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A LIOUVILLE-TYPE RESULT FOR SOME NON-COOPERATIVE
FISHER–KPP SYSTEMS AND NONLOCAL EQUATIONS ON

CYLINDERS

LÉO GIRARDIN AND QUENTIN GRIETTE

Abstract. We address the uniqueness of the nonzero stationary state for a
reaction–diffusion system of Fisher–KPP type that does not satisfy the com-
parison principle. Although the uniqueness is false in general, it turns out
to be true under biologically natural assumptions on the parameters. This
Liouville-type result is then used to characterize the long-time behavior of
traveling waves. All results are extended to an analogous nonlocal reaction–
diffusion equation that contains as a particular case the cane toads equation
with bounded traits.

1. Introduction

We investigate the reaction–diffusion system
(1) ∂tu−D∂xxu = Mu + u− u ◦ (Cu),
where t ∈ R is a time variable, x ∈ R is a space variable, u(t, x) is a nonnegative
column vector 1 collecting N ≥ 2 phenotype densities among a species, D is a diag-
onal matrix collecting positive diffusion rates, ◦ is the Hadamard product between
two vectors and M and C are square matrices collecting respectively mutation rates
and competition rates and satisfying the following standing assumptions (below and
in the whole paper, 1 = (1, 1, . . . , 1)T ∈ RN ).

(A1) The matrix M ∈ MN,N (R) is essentially nonnegative (namely, with non-
negative off-diagonal coefficients), irreducible, line-sum-symmetric (namely,
M1 = MT1) and admits (0,1) as Perron–Frobenius eigenpair (namely,
M1 = 0).

(A2) The matrix C ∈MN,N (R) is positive, normal and admits (1,1) as Perron-
Frobenius eigenpair (namely, C1 = 1). We denote U ∈ MN,N (C) the
unitary matrix such that UCU−1 = UCUT is diagonal.

(A3) The spectrum of C is contained in the complex closed right-half plane.
We are interested more specifically in the associated traveling wave equation

(2) −Dp′′ − cp′ = Mp + p− p ◦ (Cp),
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2 A LIOUVILLE-TYPE RESULT FOR SOME NON-COOPERATIVE FISHER–KPP SYSTEMS

satisfied by solutions of the system (1) of the form u : (t, x) 7→ p(x − ct). This
equation might be supplemented with asymptotic conditions for the profile p. The
asymptotic conditions of classical traveling waves (p, c) [24] are
(3) lim

+∞
p = 0, min

i∈[N ]
lim inf
−∞

pi ≥ 0, max
i∈[N ]

lim inf
−∞

pi > 0,

where [N ] denotes (here and in the rest of the paper) the set {1, 2, . . . , N}.
By (A1) and (A2), 1 is a constant steady state of the system (1).

1.1. Main results. Our main result is the following theorem.
Theorem 1.1 (Liouville-type result). Assume (A1), (A2) and (A3). Then, for any
c ∈ R, 1 is the unique bounded solution p of (2) such that mini∈[N ] infR pi > 0.

The main consequences of this theorem are the two following corollaries, deduced
from standard elliptic estimates and limiting procedures [22] as well as a strong
positivity property [24, Theorem 1.1].
Corollary 1.2 (Uniqueness of the nonzero steady state). Assume (A1), (A2) and
(A3). Then 1 is the unique bounded nonnegative nonzero stationary solution of (1),
namely the unique bounded nonnegative nonzero solution p of (2) with c = 0.
Corollary 1.3 (Limit behavior of the traveling waves). Assume (A1), (A2) and
(A3). Then all solutions (p, c) of (2)-(3) actually satisfy lim−∞ p = 1.
1.2. Extension to nonlocal equations. Those results extend to continuous lim-
its N → +∞, provided the limit equation has a similar structure. Below we
illustrate this principle by focusing on an equation supplemented with Neumann
boundary conditions, though it would also be possible to adapt our arguments in
the periodic framework with no additional difficulty.

We consider
(4) − d(y)∂ξξp− c∂ξp = ∇y · (σ(y)∇yp) +M [p(ξ)](y) + p(ξ, y) (1−K[p(ξ)](y))
set on (ξ, y) ∈ R × Ω for a smooth domain Ω ⊂ RQ (Q ≥ 1 and ∂Ω is C 2) and
supplemented with homogeneous Neumann boundary conditions at y ∈ ∂Ω. Above,
d ∈ C

(
Ω, (0,+∞)

)
, σ ∈ C 1 (Ω, (0,+∞)

)
,

M [p(ξ)] =
∫

Ω
m( · , ỹ)(p(ξ, ỹ)− p(ξ, · ))dỹ, K[p(ξ)] =

∫
Ω
k( · , ỹ)p(ξ, ỹ)dỹ,

for some m, k ∈ C (Ω2, (0,+∞)). Defining naturally the adjoint operators M? and
K?, the assumptions (A1), (A2) and (A3) extend to the continuous equation as
follows:

(A′1) The function σ(y) ∈ C 1 (Ω) is positive and the function m ∈ C (Ω2) is
nonnegative, bounded and satisfies

∫
Ωm( · , z)dz =

∫
Ωm(z, · )dz.

