-i) versus dimensionless shear rate for different values of exponent n = 1.5, 3, 5. Solid lines are fitted 
curves to the Herschel-Bulkley equation. Only positive parts of error bars are shown for easier 
visualization. Data for all Herschel-Bulkley parameters are listed in SI. 
 

noted in experiments.4 The softness of the interaction has a small influence on the 

Herschel-Bulkley exponent, which has its smallest value for the Hertz law with n = 1.5 

and is closer to 0.5 for n = 3 and 5. The same trends are observed for the first and 

second normal stress differences, although the Herschel-Bulkley exponents are slightly 

larger than for the stress and close to 0.5. 
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3.3.2 Scaling of shear stress and first and second normal stress differences  

The shear stresses and normal stresses for each volume fraction and each elastic 

force law (n =1.5, 3 and 5) can be collapsed onto universal flow curves by scaling the 

stress with the yield stress and the shear rate with sG η , as shown in Fig. 6. The 

collapse is satisfactory except for the shear stress data at volume fraction φ = 0.7 close 

to the jamming transition, which fall slightly outside the master curve. These data are 

not included in the following fits. Each master curve can be described by an equation 

of the Herschel-Bulkley form: 

 𝜎/𝜎 = 1 + 𝑘 (𝛾𝜂 /𝐺)  (11a) 

 𝑁 /𝜎 = 𝑁 + 𝑘 (𝛾𝜂 /𝐺)  (11b) 

 −𝑁 /𝜎 = −𝑁 + 𝑘 (𝛾𝜂 /𝐺)  (11c) 

The fitting parameters are tabulated in the SI.  

For the shear stress, the exponent of the Herschel-Bulkley power law 𝑚 ranges 

from 0.41 to 0.50 as n increases from 1.5 to 5. For comparison the dotted lines in Figs. 

6a-c represent the best fit to experimental data obtained for microgel suspensions,1,7 

yielding a Herschel-Bulkley exponent of 0.45. The fitted experimental data match the 

simulated universal flow curve reasonably well for n = 1.5 and 3. The agreement with 

experiments is not as good for n = 5, the simulated data being above the experimental 

lines at the larger shear rates. For the first and second normal stress differences, the 

Herschel-Bulkley exponents 𝑚  and 𝑚  range from 0.53 to 0.62 as n increases from 

1.5 to 5.  For each force law, the Herschel-Bulkley exponents are about the same for 

N1 and N2.  We observed that the error bars at low shear rates are large because of the 

large fluctuations relative to N1y and N2y. Finally it is interesting to note that the yield 

normal stresses N1y and N2y are about an order of magnitude smaller than the yield 

shear stress. 
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4 Discussion 

Our results demonstrate that the elastohydrodynamic and Coulombic near-field 

drag are not important for predicting the rheology of SPGs.  In our previous studies, 

we already observed that only the elastic contact forces contribute significantly to the 

shear and normal stresses for SPGs.11,35  In those simulations, the near-field drag was 

 

Fig. 6 (a-c): Collapse of flow curves for elastic exponent n = 1.5, 3, and 5(c). The solid lines are the fitted 
Herschel–Bulkley curves; the dashed lines of equation 𝜎/𝜎 = 1 + 150(𝛾𝜂 /𝐺) .  are fits to collapsed 
experimental data of microgels.4, 7 (d-i): Collapse of first and second normal stress differences for n = 1.5, 3, 5. 
Only the upper halves of the error bars are shown for easier visualization. All Herschel-Bulkley parameters are 
listed in the SI. 
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included, which might influence the microstructure and so indirectly the rheology. The 

results presented in Fig. 2 show that removing the near-field drag altogether has no 

substantial effect on the microstructure and the rheology. However, the result that the 

flow curves computed at different volume fractions or measured under different 

experimental conditions collapse when the shear rate is rescaled with 𝛾𝜂𝑠/𝐺 indicate 

that the viscous drag forces acting on the soft particles are important and that the shear 

rheology is clearly determined in part by the viscosity of the interstitial fluid.1,7,11  In 

the simulations this effect is captured by the far-field drag force acting on the particles 

(Eq. 3).  

