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The steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is considered assuming that different power-law slip equations apply at the two walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different flow regimes are observed as the pressure gradient is increased. Below a first critical pressure gradient 1 G

, the fluid moves unyielded with a uniform velocity and thus the two slip velocities are equal. In an intermediate regime between 1 G and a second critical pressure gradient 2 G , the fluid yields in a zone near the weak-slip wall and flows with uniform velocity near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity is uniform only in the central unyielded core. It is demonstrated that the central unyielded region tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region rends towards the weak-slip wall, and asymmetry is enhanced. The extension of the different flow regimes depends on the channel gap; in particular the intermediate asymmetric flow regime dominates when the gap becomes smaller than a characteristic length which incorporates the wall slip coefficients and the fluid properties. The theoretical results compare well with available experimental data on soft glassy suspensions. These results open new routes in manipulating the flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk rheology of the material but also on the wall properties.

Introduction

Viscoplastic or yield-stress materials constitute a very interesting class which includes materials of industrial importance, such as polymeric solutions, suspensions and gels, but also biofluids like blood [START_REF] Barnes | The yield stress -a review or 'παντα ρει' -everything flows?[END_REF]). These materials behave as fluids if the stress exceeds the yield stress, τ0, and as solids otherwise. Therefore, the constitutive equation of an ideal viscoplastic material consists of two branches. Let us denote the viscous stress tensor by τ and the rate of strain tensor by γ  , the latter being defined by

( ) T ≡ ∇ + ∇ γ u u  ( 1 
)
where u is the velocity vector and the superscript T denotes the transpose. The magnitudes of γ  and τ, denoted respectively by γ and τ, are defined by / 2 II 

- = ≤      = + >       γ 0 γ     ( 2 
)
where k is the consistency index and n is the power-law exponent. For viscoplastic materials made of soft and deformable particles such as microgel particles or emulsion droplets, the power-law exponent n is close to 0.5 [START_REF] Cloitre | Glassy dynamics and flow properties of soft colloidal pastes[END_REF][START_REF] Bécu | Yielding and flow in adhesive and nonadhesive concentrated emulsions[END_REF][START_REF] Ovarlez | Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging[END_REF][START_REF] Seth | A micromechanical model to predict the flow of soft particle glasses[END_REF]. The consistency index k has been found to be proportional to the storage modulus of the suspensions [START_REF] Seth | A micromechanical model to predict the flow of soft particle glasses[END_REF]. By setting n=1 and k=μ, where μ is the plastic viscosity, the Bingham-plastic constitutive equation is recovered [START_REF] Bingham | Fluidity and Plasticity[END_REF]. By taking τ0=0, one gets the power-law model:

1 n kγ - = τ γ   (3) 
Viscoplastic materials are prone to slip when they are sheared near smooth surfaces (Barnes 2005;[START_REF] Cloitre | A review on wall slip in high solid dispersions[END_REF]. As a consequence of the solid-liquid duality of yield stress materials, slip essentially occurs at low shear rates below or near the yield point in contrast to slip of polymer melts which takes place at large shear rates [START_REF] Denn | Extrusion instabilities and wall slip[END_REF]. This generic feature is shared by many particulate materials such as highly-filled suspensions [START_REF] Yilmazer | Slip effects in capillary and parallel disk torsional flows of highly filled suspensions[END_REF][START_REF] Kalyon | Apparent slip and viscoplasticity of concentrated suspensions[END_REF], microgel suspensions (Meeker et al. 2004a;Meeker et al. 2004b;[START_REF] Aktas | Shear viscosity and wall slip behavior of a viscoplastic hydrogel[END_REF][START_REF] Ortega-Avila | Axial annular flow of a viscoplastic microgel with wall slip[END_REF], concentrated emulsions [START_REF] Princen | Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions[END_REF][START_REF] Salmon | Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering[END_REF][START_REF] Seth | How do soft particle glasses yield and flow near solid surfaces[END_REF], hard-sphere suspensions [START_REF] Ballesta | Slip and flow of hard-sphere colloidal glasses[END_REF]2012), and colloidal gels [START_REF] Ballesta | Slip of gels in colloidpolymer mixtures under shear[END_REF]. At the microscopic scale, slip is due to the formation of a thin layer of liquid adjacent to the walls, which lubricates the contacts between the bulk suspension and the walls [START_REF] Barnes | A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure[END_REF][START_REF] Cloitre | A review on wall slip in high solid dispersions[END_REF]. At the macroscopic scale, slip can be characterized using a power-law slip equation, relating the wall shear stress, w τ , to the slip velocity, w u , defined as the relative velocity of the fluid with respect to that of the wall [START_REF] Kalyon | Apparent slip and viscoplasticity of concentrated suspensions[END_REF]:

= s w w u τ β ( 4 
)
where s is the slip exponent and β is the slip coefficient. The latter coefficient incorporates the effects of several material properties affecting slip, such as the solvent viscosity and the particle properties. The no-slip and full-slip limiting cases are recovered in the limits β → ∞ and 0 β = , respectively. The classical Navier slip condition (Navier 1823) is the special case of Eq. ( 4) for s=1: The slip exponent s depends on the properties of the lubricated films at the material/wall interface. Two main lubrication mechanisms have been identified [START_REF] Seth | Influence of short-range forces on wall-slip in microgel pastes[END_REF]2012) .

