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In this paper we consider kinetically constrained models (KCM) on

Z2 with general update families U . For U belonging to the so-called

“critical class” our focus is on the divergence of the infection time of

the origin for the equilibrium process as the density of the facilitating

sites vanishes. In a recent paper [14] Marêché and two of the present

authors proved that if U has an infinite number of “stable directions,”

then on a doubly logarithmic scale the above divergence is twice the

one in the corresponding U-bootstrap percolation.

Here we prove instead that, contrary to previous conjectures [20],

in the complementary case the two divergences are the same. In partic-

ular, we establish the full universality partition for critical U . The main

novel contribution is the identification of the leading mechanism gov-

erning the motion of infected critical droplets. It consists of a peculiar

hierarchical combination of mesoscopic East-like motions.

1. Introduction.

1.1. Kinetically constrained models. We directly define the models of interest and
refer the reader to the companion paper [14] for more background. Let U be a finite
collection of finite subsets of Z2 \ {0} called update rules and consider the following
interacting particle systems on Ω= {0,1}Z2

parametrised by U and q ∈ (0,1). We say
that a site x ∈ Z2 is infected if ω(x) = 0 and healthy otherwise. The dynamics is as
follows. On each site x ∈ Z2 we are given an independent Poisson clock of parameter
one and at each arrival time t := tx,k of the clock the process attempts to update the
current state ωx(t) according to the following rule. If the configuration ω(t) is such
that there exists U ∈ U such that ∀y ∈ U,ωx+y(t) = 0, then ωx(t) is resampled from
the Bernoulli(1− q)-measure µq(1) = 1− q,µq(0) = q. In this case we say that a legal
update occurs at time t at site x. Otherwise the attempted update is rejected.

Using the fact that all rings (tx,k)x∈Z2,k∈N of the Poisson clocks are different a.s. and
that all updating rules are finite sets, it is easy to check that the above process is well
defined [18]. Moreover, since the update rules do not contain the origin, the process
is reversible w.r.t. the product measure µ := µZ

2

q .
We will refer to the above process as the kinetically constrained spin model with

update family U , for short U -KCM or just KCM if U is clear from the context. KCM
have been introduced several years ago in the physics literature (but only for certain
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specific choices of U) in order to reproduce in simple and fundamental interacting
particle systems some of the main features of the so-called glassy dynamics, i.e. the
dynamics of a supercooled liquid near the glass transition [3,9,10,16,23].

1.2. U -Bootstrap percolation. The U -KCM can also be seen as the non-monotone
stochastic counterpart of the U -bootstrap percolation, a monotone cellular automaton
on Ω (see e.g. [5,22]). In the latter process one says that x ∈ Z2 is infected for ω ∈Ω
if ωx = 0 and healthy otherwise and the relevant time evolution concerns the set of
infected sites At at integer times t. Given At, the set At+1 is constructed by adding to
At any healthy site x for which there exists U ∈ U such that U + x⊂At:

At+1 =At ∪ {x ∈ Z2,∃U ∈ U , x+U ⊂At}.
The only randomness in the process occurs at time t= 0 by taking the initial infection
as the random set Aω = {x ∈ Z2 : ωx = 0} with ω ∼ µ. If At=0 =A then the closure of
A under the U -bootstrap percolation is the set [A]U :=

⋃
t>0At.

For both processes the main focus has been on the typical value (e.g. in mean,
median, or w.h.p.) of the infection time of the origin defined as

τ0 = inf{t : ω0(t) = 0}.
Notice that for U -bootstrap percolation τ0 ∈ N ∪ {+∞} and it only depends on the
initial set of infection Aω. On the other hand, for the KCM τ0 ∈ [0,+∞] and it depends
on the initial state ω(0), on the occurrences of the Poisson clocks at the vertices of Z2

and on the resampling values of the legal updates. In order to present our main result
on τ0 we need some further notation (see [6]).

Let ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and scalar product on R2 respectively.
For each unit vector u ∈ S1 = {x ∈ R2,‖x‖= 1} ∼ R/2πZ, let Hu := {x ∈ R2 : 〈x,u〉<
0} denote the half-plane whose boundary is perpendicular to u.

DEFINITION 1.1 (Stable directions). The set of stable directions of U is

S = S(U) =
{
u ∈ S1 : [Hu ∩ Z2]U =Hu ∩ Z2

}
.

Using the above definition the update family U was classified in [6] as:

• supercritical if there exists an open semicircle in S1 that is disjoint from S ,
• critical if there exists a semicircle in S1 that has finite intersection with S , and if

every open semicircle in S1 has non-empty intersection with S ,

• subcritical if every semicircle in S1 has infinite intersection with S .

It is known from [2, 6] that for all q ∈ (0,1) the U -bootstrap percolation τ0 is a.s.
finite iff U is supercritical or critical. The next definition quantifies the difficulty of
propagation of infection in a stable direction for bootstrap percolation.

DEFINITION 1.2 (Definition 1.2 of [5]). Let U be an update family and u ∈ S1 be
a direction. The difficulty of u, α(u), is defined as follows.

• If u is unstable, then α(u) = 0.
• If u is an isolated (in the topological sense) stable direction, then

α(u) = min{n ∈N : ∃Z ⊂ Z2, |Z|= n, |[Z2 ∩ (Hu ∪Z)] \Hu|=∞},
i.e. the minimal number of infections allowing Hu to grow infinitely.

• Otherwise, α(u) =∞.
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The difficulty of U is

α(U) = inf
C∈C

sup
u∈C

α(u), (1)

where C is the set of open semicircles of S1.