(A′2) The function k ∈ C (Ω2) is positive and the induced operator K[p] =∫
Ω k( · , z)p(z)dz acting on the Hilbert space L2(Ω) is normal. Moreover,
the constant function y ∈ Ω 7→ 1 is an eigenvector of K associated with the
eigenvalue 1 (namely, K[1] = 1).

(A′3) The spectrum ofK (considered as an operator acting on L2(Ω)) is contained
in the complex closed right-half plane.

The continuous version of Theorem 1.1 reads as follows.
Theorem 1.4. Assume (A′1), (A′2) and (A′3). Then, for any c ∈ R, 1 is the unique
bounded solution p of (4) such that infR×Ω p > 0.

We deduce just as before the uniqueness of the stationary states and the uniform
convergence to the unique stationary state in the wake of the waves for (4), provided
a uniform estimate from below can be shown.
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Corollary 1.5. Assume (A′1), (A′2) and (A′3). Then 1 is the unique bounded solu-
tion of (4) with positive infimum in R× Ω and with c = 0.

Corollary 1.6. Assume (A′1), (A′2) and (A′3). Then any bounded classical solution
(p, c) of (4) such that

lim
ξ→+∞

sup
y∈Ω

p(ξ, y) = 0 and lim inf
ξ→−∞

inf
y∈Ω

p(ξ, y) > 0

actually satisfy
lim

ξ→−∞
sup
y∈Ω
|p(ξ, y)− 1| = 0.

1.3. Organization of the paper. In Section 2, we discuss the assumptions, the
results and the literature. In Section 3, we prove Theorem 1.1. In Section 4, we
prove Theorem 1.4.

2. Discussion

2.1. The conditions on M. By definition, a matrix is line-sum-symmetric if the
sum of coefficients in each of its rows equals the sum of coefficients in the correspond-
ing column. Symmetric matrices and circulant matrices are line-sum-symmetric.
Although the notions of symmetry, circulancy and line-sum-symmetry coincide in
dimension 2, in dimension 3 and higher, there are line-sum-symmetric matrices that
are neither symmetric nor circulant, as shown by the following counter-example:a 2b 0

b c b
b 0 d

 with a, b, c, d ∈ R.

The study of line-sum-symmetric matrices was initiated by Eaves, Hoffman,
Rothblum and Schneider [20]. Roughly speaking, these matrices conveniently gen-
eralize symmetric matrices when what we have in mind is summation of lines or
rows of linear systems [20, Corollary 3], which is the case in this paper and more
generally whenever we want to “integrate by parts” in a discrete variable. As such,
they recently appeared in the literature on reaction–diffusion systems [15,16].

2.1.1. The symmetric case. In the symmetric case, which arises in many applica-
tions, our assumption (A1) on M comes down to assuming that M has an “inte-
gration by parts” formula:

〈Mu,v〉 = −1
2
∑

i,j∈[N ]

mi,j (ui − uj)(vi − vj) .

where 〈·, ·〉 is the canonical (Hermitian) scalar product on CN . A particularly
natural example is the explicit Euler scheme for the one-dimensional heat equation
with periodic boundary conditions: M = −∇T

DΣ∇D, Σ = diag(σ1, σ2, . . . , σN )
(σi > 0) and

∇D =



−1 0 0 · · · 1
1 −1 0 0 · · · · · · 0

0 1 −1 0 0 · · ·
...

...
...

...
...

...
...

0 0 · · · 0 1 −1

 .
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The expanded form of M is
−σ1 − σ2 σ2 0 . . . 0 σ1

σ2 −σ2 − σ3 σ3 0 . . . 0
0 σ3 −σ3 − σ4 σ4 0 . . .
...

...
...

...
...

...
σ1 0 . . . 0 σN −σN − σ1

 if N ≥ 3,

(σ1 + σ2)
(
−1 1
1 −1

)
if N = 2.