It is noteworthy that the dimensionless shear rate 𝛾𝜂 /𝐺  is effective in 

collapsing the shear stress and normal stress differences for different volume fractions 

for all the pairwise potentials considered in this study. Since many repulsive 

interactions in practice fall within this range of potentials, one could expect it to be 

quite generic. Indeed, previously, this dimensionless shear rate has been used to 

successfully create master flow curves from experimental data on systems as different 

as microgels, concentrated emulsions, and star polymers.1,7,54 The dimensionless shear 

rate 𝛾𝜂 /𝐺 is the ratio of the time scale 1 γ  associated with the shear deformation, to 

the characteristic time ηs/G, which expresses the competition between the cage 

elasticity and the viscous forces acting on the particles when they rearrange. The 

volume fraction dependence of the characteristic time ηs/G is embodied in the shear 

modulus. The dimensionless shear rate 𝛾𝜂 /𝐺  controls several other important 

dynamical phenomena in SPGs. First the shear induced crystallization of 

monodispersed SPGs or layering of polydisperse SPGs at different volume fractions 

occurs at some critical value of 𝛾𝜂 /𝐺.41,42  In another context, the initial short time 

relaxation of the stress upon flow cessation is driven by a characteristic time which 
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involves the dissipation time *ηs E  and the dimensionless shear rate 𝛾𝜂 /𝐺  applied 

during the initial flow.55 The resulting residual stresses trapped into SPGs are also 

controlled by 𝛾𝜂 /𝐺 .44,55 This scaling highlights the importance of the competition 

between viscous and elastic forces in sheared SPGs. The scaling factors σy and ηs/G in 

Fig. 6 can be expressed as functions of 𝜙 − 𝜙 . From our simulation data, the yield 

stress varies like 𝜎 ~(𝜙 − 𝜙 )  (see Fig. S2 in the SI), which has also been noted by 

others.56,57 The characteristic time ηs/G used to scale the shear rate vary like (𝜙 −𝜙 ) ⁄ . Thus for Hertz potential we have: 𝜂 𝐺⁄ ~(𝜙 − 𝜙 ) , which differs from 

the scaling factors usually found near the jamming transition.10,12,28,29,56,57 This shows 

that the scaling properties we propose are valid far from the jamming transition. 

When the elastic repulsion between the particles obeys to the Hertz potential 

(C = 1 and n = 1.5 in Eq. 2), there exists an alternative non-dimensionalization of the 

shear rate which collapses the flow curves onto master curves. Indeed in Fig. 5a, the 

flow curves are of the form ( )* * * m
y sE E k Eσσ σ γη= +   and the prefactors kσ are 

found proportional to G/E* (see SI) Moreover the yield stress and the elastic modulus 

are related through y yGσ γ= , where γ y  is the yield strain. The same reasoning holds 

for the first and second normal stress differences. It follows that the shear stress and 

normal stress differences at different volume fractions must be correlated using the 

equations: 

 ( )2 */ 1 /σσ σ γη γ= +  m
y s yk E  (12a) 

 ( ) 12 *
1 1 1/ /σ γη γ= +  m

y y N s yN N k E  (12b) 

 ( ) 22 *
2 2 2/ /σ γη γ− = − +  m

y y N s yN N k E  (12c) 
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  Fig. 7 shows the normalized shear and normal stresses at different volume 

fractions on a master curve as a function of the dimensionless shear rate 𝛾𝜂 /𝛾 𝐸∗. The 

new fitting parameters are listed in the SI. Now, the yield strain embodies the volume 

fraction dependence of the rescaled shear rate enabling a master flow curve. While this 

alternative scaling works well for n = 1.5, it fails for n = 3 or 5 because for these 

potentials, the consistency parameters in the Herschel-Bulkley equations for the stress 

and normal stress differences do not vary linearly with . It is interesting to note 

that the non-dimensional parameters used in Eqs. (11) and (12) simply differ by the 

ratio , which is found constant in our simulations. This follows from the scaling 