REMARK 1.3. It was proved in [6, Lemma 5.2] (see also [5, Lemma 2.8]) that
1 6 α(u) <∞ if and only if u is an isolated stable direction. Moreover, it is easy to
prove [5, Lemma 6.6] that if α(u)<+∞ then there exists a set Z of cardinality α(u)
such that |[Z2 ∩ (Hu ∪Z]∩ ℓ(u)|=+∞, where ℓu = {x ∈R2 : 〈x,u〉= 0}.

It follows from the main result of [5] that for any critical U with difficulty α the
U -bootstrap percolation infection time τ0 w.h.p. satisfies

lim
q→0

log log(τ0)

log(1/q)
= α. (2)

1.3. Main results. Our main result is that (2) holds also for the U -KCM if S is
finite. The core of the proof is based on the discovery of a new and efficient re-
laxation mechanism completely different from the one occurring in bootstrap per-
colation. While for the latter the dominant mechanism to grow infection is a linear
expansion from some rare large groups of infected sites (critical droplets), for KCM
we find that these droplets, in order to move around in an efficient way to infect the
origin, perform a complex hierarchical motion (see Section 2 for an heuristic detailed
description). The above motion is a novel type of relaxation mechanism with respect
to all those considered so far in the KCM literature. In particular, it is different from
the random walk like motion that captures the dominant behavior for 2-neighbour
model [21], and it is also different from the purely East-like motion used to establish
the scaling for models with an infinite number of stable directions [14, 19, 20]. In-
deed, based on the wrong intuition that the two former mechanisms were essentially
the only two possible efficient ways to move critical droplets around, a conjecture
was put forward in [20, Conjecture 3], which is disproved by our result, Theorem 1
below.

Write Eµ(τ0) for the expectation of the infection time for the U -KCM with initial
law µ (i.e. for the stationary process).

THEOREM 1. Let U be a critical update family with finite stable set S and difficulty
α. Then

Eµ(τ0) = eO(log(1/q)3/qα). (3)

Moreover,

lim
q→0

log log(Eµ(τ0))

log(1/q)
= α. (4)

The second statement (4) follows immediately from (3) together with [21, Lemma
4.3] and (2). Theorem 1 together with [14, Theorem 2.8] and [20, Theorem 2(a)]
corrects [20, Conjecture 3] and gives the following full universality picture for U -KCM
with critical U .

THEOREM 2. Let U be a critical update family. Then

lim
q→0

log log(Eµ(τ0))

log(1/q)
=

{
α if |S|<+∞,

2α otherwise.
(5)
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Some key partial results in the direction of proving Theorem 2 were established
in [20, 21]. In particular, in [20] the scaling (4) was proved for any update family
U with maxu∈S1 α(u) = α while [19] proved (5) with a higher degree of precision
for a specific model with |S| =∞, the Duarte model. We refer the interested reader
to the introduction of [14] for a detailed account of the history leading to (5). For
supercritical update families the correct scaling was determined in [20, Theorem 1]
and [19, Corollary 4.3].

1.4. Organisation of the paper. We start by providing a heuristic explanation of
the relaxation mechanism underlying our main result in Section 2. In Section 3 we fix
some notation and gather some preliminary tools from bootstrap percolation that are
by now well established in the literature. We will not dwell on the technical aspects
of the definitions and invite the reader to refer to Section 4.3 of [20], which we
follow closely, for more details. For reader’s convenience we have collected in Section
3.2 three useful technical lemmas on certain one-dimensional kinetically constrained
Markov processes. Although the proof of these lemma can be found or derived from
the existing literature on KCM, we have added it in the Appendix for completeness.
Section 4 contains the main new technical Poincaré inequality, while Theorem 1 is
proved in Section 5. Finally, in Section 6 we discuss some natural open problems
raised by the present work.

2. Some heuristics behind Theorem 1. For a high-level and accessible intro-
duction to the main general ideas and techniques involved in bounding from above
Eµ(τ0) we refer to [20, Section 2.4]. There, in particular, it was stressed that while
the necessary intuition is developed using dynamical considerations (e.g. by guess-
ing some efficient mechanism to create/heal infection inside the system), the actual
mathematical tools are mostly analytic and based on suitable (and, unfortunately,
sometimes very technical) Poincaré inequalities. This paper makes no exception.

In order to go beyond the results of [20] and get the sharp scaling of Theorem 1 in
the case of a finite set of stable directions, the following new key input is needed.

For simplicity imagine that U has only four stable directions coinciding with the
four natural directions of Z2. For a generic model with |S| < ∞ the mechanism is
the same, the only difference being that in general ‘droplets’ have a more complex
geometry. Assume further that α(~e1) = 1 and α(−~e1) = α(±~e2) = 2 (see Figure 1).
Consider now a critical droplet, i.e. a square frame D, centered at the origin, of side
length ≈ C log(1/q)/q, C ≫ 1, and O(1)-thickness, and suppose that D is infected.
Then, w.h.p. (w.r.t. µ) there will be extra infected sites next to D in the ~e1-direction
allowing D to infect D + ~e1. However, it will be extremely unlikely to find a pair of
infected sites near each other and next to the other three sides of D because of the
choice of the side length of D. We conclude that w.h.p. it is easy for D to advance
forward in the ~e1-direction but not in the other directions. Moreover, as explained in
detail in [20, Section 2.4], an efficient way to effectively realize the motion in the
~e1-direction is via a generalised East path. In its essence the latter can be described
by the following game. At every integer time a token is added or removed (if already
present) at some integer point according to the following rules:

• each integer can accomodate at most one token;
• a token can be freely added or removed at 1;
• for any j > 2 the operation of adding/removing a token at j is allowed iff there is

already a token at j − 1.
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0

0

0

0

(a) The four update rules belonging to U .

1

2

2

2

(b) The difficulties of the four stable direc-

tions of the model.

Fig 1: An example of an update family U with finite number of stable directions
examined in Section 2.