Neumann boundary conditions can be obtained by replacing the first line in
∇D by zero and also satisfy (A1). On the contrary, Dirichlet boundary conditions
are qualitatively different (in particular, 1 cannot be a solution anymore) and are
therefore outside the scope of this paper. Note that non-tridiagonal matrices can
also be obtained in the form −∇T

DΣ∇D by allowing ∇D to be non-square: as
an example, discretization of divergence-form operators in two-dimensional domain
such as

M =


−σ1 − σ5 0 σ1 0 σ5

0 −σ2 − σ6 σ2 σ6 0
σ1 σ2 −σ1 − σ2 − σ3 − σ4 σ3 σ4
0 σ6 σ3 −σ3 − σ6 0
σ5 0 σ4 0 −σ4 − σ5


are not always tridiagonal. In this case ∇D ∈ M10,5(R) corresponds to a discrete
gradient operator on a cell with four boundary points and one interior point, and
Σ ∈M10,10(R) encodes the diffusion rates.

In addition to the divergence-form differential part presented above, M might
also contain the discretization of a nonlocal integral operator, as hinted by (4).

2.2. The conditions on C. The assumption that the Perron–Frobenius eigenvalue
of C is unitary (λPF(C) = 1) is done without loss of generality (up to replacing
(p,C) by (λPF(C)p, λPF(C)−1C)). However the assumption that 1 is a Perron–
Frobenius eigenvector is a true assumption, not satisfied in general.

The set of real positive normal matrices contains as particular subsets the set
of real positive circulant matrices and the set of real positive symmetric matrices
(skew-symmetric and orthogonal matrices are normal but cannot be positive). The
following counter-example shows that there are matrices satisfying (A2) and (A3)
that are neither symmetric nor circulant:

a b c d
b a d c
d c a b
c d b a

 with a, b, c, d > 0, a+ b+ c+ d = 1.

(The eigenvalues of this matrix are 1, a + b − c − d, a − b ± i|c − d| and therefore
(A3) is satisfied as soon as a ≥ b and a+ b ≥ c+ d.)

In fact, a polynomial in any permutation matrix is normal. It is therefore pos-
sible to construct such counterexamples in any dimension N ≥ 4, by selecting a
permutation matrix associated with a cycle of maximal length which is not a power
of the circular permutation.

2.2.1. The circulant case. In the circulant case, which is of particular interest to
us, there exists a positive vector φ ∈ RN such that the matrix C is written as
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C = (φi−j)i,j∈[N ], φ being periodically extended by

φi−j =
{
φi−j , if i− j ≥ 1,
φN+i−j , if i− j ≤ 0.

The expanded form of C is then
φN φN−1 . . . φ1
φ1 φN . . . φ2
...

...
...

...
φN−1 φN−2 . . . φN


and the product Cu can be rewritten as φ ? u, where ? is the discrete circular
convolution operator:

(φ ? u)i =
N∑
j=1

φi−juj .

Defining the normalized discrete Fourier transform matrix as

UDFT = 1√
N

(
exp

(
−2iπ
N

(j − 1)(k − 1)
))

j,k∈[N ]
,

we find that UDFT = U for any circulant matrix C. In particular, 1 is automat-
ically a Perron–Frobenius eigenvector (and the normalization λPF(C) = 1 reads∑N
i=1 φi = 1). Moreover, the following equalities hold true:

UCU−1Uu = UCu = U(φ ? u) =
√
N(Uφ) ◦ (Uu).

It follows easily that the spectrum of C is contained in the closed right-half plane if
and only if Uφ, namely the discrete Fourier transform of φ, is valued in the closed
right-half plane.

Last, we point out additional alternative writings of the reaction term:
u− (Cu) ◦ u = u ◦ (1− φ ? u) = −u ◦ (φ ? (u− 1)) ,

2.3. The case N = 2. In the case N = 2, the matrix M and C can be rewritten
as depending on two parameters only:

M =
(
−σ σ
σ −σ

)
, C =

(
1− γ γ
γ 1− γ

)
,

where σ > 0 and γ ∈ (0, 1). The linear stability of 1 can be decided by computing
the eigenvalues λM−C

± of the matrix M−C,

λM−C
± = −1− (γ − σ)± |γ − σ|,

while the eigenvalues of C are λC
1 = 1 and λC

− = 1 − 2γ. Therefore, M − C has
always one negative eigenvalue λM−C

− < 0 and the behavior of λM−C
+ depends on

the value of γ:
a) if γ ∈ (0, 1/2) (in which case (A3) holds), λM−C

1 always stays negative,
b) if γ ∈ (1/2, 1) (in which case (A3) does not hold),

λM−C
+ > 0 if 0 < σ < σ∗ := γ − 1

2 ,

λM−C
+ < 0 if σ > σ∗.