of G and 𝜎  with 𝜙 − 𝜙 . As noted previously we have: 𝐺~(𝜙 − 𝜙 ) /  and 𝜎 ~(𝜙 − 𝜙 ) . Since 𝛾 = 𝜎 /𝐺, it follows: 𝐺/𝛾 ~(𝜙 − 𝜙 ) / . For n = 1.5, 𝐺/𝛾  

is a constant independent of volume fraction, but not so for other values of n. This 

alternative non-dimensionalization of the shear rate was noted earlier by Seth et al.11 

in simulations using the generalized Hertz potential given by Eq. 2 with varying C and 

n depending on the overlap of the particles,11 and in experiments..4,11 The fact that it 

worked for this modified potential indicates that the pairwise interactions with the 

modified potentials and in experiments are close to that of the classic Hertz potential. 

 
Fig. 7 Collapse of all shear stresses and normal stress differences with 𝛾𝜂 /𝛾 𝐸∗ for n = 1.5. The solid lines 
are Herschel–Bulkley fits to the data. The fitting parameters are listed in the SI. 

*G E

2γ yG
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Another question of interest concerns the value of the Herschel-Bulkley 

exponents, which for the shear stress and normal stress differences are close to 0.5. 

However a close examination of the results indicates a systematic variation that signals 

some effect of the potential. Indeed in the master curves of Fig. 6, which include data 

for the entire range of volume fractions investigated, the Herschel-Bukley exponents 

for the collapsed shear stress data are 0.41, 0.43, and 0.51 for n = 1.5, 3 and 5, 

respectively. A similar increase of the exponents with n is observed for the first and 

second normal stress differences. The variations are outside the confidence intervals 

showing that stiffer potentials yield slightly larger Herschel-Bulkley exponents. This 

trend is supported by the fact that simulations using the generalized Hertz law, which 

progressively becomes stiffer as the particle compression is increased, yield exponents 

equal to 0.50 instead of 0.41 for the simple Hertz law.11 In experiments, the slight 

dependence of the exponent on the potential may explain the difference between 

concentrated emulsions1,11 (m = 0.50) and microgel suspensions7 (m = 0.45). It has 

been proposed that the physical origin of this non trivial value is associated to non-

affine deformations that occur through individual rearrangements localized in time and 

space. In elastoplastic models the dynamics of long-ranged stress and strain 

fluctuations in the surrounding of a localized yielding event is accounted for by a 

Fokker-Planck equation which predicts exponents in the range of 0.50-0.59.19, 22, 23 In 

this context, our results suggest that avalanches and cascade rearrangements can be 

affected by the exact shape of the elastic potential.   

5 Conclusions 

A computational study has been performed to show the universal form of the 

flow curve for soft particle glasses with different pairwise elastic and frictional forces.  
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It is found that pairwise or near-field viscous and Coulombic sliding forces play no 

significant role in terms of the macroscopic rheology of these materials. The rheology 

is dominated by the elastic forces acting normally between the particles. For a given 

pairwise elastic interaction potential, the variations of the shear and normal stresses 

can be collapsed for all volume fractions by rescaling the stress by the yield stress and 

the shear rate by the characteristic time s Gη , the ratio of the suspending viscosity and 

low frequency shear modulus. This is equivalent to another scaling proposed earlier, 

which involves the yield stress and the characteristic time 𝜂 /𝛾 𝐸∗.11 The advantage of 

using the former scaling over the latter is that it does not required the knowledge of the 

particle contact modulus, which is generally difficult to measure directly. Inversely the 

second scaling provides an indirect characterization of the particle modulus.4 These 

scaling forms are valid deep into the jammed phase. The exponent for the Herschel-

Bulkley fits for these flow curves ranges from about 0.4 to 0.6 and increases with the 

exponent of the elastic interaction. For a given elastic potential, there is a universal 

representation of the flow curves for SPGs for all volume fractions. These results 

highlight the essential and subtle role played by elastic forces in the flow properties of 

SPGs. The next step is to connect this result concerning the macroscopic behavior of 

SPGs to the microscopic dynamics, which will be the subject of a forthcoming 

publication.    
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1. Pair distribution function for suspension at rest for different force laws. 
The pair distribution function for suspensions with different pairwise elastic force laws are similar at rest, 
as noted in Fig. S1.   