C log(1/q)/q2

C
q log(1q )

(a) The infected droplet (black frame with width O(1)) progressively moves to the right in an

East-like way using the extra infected sites present w.h.p. in each column of the gray rectangle.
This progression stops when reaching the first infected horizontal pair of sites at the correct

height (red pair).

(b) The infected droplet on the right grows into an e2-extended droplet thanks to the infected

pair of sites. The movement is then reverted, progressively retracting the extended droplet in

an East way until reaching the original position.

Fig 2: The mechanism for the droplet to grow in the ~e2-direction.

Given n ∈N, by an efficient path reaching distance n we mean a way of adding tokens
to the original empty configuration to finally place one at n which uses a minimal
number of tokens. A combinatorial result (see [8]) says that the optimal number
grows like log2(n).

The main new idea now is that, while w.h.p. the droplet D will not find a pair
of infected sites (which are necessary to grow an extra layer of infection in the ~e2-
direction) next to e.g. its top side, w.h.p. it will find it at the right height within
distance C log(1/q)/q2 in the ~e1-direction (see Figure 2). Hence, a possible efficient
way for D to move one step in the ~e2-direction is to:

(a) travel in the ~e1-direction in a East-like way until finding the necessary pair of
infected sites within distance C log(1/q)/q2 from the origin;

(b) grow there an extra layer in the ~e2-direction and retrace back to its original posi-
tion while keeping the acquired extra layer of infection.
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C
q2

log(1/q)

Fig 3: The mechanism for the droplet growth in the −~e1-direction. The droplet moves
in an East way in the ~e2-direction by making long excursions in the ~e1-direction as in
Figure 2.

A similar mechanism applies to the −~e2-direction. Slightly more involved is the way
in which D can advance in the −~e1-direction. In this case the extra infected pair needs
to be found within distance C log(1/q)/q2 from the origin in the vertical direction (see
Figure 3). In order to reach it, D performs an East-like movement upwards, each of
whose steps is itself realised by the back-and-forth East motion in the e1 direction
described above.
Using the result for the typical time scales of the generalised East process (see [20,
formula (3.5)]) it is easy to see that the typical excursion of D for a distance ℓ ≡
C log(1/q)/q2 in the ~e1-direction requires a time lag

∆t= q−|D|O(log(ℓ)) = eO(log3(1/q))/q .

This time scale also bounds from above the time scale necessary to advance by one
step in the “hard” directions −~e1,±~e2.

In conclusion, by making a “quasi-local” (i.e on a length scale ℓ) East-like motion
in the easy direction ~e1, the infected critical droplet D can actually perform a sort
of random walk in which each step requires a time ∆t. The result of Theorem 1
becomes now plausible provided that one proves that anomalous regions of missing
helping infected sites do not really constitute a serious obstacle.

The above dynamic heuristics can be turned into a rigorous argument using canon-
ical paths. However, a much neater approach is to prove a Poincaré inequality for the
U -KCM restricted to a suitable finite domain of Z2 (see Theorem 4.6). More precisely,
in the toy example discussed above the inequality that we establish is as follows.

Let V =B ∪ T0 ∪ T−
1 ∪ T+

1 where B,T0, T
±
1 are as in Figure 4. The set V is an ex-

ample of a more general geometric construction developed in Section 4 and denoted
snail with base B and trapezoids T0, T

±
1 . The ratio of the sides of the rectangle B is

Θ(q) while for the other rectangles it is Θ(1).
Let Ω0 consist of all configurations of {0,1}V such that:

• each column of B contains an infected site;
• each row of T0 contains a pair of adjacent infected sites;
• each column of T±

1 contains a pair of adjacent infected sites.
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C
log(1/q)

q2

C
log(1/q)

q B

T0T−
1 T+

1

D

Fig 4: The geometric setting for the toy model of Figure 1.

Notice that by choosing C large enough µ(Ω0) = 1− o(1) as q → 0. Then, in the key
Theorem 4.6, we prove that for any f : {0,1}V →R

1{D is infected}VarV (f |Ω0)6 eO(log(1/q)3)/q ×D(f),

where D(f) is the Dirichlet form of f (see (8)). One can interpret the above inequality
as saying that the KCM in V restricted to the good set Ω0 has a relaxation time at
most eO(log(1/q)3)/q . We prove this by an inductive procedure over T0, T

±
1 which, in

some sense, makes rigorous the dynamic heuristics described above.

3. Notation and preliminaries. In this section we gather the relevant notation
and basic inputs from bootstrap percolation and KCM theories. We shall always de-
note spatial regions (either in Z2 or in R2) with capital letters and events in the
various probability spaces with calligraphic capital letters.

3.1. Bootstrap percolation.

3.1.1. Stable and quasi-stable directions. For every integer n, we write [n] :=
{0,1, . . . , n − 1}. We fix a critical update family U with difficulty α = α(U) and
with a finite set S of stable directions.1 Using the definition of α(U) (see (1)) one
can fix an open semicircle C with midpoint u0, one of whose endpoints is in S
and such that maxu∈C α(u) = α. Using [6, Lemma 5.3] (see also [5, Lemma 3.5]
and [20, Lemma 4.6]) one can choose a set of rational directions2 S ′ ⊃S , so that for
every two consecutive elements u and v of S ′ there exists an update rule X ∈ U such
that X ⊂ (Hu ∪ ℓu) ∩ (Hv ∪ ℓv), where ℓu′ = {x ∈ R2 : 〈x,u′〉 = 0} is the boundary of
Hu′ = {x ∈ R2 : 〈x,u′〉< 0 for any u′ ∈ S1. The elements of S ′ are usually referred to
as quasi-stable directions. Then our fundamental set of directions will be

Ŝ =
⋃

u∈S′

({u,u0 − (u− u0)}+ {0, π/2, π,3π/2}). (6)

In other words, we start with the stable directions, add to them the quasi-stable ones,
reflect them at u0 and finally make the set obtained invariant by rotation by π/2. By

construction the cardinality of Ŝ is a multiple of 4.