In the latter case, using σ as a bifurcation parameter, a local bifurcation is occurring
when decreasing σ below σ∗ and two stable equilibria emerge when 1 loses stability.
In particular, in this case there are solutions to (2) other that the constant 1 which
are bounded from below. This is confirmed by the result in [17, Proposition 3.4].
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2.4. KPP systems. The system (1) is a particular example of non-cooperative
KPP systems. The first author studied these systems in [23–26]. The second author
studied them with collaborators in [3,28] and gave an epidemiological interpretation
in [29]. Other important mathematical references are [5, 17–19, 30]. For a detailed
overview of the literature, we refer to [24].

These nonlinear, non-cooperative and non-variational reaction–diffusion systems
are referred to as “KPP systems” due to their structural similarity with the scalar
Fisher–KPP equation,

∂tu− ∂xxu = u(1− u).
(This scalar equation can actually be understood as a KPP system of dimension 1.)
This similarity mainly concerns the behavior close to u = 0 and it leads to several
classical results: a sharp persistence–extinction criterion [24, 25], the existence of
traveling waves for all speeds larger than or equal to a linearly determined minimal
wave speed c? [24, 28, 30], the equality between this minimal wave speed and the
asymptotic speed of spreading for initially compactly supported solutions of the
Cauchy problem [5, 24] and an exponential equivalent of the profile at the leading
edge [23,30].

However, away from u = 0 and in particular in the wake of a traveling wave
solution p (x− ct), the picture is more complicated. For two-component systems,
locally uniform convergence of the solutions of the Cauchy problem to a unique
constant steady state can be proved in many cases (and directly implies the con-
vergence in the wake of the traveling waves) [26, Appendix B], [28], but bistable
cases (corresponding to strongly competitive systems with weak mutations) still
exist [17, 23] and remain elusive – in particular, traveling waves connecting 0 to
an unstable constant steady state exist in some particular bistable cases [23]. For
systems of any size but where d = 1 and C = 1aT, locally uniform convergence of
the solutions of the Cauchy problem to a unique constant steady state can be estab-
lished [23], but these assumptions are in fact so strong that the system is basically
reduced to a scalar Fisher–KPP equation projected along the Perron–Frobenius
eigenvector of the linear part of the reaction term. More recent results confirm
that, as soon as there is at least three components, convergence fails in general.
In particular, for circulant matrices M and C, Hopf bifurcations can occur and
these typically lead to the formation of limit cycles, periodic wave trains, pulsating
traveling waves and propagating terraces [26].

In this regard, the main result of this paper provides some sufficient conditions
to prevent the formation of these oscillations in the elliptic and traveling wave
problems. In the class of pairs (M,C) satisfying (A1) and (A2), the sharpness of
(A3) (the spectrum of C is in the right-half plane) can be discussed as follows:

• in view of the Hopf-bifurcating case in [26], the system can be oscillatory
if C admits an eigenvalue with negative real part and nonzero imaginary
part;

• in view of the two-component case discussed in Section 2.3 (see also [17,
Proposition 3.4]), there can be a multiplicity of positive constant equilibria
when at least one eigenvalue of C is real and negative.

In the class of pairs (M,C) satisfying (A2), (A3) and the mere irreducibility of M,
the sharpness of (A1) is unclear. The proof presented here heavily relies on the
line-sum-symmetry of M and cannot be extended to more general matrices M (see
Remark 3.1 below).

Let us point out that the convergence result here is strikingly new in the sense
that it does not require the equality between all diffusion rates (d = 1), which was
required in [23, 28]. The convergence results for two-component systems presented
in [17] do not require such an assumption but use the boundedness of the domain
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to overcome this lack of structure; when extending these results to the unbounded
setting, the equality d1 = d2 is useful [26, Appendix B].

2.5. The nonlocal KPP equation. The spatially homogeneous system

u̇ = Mu + u ◦ (1− φ ? u)

is, in a way, a discretized version of the nonlocal Fisher–KPP equation:

∂tu = ∂xxu+ u(1− φ ? u).

This nonlocal equation has attracted a lot of attention in the last few years. The
existing literature (e.g., [1,7,12,21, and references therein]) develops new techniques
to overcome the default of comparison principle and these techniques proved to be
fruitful when applied to non-cooperative KPP systems [24,28]. In the present paper
we will once again import such a technique from [7].

2.6. The nonlocal cane-toad equation. The diffusive system (1) is, in a similar
way, a discretized version of the nonlocal cane-toad equation:∂tu = d(θ)∂xxu+ α∂θθu+ u(t, x, θ)(1− 1

θ−θ

∫ θ
θ=θ u(t, x, θ′)dθ′),

∂θu(t, x, θ) = ∂θu(t, x, θ) = 0,

where u(t, x, θ) is a population density structured with respect to a phenotypic
trait θ ∈ [θ, θ] ⊂ [0,+∞]. This eco-evolutionary model has also attracted attention
recently (e.g., [2,4,6,8–11,14,27,31]), especially due to an acceleration phenomenon
when d(θ) = θ and θ = +∞ but also because, just like the nonlocal KPP equation,
it does not satisfy the comparison principle and requires new techniques.