 
Figure S1 Pairwise particle distribution at rest for volume fraction = 0.8 

2. Fitting parameters for curves in Figs. 2-6. Tables S1-S6 list the fitting parameters used for the curves 
in Figs. 2-6 of the paper.  Standard deviations are given inside parentheses following each data point. All 
the data shown in Table S1 and S5 are based on the following dimensionless equations:  

 ( )* * * m
y sE E k Eσσ σ γη= +  ,  (S1) 

 ( ) 1* * *
1 1 1

m
y N sN E N E k Eγη= +   , (S2) 

 ( ) 2* * *
2 2 2

m
y N sN E N E k Eγη− = − +   . (S3) 
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Table S1 Fitting parameters for curves in Fig. 2.  
Volume Fraction yσ  kσ  m  

0.70 1.36×10-4 (1.59×10-5) 2.93 (2.52) 0.606 (0.065) 
0.80 6.29×10-4 (4.59×10-5) 1.86 (0.79) 0.500 (0.032) 
0.90 2.69×10-3 (9.61×10-5) 3.51 (0.71) 0.488 (0.015) 

Volume Fraction 1yN  1Nk  1m  

0.70 1.15×10-5 (2.00×10-6) 0.838 (0.354) 0.693 (0.036) 
0.80 6.76×10-5 (1.29×10-5) 0.301 (0.186) 0.535 (0.053) 
0.90 2.49×10-4 (2.14×10-5) 0.666 (0.117) 0.538 (0.017) 

Volume Fraction 2 yN  2Nk  2m  

0.70 2.49×10-5 (1.18×10-6) 1.98 (0.33) 0.669 (0.013) 
0.80 1.11×10-4 (6.59×10-6) 2.02 (0.24) 0.615 (0.011) 
0.90 3.48×10-4 (3.06×10-5) 2.77 (0.39) 0.587 (0.013) 

(The fitting parameters are similar for simulations with and without near-field draft forces.) 
 

Table S2 Parameters for static properties in Figs. 3 and 4. 

n Parameters 
Volume fraction 

0.70 0.75 0.80 0.85 0.90 

1.5 

ε 0.079 0.140 0.196 0.251 0.300 
Z 8.04 8.86 9.51 10.04 10.51 
G 9.22×10-3 

(0.00149) 
1.85×10-2 
(0.00258) 

2.79×10-2 
(0.00224) 

3.71×10-2 
(0.00403) 

4.72×10-2 
(0.00356) 

3 

ε 0.091 0.159 0.219 0.276 0.329 
Z 7.85 8.57 9.13 9.62 10.04 
G 3.63×10-4 

(6.09×10-5) 
1.82×10-3 

(2.87×10-4) 
4.95×10-3 

(4.41×10-4) 
1.00×10-2 

(1.13×10-3) 
1.56×10-2 

(2.23×10-3) 

5 

ε 0.099 0.169 0.232 0.292 0.346 
Z 7.73 8.41 8.94 9.38 9.75 
G 4.21×10-6 

(8.98×10-7) 
7.48×10-5 

(1.77×10-5) 
4.28×10-4 

(8.83×10-5) 
1.26×10-3 

(1.74×10-4) 
3.25×10-3 

(4.17×10-4) 
 

Table S3 Fitting parameters for low frequency modulus in Fig. 3. 
n 

0G  φc  γ  (fixed to n-0.5) 
1.5 0.188 (0.001) 0.651 (0.001) 1.0 
3 0.508 (0.021) 0.645 (0.001) 2.5 
5 1.460 (0.090) 0.641 (0.002) 4.5 

Note: ( )0
γφ φ= − cG G  

 