1By Lemmas 2.6 and 2.8 of [5] this is equivalent to the fact that all (stable) directions have finite

difficulty.
2A direction u ∈ S1 is rational if tan(u) ∈Q or, equivalently, if su ∈ Z2} for some s > 0.
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R3 −wu0

w

Fig 5: The shaded region is the quasi-stable annulus A, while the hatched one is the
quasi-stable half-annulus HA. As anticipated all the radii Ri are much larger than the
width w.

REMARK 3.1. Let us note that invariance by rotation and reflection is cosmetic
and one could in fact deal directly with the set of quasi-stable directions from [6],
though notation would be more laborious and drawings less aesthetic.

We write u0, u1, . . . u4k−1 for the elements of Ŝ ordered clockwise starting with u0
and Ŝ0 for those elements of Ŝ belonging to the semicircle C. For all figures we shall
take Ŝ = {iπ/4, i ∈ {0,1, . . . ,7}} and u0 = π. When referring to ui, the index i will be

considered modulo 4k. With this convention Ŝ0 = {u−k+1, . . . , uk−1}.

3.1.2. U -bootstrap percolation restricted to Λ ⊂ Z2. In the sequel, we will some-
times need the following slight variation of the U -bootstrap percolation. Given Λ⊂ Z2

and a set A⊂ Λ of initial infection, we will write [A]ΛU for the closure
⋃

t>0A
Λ
t of the

U -bootstrap percolation restricted to Λ, (AΛ
t )t>0, defined by

AΛ
t+1 =AΛ

t ∪ {x ∈Λ,∃U ∈ U , x+U ⊂AΛ
t }.

3.1.3. Geometric setup. We next turn to defining the various geometric domains
we will need to consider. As the notation is a bit cumbersome, the reader is invited
to systematically consult the relevant figures. We fix a large integer w and a small
positive number δ depending on U (e.g. w much larger than the diameter of U and
of the largest difficulty of stable directions), but not depending on q. When using
asymptotic notation (as q → 0) we will assume that the implicit constants do not
depend on w, δ and q. Throughout the entire paper we shall consider that q is small,
as we are interested in the q → 0 limit. In particular, we shall assume that q is so
small that any length scale diverging to +∞ as q→ 0 will be (much) larger than the
constant w.

DEFINITION 3.2. Consider a closed convex polygon P in R2. Assume that the
outward normal vectors to the sides of P belong to Ŝ and that u is one of them.
Then we write ∂uP for the side whose outward normal is ui.

We can now define the notion of droplet that will be relevant for our setting (see
Figure 5). In the sequel for u ∈ S1 we set Hu =Hu∪ℓu for the closure of Hu. Moreover,
given x ∈ R2 and s ∈ R, we set Hu(x) = Hu + x, Hu(s) = Hu(su) and similarly for

Hu and ℓu. Finally, for any ui ∈ Ŝ we set ρi = inf{ρ > 0,∃x ∈ Z2, 〈x,ui〉 = ρ} for the
smallest positive s such that ℓui

(s) 6= ℓui
and ℓui

(s)∩ Z2 6=∅.



UNIVERSALITY FOR CRITICAL KCM 9

DEFINITION 3.3 (Quasi-stable annulus and half-annulus). Fix a radius R = R(q)

such that limq→0R(q) = +∞ and let Ri = ρi

⌊
R
ρi

⌋
for i ∈ [4k]. We call the subset of R2

A=
⋂

i∈[4k]

Hui
(Ri) \

⋂

i∈[4k]

Hui
(Ri −w)

the quasi-stable annulus (or simply the annulus) with radius R and width w centered
at the origin. We write Aint for the region

⋂
i∈[4k]Hui

(Ri −w) enclosed by A. Clearly,

the outer boundary of A is a closed convex polygon P satisfying the assumption of
Definition 3.2 and we write ∂ui

A for ∂ui
P . We also let

∂Ŝ0
A=

⋃

u∈Ŝ0

∂uA, (7)

and we call

HA=

k⋂

i=−k

Hui
(Ri) \

k−1⋂

i=−k+1

Hui
(Ri −w)

the quasi-stable half-annulus of radius R and width w.

Our approach will consist in building progressively larger domains for which we
can bound the Poincaré constant of the finite volume KCM process conditionally on
the simultaneous occurrence of a certain likely event and the presence of an infected
annulus. We next define these domains (see Figure 6). Recall that δ is a small constant
depending on the update family U .

DEFINITION 3.4 (Snails). Recall R and Ri from Definition 3.3. Let L = L(q) > 0

be such that limq→0L(q) = +∞ and assume that
L〈u0,uk−1〉

ρk−1
∈ N (i.e. ℓuk−1

(Lu0) con-

tains lattice sites). We call a sequence of non-negative numbers r = (r0, r1, . . . , r2k)
admissible if

06 r0 6 δL, ri 6 δri−1, r2k = 0.

Given an admissible r we call the set

V R,+
L (r) =

k−1⋂

i=−k+1

Hui
(Ri +L〈u0, ui〉) ∩

3k⋂

i=k

Hui
(Ri + ri−k)

the right-snail with parameters (R,L, r). Using the symmetric construction of Ŝ, the

left-snail V R,−
L (r) with parameters (R,L, r) is simply defined as the reflection of the

right-snail w.r.t. the line orthogonal to u0 and passing through the point 1
2Lu0. Finally

the snail with parameters (R,L, r) is the set

V R
L (r) = V R,+

L (r)∪ V R,−
L (r).