In simple hydrodynamic lubrication (HL), the wall is wetted by a thin film of solvent, which has a constant thickness independent of the flow velocity. For a Newtonian solvent, s is equal to 1; for a non-Newtonian solvent with a power-law viscosity [START_REF] Kalyon | Apparent slip and viscoplasticity of concentrated suspensions[END_REF]. HL slip has been observed with highly-filled suspensions [START_REF] Kalyon | Apparent slip and viscoplasticity of concentrated suspensions[END_REF], soft particle suspensions with repulsive particle-wall interactions [START_REF] Seth | Influence of short-range forces on wall-slip in microgel pastes[END_REF]2012;[START_REF] Pérez-González | Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall[END_REF], and hard-sphere glasses [START_REF] Ballesta | Slip and flow of hard-sphere colloidal glasses[END_REF]2012). In elastohydrodynamic lubrication (EHL), the lubricating film results from a coupling between flow in the lubricating film and particle deformation. EHL is relevant in jammed suspensions of soft particles in the presence of slightly attractive particle-wall interactions (Meeker et al. 2004a;2004b;Seth et al. 2018;2012). Below the yield stress, s is expected to be of the order of 2, which is observed in experiments (Meeker et al. 2004a;2004b;[START_REF] Ortega-Avila | Axial annular flow of a viscoplastic microgel with wall slip[END_REF][START_REF] Ahonguio | Influence of slip on the flow of a yield stress fluid around a flat plate[END_REF]. Above the yield stress there exist no predictions and the situation is less clear. However experimental observations generally converge to the value s=1 [START_REF] Aktas | Shear viscosity and wall slip behavior of a viscoplastic hydrogel[END_REF][START_REF] Seth | How do soft particle glasses yield and flow near solid surfaces[END_REF][START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF][START_REF] Poumaere | Unsteady laminar flows of a Carbopol gel in the presence of wall slip[END_REF]).

1 m k η γ - =  , s is equal to 1/m
In real situations, complex fluids rarely flow in ideal geometries bounded by uniform surfaces but rather experience important slip heterogeneities induced by local variations of surface roughness and chemistry. In spite of its practical importance, this problem has retained little attention so far. Lauga and Stone analysed theoretically how surface heterogeneities, which were either transverse or parallel to the flow direction, affect the slip length of Newtonian fluids [START_REF] Lauga | Effective slip in pressure-driven Stokes flow[END_REF]. In their study of the extrusion of viscoplastic suspensions in shallow channels, Lawal and Kalyon considered a Couette-Poiseuille model subject to different Navier-slip coefficients at the barrel and screw surfaces [START_REF] Lawal | Single screw extrusion of viscoplastic fluids subject to different slip coefficients at screw and barrel surfaces[END_REF].

The authors derived analytical solutions for the Couette-Poiseuille flow for the case where the imposed pressure gradient and the moving upper plate drive the flow in opposite directions. Different flow regimes were found depending on the velocity, both in magnitude and direction, of the upper wall. Recently Vayssade et al. imaged the motion of wellcharacterized soft glassy suspensions in microfluidic channels whose walls imposed different slip velocities [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF]. The rheology of the suspensions was well represented by a Herschel-Bulkley equation with n = ½ and the boundary slip conditions were of the Navier form, i.e. s = 1. It was found that, when the channel gap was large, the velocity profiles consisted of a central unyielded plug between two fluidized layers near the walls. When the gap was small, a remarkable behavior appeared: the fluidized layer adjacent to the wall with the highest slip velocity disappeared and the plug flow region extended down the wall.

These observations motivate the present work. We revisit the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip, i.e. with different slip conditions at the two walls, in order to determine the critical conditions for the transition to different flow regimes when the degree of confinement varies. We successfully recover the experimental observations and provide quantitative criteria to get a particular flow regime and guidelines to predict confined flows of viscoplastic materials in the presence of strong surface heterogeneities. The paper is organized as follows. The governing equations and the general solution are presented in Section 2. Three different flow regimes are identified, which are defined by the two critical values of the imposed pressure gradient at which the fluid yields at each wall. In Section 3 we provide the analytical solutions for the flow of a power-law fluid subject to asymmetric Navier slip, which are very useful in interpreting the behavior of Herschel-Bulkley fluids at high pressure gradients (the power-law fluid can be viewed as the limit of a Herschel-Bulkley fluid as the pressure gradient goes to infinity). Section 4 is concerned with the variation of the critical pressure gradients with the gap size and the construction of flow diagrams. In Section 5, we make comparisons with the experimental data of [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF].

General solutions for the asymmetric slip problem

We consider the laminar, steady, unidirectional pressure-driven flow of a Herschel-Bulkley fluid in a horizontal channel of width H, as illustrated in Fig. 1. Heterogeneous wall slip is assumed to occur at the walls according to , 1,2

s wi i wi u i τ β = = (6)
where the lower and upper walls correspond to i =1 and 2, respectively. For the sake of simplicity, the slip exponents are considered to be the same at both walls. Since the flow is not symmetric, the origin is placed at the lower plate (Fig. 1). Without loss of generality, it is assumed that slip at the upper wall is stronger than at the lower wall, i. 

where G is the imposed pressure gradient. The lower-wall shear stress, 1 w τ , is a crucial parameter, in terms of which all other quantities of interest can be expressed. The upper-wall shear stress is given by:

2 1 w y x w y H GH τ τ τ = = = - (9) 
The two slip velocities 1 w u and 2 w u can then be calculated by means of Eq. ( 6).