It turns out that the similarity between our system and this equation is so strong
that our proof can be readily adapted and our result extends to this continuous-trait
model (see Theorem 1.4 and its two corollaries).

2.7. More general reaction terms. In the system (1), the reaction term has the
form (I + M) u − u ◦ (Cu). It is natural to try to extend the results to reaction
terms of the form (diag (r) + M) u − u ◦ (Cu), where diag (r) + M has a positive
Perron–Frobenius eigenvalue, or (diag (r) + M) u − (diag (r) u) ◦ (Cu), where r is
positive. However our proof does not easily extend to such cases. These remain as
an open problem.

2.8. The Cauchy problem. It would be natural to try to prove that, with the
same assumptions (A1)–(A3) or (A′1)–(A′3), the solutions of the parabolic Cauchy
problem converge locally uniformly to 1. However our proof does not easily extend
to this problem. This also remains as an open problem.

3. Proof of Theorem 1.1

Our strategy is to mimic the proof of [7, Theorem 4.1], which uses the test
function (p− 1)/p. More precisely, we rely upon

(5)
N∑
i=1

(Mp)i
pi

≥ 0 with equality iff p ∈ span (1) ,

and upon

(6)
N∑
i=1

(pi − 1)(C(p− 1))i ≥ 0.
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The inequality (5) is a standard property of irreducible line-sum-symmetric matrices
(recalled in the forthcoming Lemma 3.1); the inequality (6) is a direct consequence
of (a generalized version of) Plancherel’s theorem:

N∑
i=1

qi(Cq)i = Re
(

N∑
i=1

qi(Cq)i

)
= Re (〈q,Cq〉)

= Re
(
〈q,UTUCUTUq〉

)
= Re

(
〈Uq,UCUTUq〉

)
≥ min
λ∈sp(C)

(Re(λ))
N∑
i=1
|(Uq)i|

2
,

where 〈·, ·〉 is the canonical (Hermitian) scalar product on CN .

Lemma 3.1 (Classification of line-sum-symmetric matrices [20, Corollary 3]). Let
A ∈MN,N (R) be a nonnegative matrix. Then A is line-sum-symmetric if and only
if ∑

i,j∈[N ]

ai,juj
ui

≥
∑

i,j∈[N ]

ai,j for all u ∈ (0,+∞)N .

Furthermore, if A is irreducible and line-sum-symmetric, equality above holds if
and only if u ∈ span (1).

The inequality (5) follows then from Lemma 3.1 applied to the nonnegative,
line-sum-symmetric and irreducible matrix A = M−mini∈[N ](mi,i)I.

Lemma 3.2 (Uniqueness of the nonzero constant solution). The unique nonnega-
tive nonzero solution of Mu + u = (Cu) ◦ u is 1.

Proof. Let u be any nonnegative nonzero solution. Recall that u is in fact positive.
Denoting u◦−1 = (1/ui)i∈[N ] and taking the scalar product

〈−Mu− u ◦ (1−Cu) ,u◦−1 ◦ (u− 1)〉 = 0,

we get

−〈Mu,u◦−1〉 = 〈C(u− 1),u− 1〉.

On one hand, by (5), the left-hand side is nonpositive. On the other hand, by (6),
the right-hand side is nonnegative. Therefore both sides are zero. Using now the
case of equality in (5), we deduce u ∈ span (1). We deduce subsequently from the
right-hand side that u = 1. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let (p, c) be a bounded solution of the system (2) satisfying
infR pi > 0 for any i ∈ [N ].

Step 1: We show that
lim

ξ→±∞
p(ξ) = 1.

At any ξ ∈ R, denoting p◦−1(ξ) = (1/pi(ξ))i∈[N ] and taking the scalar product
(in RN )

〈−Dp′′ − cp′ −Mp− p ◦ (1−Cp) ,p◦−1 ◦ (p− 1)〉 = 0,
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we get
N∑
i=1

[
−(dip′′i + cp′i)

(
pi − 1
pi

)]
= −

N∑
i=1

(Mp)i
pi

−
N∑
i=1

(pi − 1) (C (p− 1))i .

By (5) and (6), the right-hand side is nonpositive and therefore
N∑
i=1

[
−(dip′′i + cp′i)

(
pi − 1
pi

)]
≤ 0.