We systematically drop the parameters R, L, and r from our notation when no ambi-
guity arises.

DEFINITION 3.5. We observe that any right-snail V R,+
L (r) can be thought of as the

set obtained by stacking together as in Figure 6 its base defined as

B = V R
L ((0, . . . ,0))
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HA+Lu0 A

T±

0

B

T+
1T−

1

T−

2 T+
2

r0

r1r1

r2r2

L

2R

Fig 6: A snail V = V + ∪ V − with its base B and its trapezoids T±
0 , T±

1 , . . . . The right-
snail of V is V + =B ∪⋃

i T
+
i while the left-snail is V − =B ∪⋃

i T
−
i . In Section 4 the

shaded quasi-stable annulus A and the half-annulus HA+Lu0 will act as an infected
boundary condition.

and its trapezoids defined as

T+
i = V R,+

L (r0, . . . , ri,0, . . . ,0) \ V R,+
L (r0, . . . , ri−1,0, . . . ,0)

= (Huk+i
(Rk+i + ri) \Huk+i

(Rk+i)) ∩Huk+i−1
(Rk+i−1 + ri−1)∩Huk+i+1

(Rk+i+1)

with the convention r−1 = L〈u0, uk−1〉. Notice that the base B is characterized by two
parameters R,L called radius and length respectively.

With this picture in mind the positive values of r coincide with the heights of the
corresponding non-empty trapezoids. A similar decomposition holds for the left-snail.
In the sequel, it will be convenient to partition the lattice sites in each trapezoid T+

i
into disjoint slices ST+

i,j, j = 1,2, . . . , with each slice consisting of all the lattice sites of

the trapezoid lying on a common line of R2 orthogonal to the direction uk+i. Similarly
for the lattice sites contained in the truncated base B◦ :=B \ (A∪Aint ∪ (HA+Lu0)).
In this case each slice, denoted SBj, j = 1,2, . . . , will consist of all the sites belonging
to a common suitable translate in the u0-direction of ∂Ŝ0

A defined in (7). Recall from

Definition 3.3 ρi and Ri = ρi⌊R/ρi⌋, where R is the radius of the annulus A.

DEFINITION 3.6. Fix a snail and suppose that its trapezoid T+
i , i ∈ [2k] is non-

empty. The jth slice of T+
i ∩Z2, in the sequel ST+

i,j, is the set ST+
i,j = T+

i ∩ ℓuk+i
(Rk+i+

jρk+i) ∩ Z2 in such a way that T+
i ∩ Z2 =

⋃
j>0ST

+
i,j . Similarly for the left trapezoid

T−
i if non-empty.
Turning to the truncated base B◦, we first set λj+1 = inf{λ > λj , (λu0+∂Ŝ0

A)∩Z2 6=
∅} with λ0 = 0. Then we define the jth slice of the truncated base B◦ of the snail,
SBj , and its ith-side, SBi,j, as

SBj = (λj + ∂Ŝ0
A) ∩B◦ ∩ Z2,

SBi,j = (λj + ∂ui
A) ∩B◦ ∩ Z2.

Note that for any admissible sequence r a non-empty slice of the trapezoid T+
i con-

sists of all lattice points of a segment I ⊂ R2 orthogonal to uk+i with length Ω(ri−1)
and such that I ∩ Z2 6= ∅. Similarly, the number of lattice sites in each slice of B◦ is
Θ(R). In the sequel we will only consider non-empty slices without explicitly specify-
ing the range of the index j > 0.
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ui−1

ui ∂ui
Λ⊂ ℓui

ui+1

(a) An example helping set (the black dots) consisting of three disjoint copies of Z shifted

along ℓui
. In the figure α(ui) = 2 with Z = {(0,0), (1,1)} and m= 3.

w

ui−1

ui ∂ui
Λ⊂ ℓui

ui+1

(b) Illustration of w consecutive sites of ∂ui
Λ.

Fig 7: The setting of Lemma 3.7. In the figure ui is the upwards direction and the
hatched trapezoid represents the lattice sites in Λ \ ∂ui

Λ. The lemma states that if the
hatched region and the black sites are infected, ∂ui

Λ also becomes infected (in the U
bootstrap percolation process restricted to a suitable region).

3.1.4. Helping sets. Recall Definition 1.2 and Remark 1.3. If u is a stable direction,
then the infected half-plane Hu needs finitely many (exactly α(u)) extra infected sites
in R2 \Hu in order to infect infinitely many sites on the line ℓu. If only a finite portion
of Hu is infected, e.g. the dashed region in Figure 7, then the propagation of infection
to some portion of the line ℓu is a delicate problem. A special case which suffices for
our purposes is covered in the next lemma (see [5, Lemma 3.4] and [6, Lemma 5.2]).

LEMMA 3.7. Fix u= ui, i ∈ [4k] and recall that w is a large enough integer (depend-
ing on U) and let r > w2. Let Λ := Λ(u,w, r) = Hui−1

(r) ∩Hui
∩Hui+1

(r) ∩Hui+2k
(w)

be the (closed) trapezoid in Figure 7 of height w and bases orthogonal to u. Note that
∂uΛ⊂ ℓu.

(a) Let Z ⊂ Z2 \ Hu be a set of α(u) sites at distance at most
√
w from the ori-

gin such that [Hu ∪ Z]U ∩ ℓu is infinite. Then there exist finitely many lattice
points a1, . . . , am, b, on the line ℓu such that the following holds. If Λ \ ∂uΛ and⋃m

j=1(Z + aj + kjb) are infected, where k1, . . . , km ∈ Z are such that {a1 + k1b, a2 +

k2b, . . . , am+ kmb} form m distinct lattice sites of ∂uΛ at distance at least w from the
endpoints of ∂uΛ, then the U -bootstrap percolation restricted to the larger trapezoid
Λ=Hui−1

(r)∩Hui
(w/2) ∩Hui+1

(r)∩Hui+2k
(w) is able to infect ∂uΛ.