For viscoplastic flow, we encounter the three regimes illustrated in Fig. 2 as the imposed pressure gradient is increased. In Regime I, the fluid simply slips and the velocity is constant (full-slip). This regime extends from zero up to the critical value G1 of the pressure gradient at which the fluid adjacent to the lower wall (where slip is weaker) yields. Regime II extends from G1 up to the critical value G2 of the pressure gradient at which the fluid adjacent to the upper wall (where slip is stronger) also yields. Hence in Regime II only the lower layer of the fluid up to 1 y y = is yielded. In Regime III, i.e. for pressure gradients above G2, the fluid yields near both walls and the velocity profile is asymmetric with a plug core between the lower and the upper yield points, y1 and y2. It is clear that Regime I is not relevant in the special case where there is no slip along the lower wall ( 1 0

w u = ) and Regime II is observed only if the flow is asymmetric ( 2 1 β β > ).
In the following analysis we introduce the dimensionless slip numbers:

/ / 1 0 , 1,2 s n i s s n i k B i H β τ - ≡ = (10) 
With this definition we have 1 2

2 1 / / B B β β
= so that B1 ≤ B2 under our assumptions. Note that there is no slip at the wall when 0 i B = .

Regime

I (0 ≤ G ≤ G 1 )
In Regime I, the pressure gradient is not sufficient to cause yielding of the material. However, since slip occurs along both walls and the material is unyielded, the two slip velocities are equal, 1

2 w w u u =
, and the material moves with uniform velocity:

1/ 1 2 ( ) s x GH u y β β   =   +   (11) 
The lower wall shear stress, given by 

1 1 1 2 w GH β τ β β = + ( 
𝐺 = 1 + (13)
G1 depends only on the yield stress and not on the exponent and consistency index. The maximum slip velocity is attained when G=G1:

1/ 1/ 1 0 1 1 s s w x u τ τ β β     = =         (14) 2.2 Regime II (G 1 ≤ G ≤ G 2 )
This flow regime exists only if the flow is asymmetric, i.e. if 1 2 β β > (or B1 < B2). In this case, the material yields only close to the lower wall, i.e. for 1 0 y y ≤ ≤ , where 1 y is the yield point (Fig. 2), and remains unyielded for 1 y y H < ≤ , moving with uniform velocity equal to the upper slip velocity 2 w u . The yield point 1 y is found from Eq. ( 8) by demanding that

0 yx τ τ = . Hence, 1 0 1 w y G τ τ - = (15) 
In the yielded region (

1 0 y y ≤ ≤ ), 0 1 n x yx w du k G y dy τ τ τ   = + = -+     (16) 
Integrating the above equation and demanding that 1 (0)

x w u u = and 1 2 ( ) ( ) x x w u y u y u = = , one finds that 1/ 1/ 1 1/ 1 1 1 1 1 1/ 1/ 1/ 1 1 1 1 1/ ( ) , 0 ( 1) ( ) , ( 1) n n n w n x n n w n nG u y y y y y n k u y nG u y y y H n k + + +    + - - ≤ ≤    +  =   + ≤≤  +  (17)
Requiring that 1 2 ( )

x w u y u = leads to the following equation for the lower-wall shear stress:

( ) ( ) ( ) 1 1 1/ 1/ 1/ 1 1/ 1/ 1 0 1 2 0 0 1 s s n n s w w w n B B G H G H n τ τ τ τ τ + -     - + - - =       + (18) 
The second critical pressure gradient G2 signals the yielding of the fluid at the upper wall and therefore it can be found by demanding that 2 0 w τ τ = , which leads to:

( ) ( ) ( ) 1/ 1/ 1 1/ 1/ 1/ 0 20 1 0 0 2 0 1 s n s n s n GH B B GH GH n τ τ τ τ + -   - - - - =       + (19)

Regime III (G > G 2 )

In this regime, there are two yielded regions adjacent to the two walls separated by an intermediate unyielded region ( 1 2 y y y ≤ ≤ ). The solution derived above for 1 0 y y ≤ ≤ in Regime II still applies. The second yield point is given by:

1 0 2 w y G τ τ + = (20)
and the three-branch velocity profile reads: 

1/ 1/ 1 1/ 1 1 1 1 1 1/ 1/ 1/ 1 1 1 1 2 1/ 1/ 1/ 1 1/ 1 2 2 2 2 1/ ( ) , 0 ( 1) ( ) , ( 1) 
+ + + + +    + - - ≤ ≤    +    = + ≤ ≤  +     + - -- ≤ ≤    +   (21) By demanding that 1 2 ( ) ( ) x x u y u y =
, one finds the following equation for the lower-wall shear stress:

( ) ( ) ( ) ( ) 1 1 1 1 1/ 1/ 1 1/ 1 1/ 1/ 1/ 0 0 1 2 0 0 1 s n n s n s w w w w n GH B B GH GH n τ τ τ τ τ τ τ + + -       - - - - + - - =          + (22)