Since this holds true at any ξ ∈ R, we fix R > 0 and integrate by parts in
[−R,R]. We get, as in [7, Proof of Lemma 4.1],

(7)
N∑
i=1

di

∫ R

−R

(
p′i
pi

)2
≤

N∑
i=1

[
di
p′i (pi − 1)

pi
+ c ln(pi)− cpi

]R
−R

,

By the classical elliptic estimates, |p′i(±R)| is bounded by ‖p(±R)‖ up to a multi-
plicative constant independent of R. Recalling that pi is uniformly bounded from
below by mini∈[N ] infξ∈R pi(ξ) > 0, the right-hand side is bounded by a constant
independent of R. We deduce that p′i ∈ L2(R) for all i ∈ [N ].

Let now ξn be any sequence such that ξn → −∞ and define pn : ξ 7→ p(ξ + ξn).
We remark that, for all i ∈ [N ], we have∫ − ξn2

−∞
[(pni )′]2(ξ)dξ =

∫ ξn
2

−∞
(p′i)2(ξ)dξ −−−−−→

n→+∞
0 for all i ∈ [N ],

and therefore (pn)′ converges to 0 locally uniformly in L2. Next, using the classical
elliptic estimates, we extract from (pn)n∈N a subsequence which converges in C 2

loc
to a limit p∞ ∈ C 2(R). Note that p∞ is still a solution to (2). Since (pn)′ → 0 in
L2
loc, we conclude that p∞ has to be a constant function of the variable ξ, i.e. a

constant solution of Mp + p = (Cp) ◦ p. By Lemma 3.2, p∞ = 1 identically.
Since the sequence ξn is arbitrary, we have shown that

lim
ξ→−∞

p(ξ) = 1.

The limit at +∞ can be established by a similar argument.
Step 2: We show that p is identically equal to 1. Since p converges to 1 on both
sides of the real line, the brackets on the right-hand side of (7) converge to 0 as
R→ +∞. Therefore,

0 ≤
N∑
i=1

∫ +∞

−∞
(p′i)2 = lim

R→+∞

N∑
i=1

∫ R

−R
(p′i)2

≤ lim
R→+∞

mini∈[N ] inf pi
maxi∈[N ]di

N∑
i=1

di

∫ R

−R

(
p′i
pi

)2

≤ C lim
R→+∞

N∑
i=1

[
di
p′i (pi − 1)

pi
+ c ln(pi)− cpi

]R
−R

= 0,

where C is a constant independent of R. We conclude that p has to be a constant
function of ξ, and the only possibility is p = 1. �

Remark 3.1. From the proofs of Lemma 3.2 and Theorem 1.1 above, it is clear
that the estimate 〈u◦−1,Mu〉 ≥ 0, together with the equality case, is crucial.
Since this estimate fails if M is not line-sum-symmetric (by Lemma 3.1), (A1) is
sharp regarding the proof presented here. Note that [20, Theorem 2] proved that
every nonnegative irreducible matrix A has a line-sum-symmetric similarity-scaling
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diag (x) A diag (x)−1, where x is a positive vector, but it seems to us that this
property cannot be used to generalize the above proof to non-line-sum-symmetric
matrices M.

Finally we recall briefly the arguments leading to the proof of Corollary 1.2 and
1.3.

Sketch of the proof of Corollary 1.2. Take a standing wave p for equation (2), i.e.
a travelling wave with speed c = 0. It is known from [24, Theorem 1.3 (ii)] that, if
p is nonnegative and nonzero, then p is bounded uniformly away from 0. Theorem
1.1 concludes. �

Sketch of the proof of Corollary 1.3. Let (p, c) be a traveling wave for (2) satisfying
the boundary conditions (3). By [24, Theorem 1.5 (iii)], condition (3) near −∞
immediately transfers to

min
i∈[N ]

lim inf
ξ→−∞

pi(ξ) > 0,

therefore Theorem 1.1 can be applied to any local uniform limit of a converging
sequence p(ξ + ξn) for some ξn → −∞. Since the limit is uniquely identified, the
claim is proved. �

4. Proof of Theorem 1.4

We follow the same steps as for the proof of Theorem 1.1, but have to adapt
each argument in the correct functional setting.

Lemma 4.1 (Positivity of K). Assume (A′2) and (A′3). Then for all nonzero
u ∈ L2(Ω),

〈K[u], u〉L2(Ω) =
∫

Ω2
u(y)k(y, z)u(z)dydz ≥ 0.