Table S4 Fitting parameters in Fig. 4 

n 
Fig. 4a Fig. 4b 

cZ  0Z  ζ   0ε  φc  

1.5 6.0 (0.1) 8.96 (0.03) 0.49 (0.02) 1.24 (0.03) 0.63 (0.01) 
3 6.3 (0.1) 7.98 (0.04) 0.54 (0.02) 1.19 (0.03) 0.62 (0.01) 
5 6.0 (0.1) 7.32 (0.04) 0.49 (0.02) 1.10 (0.02) 0.62 (0.01) 

Note: ( )0
ζφ φ− = −c cZ Z Z with φc  fixed to 0.65; 0 ( )ε ε φ φ= − c  with φc  not fixed. 
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Table S5.1 Fitting parameters for shear stress in Fig. 5.  

n Volume Fraction yσ  kσ  m  

1.5 

0.70 2.01×10-4 (1.6×10-6) 0.517 (0.042) 0.438 (0.005) 
0.75 5.69×10-4 (6.0×10-6) 0.499 (0.055) 0.413 (0.008) 
0.80 1.07×10-3 (7.8×10-6) 0.637 (0.097) 0.415 (0.011) 
0.85 1.66×10-3 (3.5×10-5) 0.571 (0.102) 0.398 (0.014) 
0.90 1.83×10-3 (4.5×10-5) 0.344 (0.086) 0.341 (0.018) 

3 

0.70 6.71×10-6 (3.7×10-7) 0.475 (0.073) 0.517 (0.009) 
0.75 4.51×10-5 (7.8×10-7) 0.349 (0.031) 0.461 (0.006) 
0.80 1.39×10-4 (7.0×10-7) 0.404 (0.017) 0.441 (0.003) 
0.85 3.00×10-4 (1.7×10-6) 0.436 (0.016) 0.424 (0.003) 
0.90 5.56×10-4 (7.5×10-6) 0.504 (0.046) 0.417 (0.006) 

5 

0.70 1.00×10-7 (1.5×10-8) 1.015 (0.15) 0.637 (0.007) 
0.75 1.84×10-6 (2.0×10-7) 0.469 (0.087) 0.551 (0.011) 
0.80 1.06×10-5 (2.2×10-7) 0.350 (0.054) 0.500 (0.009) 
0.85 3.65×10-5 (5.3×10-7) 0.394 (0.051) 0.476 (0.008) 
0.90 9.73×10-5 (1.1×10-6) 0.531 (0.044) 0.470 (0.005) 

 
 
 

Table S5.2 Fitting parameters for first normal stress difference 1N  in Fig. 5.  

n Volume Fraction 1yN  1Nk  1m  

1.5 

0.70 1.91×10-5 (2.0×10-6) 0.650 (0.335) 0.629 (0.041) 
0.75 5.70×10-5 (2.0×10-6) 0.424 (0.061) 0.554 (0.012) 
0.80 1.07×10-4 (3.5×10-6) 0.456 (0.059) 0.529 (0.011) 
0.85 1.68×10-4 (4.3×10-6) 0.487 (0.061) 0.511 (0.010) 
0.90 2.10×10-4 (1.4×10-5) 0.359 (0.102) 0.464 (0.024) 

3 

0.70 5.95×10-7 (9.9×10-8) 0.232 (0.101) 0.645 (0.029) 
0.75 4.42×10-6 (3.2×10-7) 0.260 (0.091) 0.607 (0.025) 
0.80 1.39×10-5 (1.7×10-6) 0.402 (0.132) 0.596 (0.026) 
0.85 3.26×10-5 (1.6×10-6) 0.419 (0.065) 0.572 (0.013) 
0.90 5.70×10-5 (1.9×10-6) 0.342 (0.048) 0.534 (0.011) 

5 

0.70 1.45×10-8 (2.1×10-9) 0.147 (0.072) 0.707 (0.027) 
0.75 1.93×10-7 (5.2×10-8) 0.304 (0.245) 0.694 (0.051) 
0.80 1.08×10-6 (2.5×10-7) 0.113 (0.072) 0.589 (0.042) 
0.85 3.60×10-6 (3.1×10-7) 0.090 (0.029) 0.537 (0.022) 
0.90 1.06×10-5 (1.2×10-6) 0.408 (0.125) 0.611 (0.024) 
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Table S5.3 Fitting parameters for second normal stress difference 2N in Fig. 5.  