Solutions for power-law fluids

Non-dimensional equations

In this section we solve the asymmetric slip equations for the special case of power-law fluids described by Eq. (3). Given that the power-law flow can be viewed as the limiting case of the Herschel-Bulkley flow at infinite pressure gradient, the results derived below will be useful in understanding the flow of Herschel-Bulkley fluids at high values of the pressure gradient. It is interesting to note that asymmetric flow profiles have also been observed with polymer solutions which are well represented by a power-law constitutive equation [START_REF] Müller-Mohnssen | Direct determination of apparent slip for a ducted flow of polyacrylamide solutions[END_REF]). In the limit of a power-law fluid, the two yield points y1 and y2 collapse to the unique point M y , where the velocity attains its maximum. The yield stress is zero and therefore there is no natural scale for stresses. The governing equations can be made dimensionless by scaling lengths by H, the pressure gradient by an arbitrary value, say Gs, so

that * / s G G G ≡
, stresses by GsH, and the velocity by 

s n i s n s s n i s k B i H G β + - - ≡ = (23) 
The non dimensional velocity profiles are then given by:

𝑢 * (𝑦 * ) = 𝑢 * + * / 𝑦 * ⁄ -(𝑦 * -𝑦 * ) ⁄ 0 ≤ 𝑦 * ≤ 𝑦 * 𝑢 * + * / 1 -𝑦 * / -(𝑦 * -𝑦 * ) ⁄ 𝑦 * ≤ 𝑦 * ≤ 1 (24)
The position of the maximum velocity * M y is a root of ( ) ( )

1/ 1 1/ *1/ 1/ *1/ 1 * 1/ *1/ 1/ * 1 2 1 1 0 1 n s n s n s s s M M M M n G y y B y B y n + - +   -- + - - =     + (25) If 1 2 B B = , the flow is symmetric and * 1 / 2 M y =
for any value of the pressure gradient * G .

When n = s, * M y is independent of * G and can be found by solving

( ) ( ) 1/ 1 1/ *1/ 1 * 1/ *1/ 1/ * 1 2 1 1 0 1 n n n n n n M M M M n y y B y B y n + +   -- + - - =     + ( 26 
)
For the particular case of Newtonian flow with Navier slip, i.e. for n=s=1, one finds

* 2 1 2 1 2 , 1 2(1 ) M B y n s B B + = = = + + (27)
When n s ≠ , the position of the maximum changes as the pressure gradient is increased. If 

M M G G B y y y y n s B B ∞ → → ∞ ≡ = ≡ = < + (28)
If n>s, the two limits are reversed. Hence, for Navier slip (s=1),

2 1 2 * * 2 2 0 1 2 1 2 2 1 2 1 , 1 , 1 2 1 2 1 2 , 1, , 1 2(1 ) 2(1 ) 1 , 1 , 1 2 B n n B B B B y n y n B B B B B n n B B ∞   < <   +    + +  = = = =   + + + +     > >   +   (29)

Discussion

The evolution of the velocity profiles as the pressure gradient is increased is shown in Fig. G are then given by:

* 1 1 2 1 B G B ≡ + and ( ) ( ) 1/ 1 1/ * 1 / 1 / * * 2 2 1 2 2 2 1 0 1 n s s s n G B B G G n +   - - - - =     + ( 30 
)
The velocity profiles, the yield points and the wall stresses in each regime are provided below.

Regime I

1/ * * * 1 2 1 2 ( ) s x B B G u y B B   =   +   (31) * * 2 1 1 2 w B G B B τ = + (32) Regime II *1/ * * 1 /1 * * 1 /1 * * 1 1 1 1 * * *1/ * * 1 /1 * * 1 1 1 ( ) , 0 1 ( ) , 1 1 n n n w x n n w nG u y y y y y n u y nG u y y y n + + +    + - - ≤ ≤     + =   + ≤ ≤  +  (33) ( ) ( ) ( ) 1 1 1/ 1/ 1/ 1 * * 1 / * * * 1 1 2 1 0 1 s s n s w w w n B B G G n τ τ τ +   - + - - =     + (34) * * 1 1 * 1 w y G τ - = ( 35 
)
Regime III τ , in terms of which the solution is expressed, can only be calculated numerically. In the case of Navier slip (s=1), these quantities can be calculated analytically for certain values of n. The Bingham plastic flow (n=1) belongs to this category and the corresponding solutions are given in Appendix B.

*1/ * *1/ 1 * * 1/ 1 * * 1 1 1 1 *1/ * * * * 1 / 1 * * * 1 1 1 2 *1/ * * 1 / 1 * * 1 / 1 * * 2 2 2 2 ( ) , 0 1 ( ) , 1 (1 ) ( ) 
+ + + + +    + - - ≤ ≤    +   = + ≤ ≤  +     + - - - ≤ ≤    +  (36) ( ) ( ) ( ) ( ) 1 1 1/ 1/ 1/ 1 1/ 1 * * * * 1 / * * * 1 1 1 2 1 1 0 1 s s n n s w w w w n G B B G G n τ τ τ τ + +     - - - - + - - =       + (37) 

Velocity profiles

Figure 4 shows velocity profiles for different values of the pressure gradient covering the three regimes, obtained for four different values of the exponent (n=4/3, 1, 1/2 and 1/3) assuming Navier slip (s=1) with B1=1 and B2=2. Recall that the velocity profiles in Regime I are independent of the exponent n and that * * 1 1 ( )

x u G B =
in all cases. Just as for the power-law fluids, shear thickening tends to enhance the flow asymmetry, in the sense that both yield points move away from the midplane towards the upper wall, while shear thinning tends to favor symmetry and extends Regime II. As expected, both yield points tend to converge to the asymptotic point * y ∞ given by Eq. ( 29), which corresponds to the power-law solution. More specifically, the yield points for n=4/3 converge to * 2 / 3 y ∞ = (Fig. 4a), those for n=1 to * 5 / 8 y ∞ = (Fig. 4b), while those for n=1/2 and 1/3 converge to * 1 / 2 y ∞ = (Figs. 4c andd). It is interesting to note that the variations of * 1 y and * 2 y with the pressure gradient are not always monotonic. For example, * 1 y is a monotonically increasing function of the pressure gradient only for large values of n (Figs. 4a-c). When n=1/3 (Fig. 4d) * 1 y initially increases attaining a maximum and then decreases over a wide range of the pressure gradient before starting increasing again to asymptotically reach the value * 1 / 2

y ∞ =
. Similarly, when n=4/3 (Fig. 4a), * 2 y decreases and reaches a minimum before increasing asymptotically to the limiting value * 2 / 3

y ∞ =
far from the midplane.