(b) If Λ \ ∂uΛ and w consecutive lattice sites in ∂uΛ are infected, then the U -bootstrap
percolation restricted to Λ is able to infect ∂uΛ.

DEFINITION 3.8 (u-helping sets). Let i ∈ [−k + 1, k − 1]. Any collection of lattice
sites of the form {a1 + k1b, a2 + k2b, . . . , am + kmb} satisfying the assumption in (a)
above will be referred to as ui-helping set for ∂ui

Λ or simply ui-helping set.

3.2. Some KCM tools. For reader’s convenience we next collect some general tools
from KCM theory that will be applied several times throughout the proof of the main
result.

3.2.1. Notation. For every statement P define 1{P} = 1 if P holds and 1{P} = 0

otherwise. For any subset Λ of R2 we write (ΩΛ, µΛ) for the product probability space
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({0,1}Λ∩Z2

,
⊗

x∈Λ∩Z2 µq). If Λ=R2, we simply write (Ω, µ). Given f : ΩΛ →R we shall
write µΛ(f) and VarΛ(f) for the mean and variance of f w.r.t. µΛ respectively when-
ever they exist. For any ω ∈Ω and Λ⊂ R2 we write ωΛ for the collection (ωx)x∈Λ∩Z2 .
Given a function f : Ω→R depending on finitely many variables we write

D(f) =
∑

x∈Z2

µ(cxVarx(f)), (8)

for the KCM Dirichlet form of f , where cx(ω) is the indicator of the event {∃X ∈
U : ∀y ∈ X,ωx+y = 0} and Varx(f) := Var{x}(f) denotes the conditional variance
Var(f | (ωz)z 6=x). Finally, we shall write Pµ(·) for the law of the U -KCM process on
Z2 with initial law µ and Eµ(·) for the expectation w.r.t. Pµ(·).

3.2.2. Poincaré inequalities. We begin with a well-known general fact on product
measures which we state here in ready-to-use form.

LEMMA 3.9. Let Λi, i ∈ {1,2,3} be three disjoint finite subsets of Z2 and νi be a
probability measures on ΩΛi

. Let ν be the product measure
⊗3

i=1 νi on
⊗3

i=1ΩΛi
. Then

for any function f we have

ν1(Varν2⊗ν3
(f))6Varν(f)6 ν1(Varν2⊗ν3

(f)) + ν2(Varν1⊗ν3
(f)).

PROOF OF LEMMA 3.9. The first inequality follows from the total variance formula

Varν(f) = ν1(Varν2⊗ν3
(f)) +Varν1

(ν2 ⊗ ν3(f)).

For the second inequality we observe that

Varν1
(ν2 ⊗ ν3(f)) = ν1((ν2 ⊗ ν3(f − ν(f))2)

6 ν((f − ν1 ⊗ ν3(f))
2) = ν2(Varν1⊗ν3

(f))

by Jensen’s inequality.

In order to understand the general framework for the last two results, we be-
gin by recalling a standard Poincaré inequality for n independent random vari-
ables X1, . . . ,Xn (for simplicity each one taking finitely many values). For any
f = f(X1, . . . ,Xn)

Var(f)6
∑

i

E(Vari(f)),

where Vari(f) is the conditional variance computed w.r.t. the variable Xi given all the
other variables. The sum in the r.h.s. above can be interpreted as the Dirichlet form
of the continuous time Gibbs sampler, reversible w.r.t. the product law of (Xi)i, which
with rate n chooses a random index i ∈ [n] and resamples Xi w.r.t. its marginal. From
this perspective, the above inequality tells us that the relaxation time (see e.g. [17])
of the Gibbs sampler is bounded from above by 1.

Now consider n events (Hi)
n
i=1, in the sequel facilitating events, and suppose that

each Hi depends only on the variables (Xj)j 6=i. An example of a constrained Poincaré
inequality with facilitating events (Hi)

n
i=1 is the inequality

Var(f |ΩH)6C
∑

i

E(1Hi
Vari(f))

P(ΩH)
, (9)
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where ΩH =
⋃n

i=1Hi and C ∈ [1,+∞]. Notice that the sum in the r.h.s. above can be
interpreted as the Dirichlet form of the continuous time constrained Gibbs sampler
on ΩH, which with rate n chooses a random index i ∈ [n] and resamples Xi w.r.t. its
marginal iff Hi holds. If the facilitating events are such that the constrained Gibbs
sampler on ΩH is ergodic then C <+∞.

Each one of the two results we are about to discuss next is just a special instance
of the above general problem.

LEMMA 3.10. Let X1,X2 be two independent random variable taking values in two
finite sets X1,X2. Let also H⊂X1 with P(X1 ∈H)> 0. Then for any function f(X1,X2)

Var(f)6 2P(X1 ∈H)−1E
(
Var1(f) + 1{X1∈H}Var2(f)

)
.

REMARK 3.11. The above inequality coincides with (9) with H1 =X2, H2 = {X1 ∈
H} and C = 2/P(X1 ∈ H). Clearly the constrained Gibbs sampler is irreducible be-
cause P1(X1 ∈H)> 0.

PROOF OF LEMMA 3.10. It follows from [7, Proof of Proposition 4.4] that

Var(f)6
1

1−
√

1− P(X1 ∈H)
E
(
Var1(f) + 1{X1∈H}Var2(f)

)

6 2P(X1 ∈H)−1E
(
Var1(f) + 1{X1∈H}Var2(f)

)
.