Proof. To prove the result, we take advantage of the spectral decomposition of K
considered as an operator acting on the complex Hilbert space L2

C(Ω) equipped with
the canonical hermitian product 〈f, g〉L2

C
=
∫

Ω fg. Clearly K is still normal when
considered as an operator on L2

C(Ω). Moreover, by Lemma 4.4, K is compact (and
the compactness classically transfers to the complex extension of K). Since L2

C(Ω)
is separable, by the spectral decomposition theorem (see e.g. [13, Proposition 11.36
p.369]), there exists a Hilbert basis of L2

C(Ω) composed of eigenvectors of K. Let
us denote (en)n∈N such a Hilbert basis and (λn)n∈N the corresponding sequence of
eigenvalues. This decomposition yields

〈K[u], u〉L2
C

=
+∞∑
n=0

λn|〈u, en〉L2
C
|2,

but since 〈K[u], u〉L2
C
is real,

〈K[u], u〉L2
C

= Re
(+∞∑
n=0

λn|〈u, en〉L2
C
|2
)

=
+∞∑
n=0

Re(λn)|〈u, en〉L2
C
|2 ≥ 0. �

Lemma 4.2 (Characterization of continuous line-sum-symmetric operators [16,
Theorem 4]). Let a ∈ C (Ω× Ω, [0,+∞)) be Riemann integrable. Then the follow-
ing two properties are equivalent:

(1)
∫

Ω a(x, y)dy =
∫

Ω a(y, x)dy for all x ∈ Ω;
(2)

∫
Ω×Ω

a(x,y)u(y)
u(x) dydx ≥

∫
Ω×Ω a for all u ∈ C

(
Ω, (0,+∞)

)
.
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We point out that the equality case of the second property is not presented in
the above lemma but was studied in [16, Theorem 5] under the irreducibility-type
assumption that (x, y) 7→ a(x, y) + a(y, x) does not vanish. Here, we need in any
case to include in the mutation operator a nontrivial divergence part (σ > 0), and
this suffices for the irreducibility-type properties we need, so that we do not make
any irreducibility-type assumption on the nonlocal part.

Lemma 4.3 (Uniqueness of the constant solution). Assume (A′1), (A′2) and (A′3).
The constant 1 is the unique nonnegative nonzero classical solution to the equation

(8) ∇y · (σ(y)∇yp) +M [p](y) + p(y) (1−K[p](y)) = 0,

supplemented with homogeneous Neumann boundary conditions on ∂Ω.

Proof. We first remark that, by a direct application of the strong maximum prin-
ciple and Hopf’s lemma, the fact that p is nonzero can be reinforced as p(y) > 0 on
Ω. Since moreover p is continuous on Ω, p is bounded from below. In particular,
the test function p(y)−1

p(y) is well-defined and (at least) in C 1(Ω).
As in the discrete case, we multiply (8) by p(y)−1

p(y) and integrate over Ω. Inte-
grating by parts the gradient term, we get:

0 =−
∫

Ω
σ(y)∇yp(y)∇y

(
1− 1

p(y)

)
dy +

∫
Ω×Ω

m(y, z)(p(z)− p(y))dzdy

−
∫

Ω×Ω
m(y, z)(p(z)− p(y)) 1

p(y)dzdy +
∫

Ω
(1−K[p](y)) (p(y)− 1)dy.

Let us show that each of those terms is nonpositive. We first remark that

−
∫

Ω
σ(y)∇yp(y)∇y

(
1− 1

p(y)

)
dy = −

∫
Ω
σ(y) |∇p|

2

p(y)2 dy ≤ 0,

∫
Ω×Ω

m(y, z)(p(z)− p(y))dzdy =
∫

Ω

(∫
Ω
m(y, z)p(z)dz −

∫
Ω
m(y, z)dzp(y)

)
dy

=
∫

Ω

(∫
Ω
m(y, z)p(z)dz −

∫
Ω
m(z, y)dzp(y)

)
dy

=
∫

Ω×Ω
m(y, z)p(z)dzdy −

∫
Ω×Ω

m(z, y)p(y)dzdy

= 0.

Next, by Lemma 4.2,∫
Ω×Ω

m(y, z)(p(z)− p(y)) 1
p(y)dydz =

∫
Ω×Ω

m(y, z)p(z)
p(y) dydz −

∫
Ω×Ω

m ≥ 0.

Finally, since K[1] = 1, we have 1−K[p] = K[1− p] and thus, by Lemma 4.1,∫
Ω

(1−K[p](y)) (p(y)− 1)dy = −
∫

Ω
K[1− p](y)(1− p(y))dy ≤ 0.

Therefore each of those four terms is in fact equal to 0. From
∫

Ω σ(y) |∇p(y)|2
p(y)2 dy =

0 we deduce that p(y) is a constant on Ω. Since then

0 =
∫

Ω
K[1− p](1− p)dy = (1− p)2

∫
Ω2
k(y, z)dydz

and
∫

Ω2 k(y, z)dydz > 0, we conclude that p = 1. �

We are now in a position to prove Theorem 1.4.
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Proof of Theorem 1.4. As in the discrete case (proof of Theorem 1.1), we multiply
the equation (4) by the test function p(ξ,y)−1

p(ξ,y) and integrate on the cylinder ΩR =
[−R,R]×Ω for some R > 0. With the exact same computations as in the proof of
Lemma 4.3, we get

−
∫

ΩR
(d(y)∂ξξp(ξ, y) + c∂ξp(ξ, y))p(ξ, y)− 1

p(ξ, y) dξdy ≤ 0.