Wall stress and slip velocity

The effect of the pressure gradient on the wall shear stresses and the slip velocities is illustrated in Fig. 5. Here, based on the behavior of soft glassy suspensions [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF], we consider a Herschel-Bulkley material with exponent n=1/2 and assume that Navier slip (s=1) occurs along both walls. The lower plate slip number takes two extreme values, i.e. B1=0.001 and 1, corresponding to weak and strong slip respectively; the ratio B1/B2 = 0.5 is fixed. From Eq. ( 29), we have 𝐺 * = 1.5 showing that Regime I is the same in all cases; 𝐺 * increases and Regime II expands as B1 is increased. In Fig. 5, we observe that the variations of the slip velocities with the pressure gradient are correlated with the variations of the wall shear stresses. For weak slip (Fig. 5a), the difference between 𝜏 * and 𝜏 * increases in Regime I, decreases in Regime II, and finally vanishes in Regime III where eventually 𝜏 * = 𝜏 * . The corresponding velocities 𝑢 * and 𝑢 * increase as the pressure gradient is increased.

These are equal in Regime I but in the other two regimes 𝑢 * grows faster than 𝑢 * and thus the difference * * 2 1 w w u u increases. Strong slip (Fig. 5b) results in higher slip velocities as expected. Both 𝜏 * and 𝜏 * increase but the rate of increase is slowly changing over the entire range of pressure gradient explored. For a given value of the slip ratio, the difference of the two slip velocities in Regimes II and III is much smaller and its rate of increase is much lower for strong slip than for weak slip.

Confined flows with asymmetric slip

General solution

In this section we show that for a given viscoplastic material and fixed wall properties, the critical pressure gradients marking the onset of Regimes II and III, depend on the gap size H.

In order to analyze this dependence, we need to introduce new length, pressure-gradient and velocity scales:

1/ 1 1/ 1/ 1/ 1/ 0 2 0 1/ 1/ 1/ 1/ 0 2 2 , , a n d s n s s n s s s n s s n k G u k τ β τ τ β β + - -   = = =      ( 39 
)
The resulting dimensionless variables are denoted by a tilde (~). It is also important to note that the slip equation parameters β2 and s (along the upper wall) are hidden in the nondimensional scales (38). In particular, the non dimensional gap / s H H ≡   incorporates the effects of the slip coefficient at the upper wall and the fluid properties. From Eq. ( 13) we get the following dimensionless expression for the first critical pressure gradient:

1 1 G H κ + =   (40) 
where

2 1 1 2 B B β κ β ≡ = ( 41 
)
is the slip parameter ratio which varies from 0 (no slip along the lower wall) to 1 (same slip along the wall). Hence the curve representing 1 G  versus H  lies between 1 / H  and 2 / H  .

The second critical pressure gradient 2 G  is the root of the dimensionless version of Eq. ( 19):

1/ 1 1/ 1/ 1 ( 2) 1 1 ( 1) 0 n s s GH GH G n κ +     - -+ - - =            (42)
The above equation is amenable to analytical solution only in some special cases. Two of them of practical interest in experiments are discussed below.

Solution for no slip along the lower wall (κ=0)

In this case,

1 / G H = 
 and Eq. ( 42) is simplified to

1/ 1 2 2 1 ( 2) 1 n G H G n +   - = +        ( 43 
)
For a Bingham fluid (n=1) one finds ( )

2 2 2 1 1 1 4 G H H H = + + +     (44)
while for a Herschel-Bulkley fluid with n=1/2, ( )

1 2 2 1 1 1 cos cos 3 3 G H H H -     = +             (45)
It is useful to note that if 2 G and Η are known from experiments and if the upper wall experiences Navier slip (s=1) then the slip coefficient can be calculated from the dimensional version of Eq. ( 43):

( )

1/ 2 1/ 1 1/ 0 0 (1 1 / ) / 2 n n n n k G GH β τ τ + + = - ( 46 
)
The first and second critical pressure gradients for n=1 and 1/2 are plotted as functions of H  in Fig. 6. These graphs can be viewed as flow diagrams giving the type of flow experienced by the fluid when the degree of confinement is varied. Regime I is situated below the curve

1 ( ) G f H =   , which is independent of exponent n.
Regime II is the area between the curves of 1 G  and 2 G  . Figure 6 highlights the importance of the characteristic length s defined in (39). When the gap H becomes lower than the characteristic length s (𝐻 < 1), Regime II dominates and Regime III is hardly attained except at very large pressure gradients. When H  increases, the fluid is less confined and the extension of Regimes I and II is reduced. As expected, when the fluid is more shear-thinning, i.e. n is lower, the critical pressure gradient for yielding at the upper wall, 2 G  , is reduced and the extension of Regime II is reduced accordingly. At large values of H  , 2 G  becomes independent of n.