The second result concerns a generalisation of the standard (finite volume) con-
strained Poincaré inequality for the 1-neighbour KCM process, or FA1f KCM, [7].

Let (Ŝ, ν̂) be a finite probability space with ν̂ a positive probability measure, let

Ωn = Ŝ[n] and ν =
⊗

i∈[n] νi, where νi = ν̂ for all i ∈ [n]. Elements of Ωn are denoted

ω = (ω0, . . . , ωn−1) with ωi ∈ Ŝ. Fix a single site event H ⊂ Ŝ and a positive integer
κ < n. Then, according to whether we view the set [n] as the n-cycle or not, we define
the facilitating event Hi as follows. If [n] is the n-cycle

Hi =

i+κ⋂

j=i+1

{ωj ∈H}∪
i−κ⋂

j=i−1

{ωj ∈H}.

If instead [n] is linear

Hi =





⋂i−κ
j=i−1{ωj ∈H} if i+ κ> n⋂i+κ
j=i+1{ωj ∈H} if i− κ < 0⋂i+κ
j=i+1{ωj ∈H}∪⋂i−κ

j=i−1{ωj ∈H} otherwise.

In words, in the periodic case Hi requires the κ variables immediately after or before
i (in the clockwise order) to be in a state belonging to H, while in the linear case
the same requirement holds when i is farther than κ from the boundary points of [n].
When i is closer than κ to e.g. the the right boundary of [n], then Hi requires the

κ variables immediately before i to be in states belonging to H. The case when Ŝ =
{0,1}, ν̂ is the Bernoulli(1− q)-measure, H= {0} and κ= 1 is the usual 1-neighbour
KCM setting.

LEMMA 3.12. Assume that (1− ν̂(H)k)n/(3κ) < 1
16 and set ΩH =

⋃n−1
i=0 Hi. Then, for

all f : Ωn →R

Varν(f |ΩH)6

(
2

ν̂(H)

)O(κ) n∑

i=1

ν (1Hi
Varνi

(f)) . (10)
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The proof is left to the Appendix.

REMARK 3.13. We will apply the lemma with (Ŝ, ν̂) equal to the probability space
given by {0,1}m equipped with the Bernoulli(1− q) product measure conditioned on
some event whose probability tends to one as q → 0. The integers 1 ≪m ≪ n may
diverge to infinity as q→ 0 while the integer κ will be large but independent of q.

4. The core of the proof. In this section we prove a Poincaré inequality which
will represent the key step in the proof of Theorem 1.

4.1. Roadmap. Before we dive into the technical details, let us give a hands-on
roadmap of the argument. Although it is underlied by the dynamical intuition ex-
plained in Section 2, the latter is not very transparent in the Poincaré language of the
formal proof.

The goal of this section is to prove Theorem 4.6. It says that the U -KCM (U be-
ing a fixed critical update family with a finite number of stable directions) on a
snail V = V R

L (r) (recall Definition 3.4 and Figure 6), conditioned on a well-chosen
super good event SG(V ) is able to relax in a time exp(log3(1/q)/qα), which is the
dominating contribution leading to (5). For the purposes of the roadmap the reader
should think of the snail as having dimensions R = w2 log(1/q)/qα, L = q−3w and
ri = δi−(2k−1)q−2w, i ∈ [2k] for some small positive δ. Let us explain the Definition 4.2
of SG(V ) before outlining the proof of Theorem 4.6.

4.1.1. Good and super good events. The super good event SG(V ) will decompose
as a product w.r.t. the partition of V into its annulus A, half-annulus HA + Lu0,
annulus interior Aint, truncated base B◦ and trapezoids T±

i from Section 3.1.3. On A
(HA) we require the event A (HA) that A (HA) is fully infected. These are the only
unlikely events involved in SG(V ) and we will denote by SG only events requiring
the occurrence of (spatial translates of) A and HA. Events of type SG will all have
very small probability µ(SG) of the order of exp(− log2(1/q)/qα).

We will use instead write G to denote good events, which are likely and only involve
the presence of appropriate helping sets as in Definition 3.8 or sets of w consecutive
infections as in Lemma 3.7(b). Recall the decomposition of B◦ into slices SBj from
Definition 3.6. We say that the event SBj occurs if each side of SBj (which consists
of at most one segment in each direction) has a helping set for the corresponding
direction. We then define G(B◦) =

⋂
j SBj and it is not hard to see that this way the

occurrence of SG(B) =A∩HA∩G(B◦) implies that the infections in B are sufficient
to fully infect B.

Notice that in general the event SBj depends on the values of ω in the set⋃k
i=0 SBj+i for some k > 0 depending only on U . In order to avoid this (annoying)

technical detail we will use the following simplifying Assumption 4.1 implying that
k = 0.

ASSUMPTION 4.1. For every stable direction u ∈ Ŝ0 there exists a subset Zu of the
line ℓu of cardinality α such that [Hu ∪Zu]U ∩ ℓu has infinite cardinality.

This is by no means restrictive, as the proof applies directly without this assumption
up to changing SBi,j in Definition 4.2, following [20, Sec. 7]. We will spare the reader
the tedious details, as they already appeared previously in the above-mentioned pa-
per. This assumption is only relevant for treating the base B, for which we will import
the result from [20], where the assumption was introduced.
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Having defined the good event for the base B, we now define the good event
for the trapezoids of the snail V . Let ST ±

i,j be the event that the slice ST±
i,j in the

decomposition of T±
i from Definition 3.6 contains a set of w consecutive infected

sites. We then define G(T±
i ) =

⋂
j ST ±

i,j . Again, by Lemma 3.7 it is not hard to see

that if B and T+
i′ for i′ < i are fully infected and G(T+

i ) occurs, then the U -bootstrap
percolation can also infect T+

i (and similarly for T−
i ).