n Volume Fraction 2 yN−  2Nk  2m  

1.5 

0.70 2.88×10-5 (1.1×10-6) 0.487 (0.042) 0.533 (0.007) 
0.75 7.40×10-5 (9.1×10-7) 0.421 (0.014) 0.501 (0.003) 
0.80 1.28×10-4 (2.0×10-6) 0.466 (0.020) 0.496 (0.004) 
0.85 1.79×10-4 (4.9×10-6) 0.481 (0.051) 0.487 (0.009) 
0.90 2.19×10-4 (8.6×10-6) 0.422 (0.054) 0.469 (0.011) 

3 

0.70 9.35×10-7 (1.8×10-7) 0.661 (0.121) 0.621 (0.012) 
0.75 6.68×10-6 (5.6×10-7) 0.577 (0.118) 0.584 (0.014) 
0.80 1.90×10-5 (1.1×10-6) 0.508 (0.038) 0.551 (0.006) 
0.85 3.96×10-5 (1.5×10-6) 0.557 (0.048) 0.539 ( 0.007) 
0.90 6.70×10-5 (1.2×10-6) 0.527 (0.022) 0.518 (0.004) 

5 

0.70 1.60×10-8 (3.0×10-9) 0.990 (0.093) 0.710 (0.005) 
0.75 3.55×10-7 (5.6×10-8) 0.821 (0.125) 0.664 (0.010) 
0.80 1.77×10-6 (2.8×10-7) 0.635 (0.139) 0.620 (0.015) 
0.85 5.08×10-6 (5.6×10-7) 0.511 (0.103) 0.580 (0.014) 
0.90 1.33×10-5 (6.4×10-7) 0.620 (0.049) 0.572 (0.006) 

Table S6. Fitting parameters in Fig. 6.  
n  kσ

  m  
1.5 145.7 (37.2) 0.407 (0.025) 
3 224.2 (20.4) 0.428 (0.009) 
5 677.0 (73.5) 0.503 (0.012) 
n 

1yN  1Nk  1m  

1.5 0.104 (0.007) 72.5 (15.2) 0.537 (0.025) 
3 0.104 (0.005) 112.4 (12.0) 0.588 (0.014) 
5 0.110 (0.007) 132.2 (15.5) 0.616 (0.016) 
n 

2 yN−   2Nk  2m  

1.5 0.133 (0.023) 112.9 (49.8) 0.532 (0.053) 
3 0.136 (0.027) 181.0 (45.6) 0.550 ( 0.033) 
5 0.144 (0.026) 420.2 (75.2) 0.611 (0.023) 

Note: ( )0/ 1 /
m

y sk Gσσ σ γη= +    

( ) 1

1 1 1 0/ /
m

y y N sN N k Gσ γη= +   ; ( ) 2

2 2 2 0/ /σ γη− = − +  
m

y y N sN N k G  

Table S7. Fitting parameters in Fig 7.  
  σk  m

42.6 (7.9) 0.405 (0.025) 

1yN  1Nk  1m  

0.104 (0.005) 14.7 (1.4) 0.540 (0.018) 

2− yN  2Nk  2m  

0.130 (0.026) 20.1 (6.3) 0.517 (0.058) 

(Note: ( )2 */ 1 /
m

y s yk Eσσ σ γη γ= +   

( ) 12 *
1 1 1/ /σ γη γ= + 

m
y y N s yN N k E ; ( ) 22 *

2 2 2/ /σ γη γ− = − + 
m

y y N s yN N k E ) 
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3. Scaling of yield stress with distance to jamming. 

 
 

Figure S2 Scaling of yield stress with volume fraction. cφ  is assumed to be 0.64. The fitted curves are:  

(a) ( )1.5*/ 0.0152y cEσ φ φ= − ; (b) ( )3*/ 0.0331y cEσ φ φ= − ; (c) ( )5*/ 0.0980y cEσ φ φ= − . 

 