Solution for Navier slip along both walls (s = 1)

In this case, Eq. ( 42) is simplified to

1/ 1 1 ( 2) 1 1 ( 1) 0 n GH GH G n κ +     - -+ - - =            (47) 
For Bingham fluids (n = 1) one gets:

2 2 1 1 2 1 (1 ) 4(1 ) 2 G H H H κ κ κ κ     = + + + + + -     +       (48) 
For Herschel-Bulkley fluids with n=1/2

2 1/3 2 2 1 / 3 2 1 (1 3 )H G C H H C κ κ κ   - + = + + -         (49) 
where:

{ } 2 2 2 2 2 2 3 1 6(1 ) 3 (3 1) 36(1 ) 4(9 1) 3(1 ) 2 2 C H H H H κ κ κ κ κ κ κ κ   = - + -+ - + - - + -         (50) 
Figure 7 shows flow diagrams for Herschel-Bulkley fluids with n=1/2 and different values of the slip parameter ratio κ. Again the results exemplify the importance of the characteristic length S. Regime II has a significant extension when the gap H is comparable to or lower than S. It is shifted upwards when κ is reduced and reaches its maximum extension when κ=0. When κ=1, the critical pressure gradients 1 G  and 2 G  are equal to 2 / H  indicating that

Regime II disappears and the flow shifts directly from pure slip to upper and lower yielded flows.

Discussion

In this section we relate our results with those of [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF] for the flow of Herschel-Bulkley glassy suspensions in microchannels.

Quantifying the asymmetry of the velocity profiles

Definition of the asymmetry parameter [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF] solved the flow of Herschel-Bulkley fluid in microchannels by considering a frame of reference at the midplane of the channel, which translates at a mean velocity (𝑢 + 𝑢 )/2 so that the two walls move with opposite velocities ±Us, where:

𝑈 = (51) 
They also defined the dimensionless number:

𝑆 = + -1 (52) 
as a measure of the asymmetry in the positions of the yield points. Their analysis focused on the two slip velocities only and was independent of the slip laws at the two walls. However, it was restricted to the particular case n=1/2. In this section, we revisit the notion of the asymmetry parameter to compare our results to the experimental data, taking advantage of the general solutions derived in Section 2. Generalizing the scaling forms proposed by [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF], we scale velocities by 𝑛𝐺 ⁄ 𝐻 ⁄ /(𝑛 + 1)𝑘 ⁄ , distances by H, pressure gradients by 0 / H τ and stresses by GH. In order to avoid confusion with our previous adimensionalization systems, the dimensionless variables in this section are denoted For Bingham fluids (n = 1), the asymptotic value of s U can be calculated from the slip velocities in the Newtonian case, which are known:

2 1 1 2 2(1 ) s B B U S B B ∞ ∞ - = = + + (58) 
In the general case, when

1 s ≠ , S ∞ is calculated by means of 1 (2 1) 2 M S y ∞ = - (59) 
where M y is the position of the maximum velocity in the flow of a power-law fluid, which can be found by solving Eq. ( 26). s U ∞ is then found by means of Eq. ( 56), which has been derived by assuming that 1/ 2 y ∞ ≈ .

Relevance of the asymmetry parameter

The expression (57) for S ∞ is valid for high values of the pressure gradient and n<s. Let us test it against the exact solutions found in the previous sections. We consider the case n=1/2 with Navier slip (s=1), which is representative of the experiments of [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF]. . The asymmetry parameter S increases as B2 is increased (Fig. 8a) or as B1 is reduced (data not shown), because the asymmetry of the velocity profile is enhanced.

The influence of the power-law exponent is illustrated in Fig. 8b, where results obtained for Navier slip, i.e. s = 1, with B1=1 and B2=2 and n=1, 1/2 and 1/4 are shown. A first observation is that in the Bingham-plastic case for which n = s, S is a decreasing function of s U and there is no branch approaching asymptotically the line . This is due to the fact that the asymptotic forms derived for S are only valid for n<s. For low values of the pressure gradient the variation of S is essentially the same for all values of the power-law exponent.

When n<s the curves of S bend to approach asymptotically the lines predicted by Eq. ( 56).

Comparison with experiments

For the rest of this section we fix the values of all material parameters, again based on the experiments of [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF], n = ½, s =1, and . The two yield points in the velocity profiles are marked with red circles. Given that n<s, the yield points tend asymptotically to the center of the channel (𝑦 = 1/2) as the pressure gradient is increased. Given the experimental uncertainties discussed below, the agreement between the computed velocity profiles and the experimental ones is quite satisfactory. Quantitatively the computed profile lay below the experimental profiles but we noted that a moderate uncertainty on the consistency parameter (≅ 10%) can explain the discrepancy. Although all values of the pressure gradient should fall into Regime III, the velocity profiles expected for low pressure gradient exhibit the asymmetrical semi-plateau shape observed in experiments. Again, this can be associated with experimental uncertainties on the slip parameter, since it is delicate to control the preparation of the surfaces with a high accuracy. Moreover, the asymmetry significantly decreases when the pressure gradient and/or the gap size are increased. This unambiguously confirms that the observed velocity profiles result from confinement effects.