After integrations by parts in the ξ variable, we find

(9)
∫

ΩR
d(y) |∂ξp(ξ, y)|2

p(ξ, y)2 dξdy

≤
[∫

Ω
d(y)∂ξp(ξ, y)(p(ξ, y)− 1)

p(ξ, y) + c (ln(p(ξ, y))− p(ξ, y)) dy
]R
−R

where, by the classical elliptic estimates, |∂ξp(±R, y)| is controlled from above by
supy∈Ω,ξ∈[±R−ε,±R+ε] p(ξ, y), independently of R. Taking the limit R → +∞, we
see that ∂ξp(ξ, y) ∈ L2(R × Ω). Using elliptic regularity, a translation argument
(which is similar to the one developed in the proof of Theorem 1.1) and Lemma
4.3, we conclude that

lim
ξ→±∞

sup
y∈Ω
|p(ξ, y)− 1| = 0.

Going back to (9), we easily see that the right-hand side converges to zero as
R→ +∞ and therefore ∫

R×Ω
d(y) |∂ξp(ξ, y)|2

p(ξ, y)2 dξdy = 0,

thus p is constant in ξ. We conclude by the limit conditions that in fact p = 1
identically. �

Corollary 1.5 is a direct application of Theorem 1.4. As for Corollary 1.6, it is
proven by an argument similar to the one that yields the limit of the solution near
±∞ in the proof of Theorem 1.4. Since it is rather classical to adapt this argument
for traveling waves, we omit the details.

We end by a technical but necessary Lemma.

Lemma 4.4 (Compactness of K). Assume (A′2). Then the operator K : L2(Ω)→
L2(Ω) is compact.

Proof. We aim at applying the Kolmogorov-Riesz-Fréchet Theorem (see e.g. [13,
Theorem 4.26 p.111]) to our operatorK. We extend the function k(y, z) to RQ×RQ
by setting k(y, z) = 0 for y, z 6∈ Ω. For f ∈ L2(RQ) we define:

K[f ](y) =
∫
RQ

k(y, z)f(z)dz.

Let ε > 0 and f ∈ L2(Ω), ‖f‖L2(Ω) = 1 be given. We extend f to L2(RQ) by
setting f(z) = 0, z 6∈ Ω. We first remark that, for any h ∈ R,

‖τhK[f ]−K[f ]‖2L2 =
∫
RQ

(∫
RQ

k(y + h, z)f(z)dz −
∫
RQ

k(y, z)f(z)dz
)2

dy

=
∫
RQ

(∫
RQ

(k(y + h, z)− k(y, z))f(z)dz
)2

dy

≤
∫
RQ

∫
RQ

(k(y + h, z)− k(y, z))2dzdy‖f‖L2

=
∫
RQ

∫
RQ

(k(y + h, z)− k(y, z))2dzdy,
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where we have used the classical Cauchy–Schwarz inequality in L2(RQ) and τhg(z) :=
g(z+h). Therefore there remains only to control the L2 norm of k(y+h, · )−k(y, · )
when h is small. To this aim we fix δ1 > 0 be such that

|{d(y, ∂Ω) ≤ δ1}| ≤
ε

8‖k‖2L∞(Ω2)|Ω|
,

where d( · , ∂Ω) is the Euclidean distance between y ∈ RQ and the set ∂Ω and
|{d(y, ∂Ω) ≤ δ1}| is the Lebesgue measure of the set of points y ∈ RQ satisfying
d(y, ∂Ω) ≤ δ1. Since k is continuous on the compact set Ω2, there exists δ2 > 0
such that |k(y + h, z)− k(y, z)| ≤ ε√

2|Ω| if y, y + h, z ∈ Ω and |h| ≤ δ2.
Therefore, if |h| ≤ min(δ1, δ2), we have:

‖τhK[f ]−K[f ]‖2L2 =
∫
d(y,∂Ω)≤δ1

∫
RQ

(k(y + h, z)− k(y, z))2dzdy

+
∫
d(y,∂Ω)>δ1

∫
RQ

(k(y + h, z)− k(y, z))2dzdy

≤ 4|Ω|‖k‖2L∞ |{d(y, ∂Ω) ≤ δ1}|+ |Ω|2
ε2

2|Ω|2

≤ ε2.

We conclude that K is indeed compact on L2(Ω). �
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