Let us now turn our attention towards the asymmetry parameter. For n=1/2, one easily derives the asymptotic limit valid for large pressure gradients:

4 /3 s S U =
, which is the expression (apart from a minor typo) derived by [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF]. In Fig. 10, the theoretical variations of the asymmetry parameter S with s U are shown for the same gap sizes as in Fig. 9, together with the experimental data (which also include points obtained for H=75 and 80 μm). All the curves collapse into the asymptotic limit expected for large pressure gradients, in excellent agreement with the corresponding experimental data. When the gap size increases, the asymmetry parameter increases as B1 is reduced, and the asymmetry curves are shifted toward low values of Us when the pressure gradient is small. The full symbols in Fig. 10 represent values of the asymmetry parameter either in Regime II or in the lower part of Regime III. This choice is justified by the fact that experimentally it is difficult to attribute unambiguously a velocity profile to a particular flow regime. Indeed Regime II is quite narrow so that some velocity profiles that look like having a semi plateau shape may well belong to Regime III theoretically. In any case, the values of S in all these points are in the range from 0.1 to 0.5. This can be explained by noting that the experimental asymmetry parameter in Regime II has been calculated by setting 2 1 y = , i.e. assuming that 1 / 2 II S y = .

Given that 1 y also tends to unity as the pressure gradient is reduced from 2 G to 1 G (at which the velocity is plug) the theoretical limiting value of II S is 0.5 while the corresponding value of s U vanishes, independently of the gap size. It should be pointed out, however, that the measured slip velocities (full symbols) in Fig. 10 are lower than their counterparts in the upper part of Regime III (open symbols), as it is easily deduced from Fig. 9, which implies that the relative error in s U may be higher.

Conclusions

We 

  β is related to the slip or extrapolation length b, i.e.

  above assumptions, the x-momentum equation for any generalized Newtonian fluid is simplified to:

  critical pressure gradient G1 which marks the transition between Regimes I and II is reached when the material adjacent to the

  n<s, it is easily shown that * M y decreases asymptotically to 1/2 starting from a finite value

3.

  In the first two columns of Fig.3, we consider a shear thickening fluid (n=4/3), a Newtonian fluid (n=1), and a shear thinning fluid (n = ½), following with B2=2 and B1=0 and 2, respectively. With shear-thinning fluids the velocity profiles tend to become more symmetric as the pressure gradient increases, whereas with shear-thickening fluids asymmetry is amplified. By comparing the first two columns of Fig.3, we see that this effect becomes more pronounced when the fluid sticks at the lower wall (B1=0). The position of the maximum of the velocity profiles decreases from 𝑦 * to 𝑦 * = 1/2 when the fluid is shear-thinning and increases from 𝑦 * = 1/2 to 𝑦 * when the fluid is shear-thickening. Similar trends are shown in the third column of Fig.3where a power-law slip equation with s=1/2 is used. The second row of Fig.3shows that * M y is independent of the pressure gradient when n=s. Finally, in the third row of Fig.3we observe that when n s < the velocity profiles tend to become symmetric with * M y decreasing asymptotically to ½ as the pressure gradient is increased.The asymptotic results discussed above are useful in understanding the flow of Herschel-Bulkley fluids at high values of the pressure gradient. The velocity profiles are computed from the general equations established in Section 2. It is convenient to scale lengths by H, stresses by τ0, pressure gradient by Gs=τ0/H and velocity by us =

Figure

  Figure 8a shows results of S versus s U obtained for different values of the slip number B2 and B1=1 over a wide range of pressure gradients above * 2 G . It is important to note that for low values of the pressure gradient, S is actually double-valued when plotted against s U . As the pressure gradient is increased further both S and s U are reduced and all the curves approach asymptotically the line 2 s S U =

  is increased, the calculated values of S and s U converge to the point ( s U ∞ , S ∞ ) instead of approaching asymptotically the line s S U =

  , from 7 up to 100 μm. The first dimensionless slip number B1 is in the range from 0.15 (H = 100 μm) to 3 (H=7 μm). The critical pressure gradients 𝐺 ̅ and 𝐺 ̅ are equal to gap size. The second critical pressure gradient * 2 G ranges from 2.6534 (H = 100 μm) to 2.8619 (H = 7 μm). Figure9shows the velocity profiles corresponding to * G =3, 4, 5, 6, and 8 for H=7, 20, 50, and 100 μm. To facilitate the comparison with the results of[START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF], we plot the reduced velocity

  have analyzed the plane Poiseuille flow of a Herschel-Bulkley fluid with asymmetric wall slip. Three different flow regimes have been identified by means of two critical pressure gradients G1 and G2: (a) in Regime I ( 1 0 G G ≤ ≤ ), the two slip velocities are the same and the velocity is uniform; (b) in Regime II ( 1 2 G G G < ≤ ), the fluid yields in a zone near the weak-slip wall and flows with uniform velocity near the stronger-slip wall; and (cthe fluid yields near both walls and the velocity is uniform only in the central unyielded core. The asymptotic limit flow of the Herschel-Bulkley flow as the pressure gradient tends to infinity is simply the flow of a power-law fluid which was also analysed and shed light to the flow of interest. The theoretical results compare well with the experimental data of Vayssade et al. (2014) on soft glassy suspensions. One important finding concerns the asymmetry parameter S, defined in Eq. (52), which is multi-valued for low and moderate pressures (in Regime III) and thus should be used with caution in interpreting the experimental data.

Figure 1 .

 1 Figure 1. Geometry and boundary conditions of the flow development of a Herschel-Bulkley fluid in a channel with different slip laws at the walls.

Figure 2 .u

 2 Figure 2. The three flow regimes encountered during viscoplastic Poiseuille flow with asymmetric slip. y 1 (and y 2 ) are the yield points which separate the yielded region(s) from the plug region and 1 w u

Figure 3 .

 3 Figure 3. Velocity profiles of various power-law fluids for different values of the pressure gradient, different slip laws (s, B 1 , B 2 ), and different power-law exponents (n). The circles show the maximum velocity and the horizontal lines show the asymptotic values * y ∞ .

Figure 5 .

 5 Figure 5. Wall shear stresses and slip velocities as functions of the pressure gradient when n=1/2 and s=1: (a) B 1 =0.001 and B 2 =0.002 (weak slip) in which case * 1 1.5 G = and * 2 2.1752 G = ; (b) B 1 =1

Figure 7 .G

 7 Figure 7. Effect of the slip number ratio

Figure 8 .

 8 Figure 8. (a) Effect of the slip parameters on the variation of the asymmetry parameter S with s U when n=1/2; B 1 =1 is kept constant and the ratio B 1 / B 2 is varied by varying B 2 . All curves approach asymptotically the dashed line 4 /3 s S U = as the pressure gradient is increased. (b) Effect of the power-law exponent for s=1 (Navier slip) with B 1 =1 and B 2 =2. As the pressure gradient is increased, the results for n<s (i.e. for n=1/2 and 1/4) approach asymptotically the corresponding dashed lines 1/ 2 /(1 1/ )n s S U n = + , while the results for n=s=1 converge to the point ( , ) (1 / 8,1 / 8) s s U S ∞

Figure 9 .

 9 Figure 9. Velocity profiles for different channel gaps and various dimensionless pressure for n=1/2, k=4.1 Pa s 1/2 , τ 0 =11.2 Pa, β 1 = 10 5 Pa m -1 s, β 2 =0.53 10 5 Pa m -1 s, and s=1 (taken from the data of Vayssade et al [27]): (a) h=7 μm with B 1 =2.1441, B 2 =4.0455, and * 2 2.8530 G = ; (b) h=20 μm with

Figure 10 .

 10 Figure 10. Asymmetry parameter S versus slip parameter s U for n=1/2, s=1 and h=7 μm (rightmost curve), 20 μm, 50 μm, and 100 μm (leftmost curve) compared with experimental data for h=7 μm (▲,Δ), 20 μm (♦,◊), 50 μm (□), 75 μm (▼, ∇ ), 80 μm (►) and 100 μm (o). Solid symbols correspond to Regime II (semi-plateau velocity profiles) and open symbols to Regime III (asymmetric velocity profiles).

  

by bars. According to Eq. ( 21), the difference between the two slip velocities in Regime III can be written in dimensionless form as:

1/ 1 1/ 1 2 1 1 2

(1 )

For n ≤1, we conveniently set n=1/m, where m is an integer, to get ( )

Let us now assume that despite the fact that the slip velocities are not the same, the two yield points are almost symmetric about the midplane, i.e. 1 2 1 y y ≈ -. As already discussed, this assumption is not reasonable when n≥s in which case the two yield points tend to merge at 1/ 2 y ∞ > , according to Eq. ( 29). It is valid when n<s and the two slip velocities are close to each other. Setting 2 1

1 y y -= into Eq. ( 54) yields:

( )

For n<s and sufficiently high values of the pressure gradient, 𝑦 can be approximated by 𝑦 ∞ ≈ 1/2 and by combining Eqs. ( 52) and ( 55) the asymmetry parameter takes the form:

Asymptotic values of the asymmetry parameter

The asymptotic value (2 1) / 2 S y ∞ ∞ ≡ -of S as the pressure gradient goes to infinity is of interest. For example, when s = 1 one gets from Eq. ( 29):

To close this discussion we would like to stress out that the phenomena analyzed in this paper constitute a new and interesting situation of non local rheology where the flow behavior is controlled by the surface and not only by the bulk rheology of the material. By changing the topography and the particle-wall interactions it is thus possible to manipulate the flow and get different velocity profiles. This is particularly important in real situations, for instance during oil migration in porous media, where surface roughness and chemistry locally vary so that slip heterogeneities naturally exist. Many other relevant applications concern confined flows in microfluidic devices where surface effects dominate: dispensing nozzles of colloidal inks in 3D printing systems, inkjet printing, and extrusion of complex fluids.

Appendix A -General solution in Regime I

In the general case with different slip exponents at the two walls Independent experiments of [START_REF] Vayssade | Dynamical role of slip heterogeneities in confined flows[END_REF] on soft glassy suspensions showed that s1=1 and s2=1/2. From Eq. (A3) we get

The first critical pressure gradient is given by

Appendix B -Bingham-plastic flow with Navier slip

It is clear from Eq. ( 13) that the first critical pressure 1 G required for the material to yield at the lower wall is independent of the consistency index and the power-law exponent. In the case of Bingham plastic flow with Navier slip (n=s=1), Eq. ( 19) for the second critical pressure gradient (the pressure gradient at which the material adjacent to the upper wall yields) is simplified as follows:

and thus 2 G is given by

The lower root is chosen if it is greater than 1 G and the higher one otherwise.

The lower-wall shear stress in the three regimes is given by

The two slip velocities can be calculated by means of

and the positions of the yield points by:

Finally, the velocity in Regimes I-III is given respectively by 1 2 ( )

The solution for the symmetric problem is obtained by setting 1