Finally, the super good event SG(V ) is defined as SG(B)∩⋂
i(G(T+

i )∩G(T−
i )) and

it clearly implies that the entire snail V can be infected from within.

4.1.2. Structure of the proof. The fact that V can be fully infected on SG(V ) is
reassuring and implies that the relaxation time we are after in Theorem 4.6 is finite,
but we need an efficient relaxation mechanism to prove the theorem. It is not hard
to see that it suffices to treat the right-snail V +, so we concentrate on it and drop all
+ superscripts. In the sequel, whenever we refer to the relaxation in a given region Λ
mathematically this will translate into proving a Poincaré inequality like the one in
(12) with V replaced by Λ.

The proof proceeds by proving an efficient relaxation in progressively larger and
larger volumes always conditioned on a corresponding SG event. In the process we
will often rely on auxiliary constrained block dynamics of several types like those
in Section 3.2. These auxiliary dynamics allow us to relate the relaxation in a given
region to the relaxation in smaller sub-regions, each subregion having an additional
convenient constraint on the configuration outside it. The auxiliary dynamics we will
use are of FA1f type (like the one in Lemma 3.12) or two-blocks type (like the one
in Lemma 3.10). By performing such reductions, we reduce the problem of proving
an efficient relaxation on a large region to a similar problem on suitable smaller
regions. The base case of the above inductive procedure is then treated directly. We
now describe the various steps of the above iterative reduction.

4.1.2.1. The base case: the annulus interior Aint. First, in Lemma 4.10 we treat Aint

on the event A that the annulus is fully infected, which serves as a boundary condi-
tion. This is fairly easy and can be done in various ways. To give a formal argument,
we split Aint into strips of bounded width (see Figure 8). Fully infected strips perform
an FA1f auxiliary dynamics. The boundary condition provides all the sets of w con-
secutive infections needed for an infected strip to infect its neighbour using Lemma
3.7 (see Figure 7a).

4.1.2.2. From Aint to the base B. Up to now we have a Poincaré inequality on the
annulus and its interior. In Proposition 4.9 we extend that to a base B. We will not
insist on this step, as it was essentially done already in [20]. Indeed, using an East-like
dynamics in direction u0 the relaxation time of B◦ (on G(B◦)) with infected boundary
condition in A was shown to be roughly exp(log3(1/q)/qα). Combining this with the
result for Aint, we obtain a Poincaré inequality for B.

4.1.2.3. Adding the first trapezoid to B. Our next goal is to consider the relaxation
in B ∪ T0. In turn, this step is split into two distinct parts.
4.1.2.3.1. Adding the first slice ST0,1 to B. This is achieved in Lemma 4.13 (see
Figure 9). Relaxation in B has already been established in the previous step, so we
focus on the relaxation in ST0,1. In doing this we are allowed our knowledge of
the relaxation in B. We use the FA1f-like dynamics of Lemma 3.12, asking for w
consecutive infections in ST0,1 next to the site to be updated. In other words we have
to understand how to efficiently resample a site x∈ ST0,1 using the U -KCM dynamics
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when its neighbouring w sites are infected. Using a two-block dynamics (Lemma
3.10), resampling B roughly q−O(1) times, we may further impose the condition that
the site we wish to resample has a fully infected neighbourhood in B in addition to
the next w sites in ST0,1, which are already infected. This is exactly the situation in
Figure 9 and makes the flip of the site we want to update legal for the original U -
KCM. Thus, this step produces terms of the Dirichlet form of the U -KCM in (8), as
well as a term VarB(f | SG(B)), which we already know how to control.
4.1.2.3.2. Adding more slices to B. In a sense this part embodies the East-like motion
of droplets in direction u1 hinted in Section 2. This connection is rather indirect in
the sense that the bisection method used to analyse the relaxation in the union of B
with several slices of the first trapezoid coincides with the bisection method used to
efficiently bound from above the relaxation time of the standard East model in [7].

Consider the problem of the relaxation in a snail consisting of B and 2n slices of
the first trapezoid. Our aim is to reduce it to the same problem on two similar snails,
each one with essentially the same base B but with only n slices. This is achieved in
Lemma 4.14. We start by introducing an auxiliary constrained two-block dynamics
in which B and the first n slices form the first block Ṽ , while the second group of
n slices form the second block T 0 (see Figure 10). The constraint of the two-blocks
dynamics is that a translated base B (corresponding to V i−1 in Figure 10) is super
good. The base B is constructed so that together with T 0 it forms a snail V with size
similar to that of Ṽ . The relaxation to equilibrium on Ṽ is dealt with by induction
on the number of slices, so it remains to analyse the relaxation to equilibrium on T 0

under the above constraint. The relaxation time of the auxiliary model is 1/µ(SG)
(the number of times one needs to update the first block until the constraint becomes
satisfied). Then in order to relax on T 0 it suffices to do so on the larger region V . We
are done since V and Ṽ are already treated by the induction.

In Corollary 4.16, repeating the above bisection several times, we manage to re-
produce the relaxation on a snail with base B and arbitrary number r0 of slices of the
first trapezoid. Indeed, starting from the snail with a single slice in T0 provided above,
we double its height log(1/q) times to reach the desired r0 ≃ δ−2k+1q−2w. Thus, the
Poincaré constant of B is multiplied by 1/µ(SG)log(1/q) in this process.

4.1.2.4. Adding all trapezoids of the original snail V . Finally, repeating the above
steps for each trapezoid, we obtain the desired Poincaré constant for the entire snail,
concluding Theorem 4.6.

4.2. Setup. Given a snail V = V R
L (r), we shall work in the associated probability

space ΩV = {0,1}V ∩Z2

endowed with the probability measure µV (· | SG(V )) condi-
tioned to the simultaneous occurrence of the following events on ΩV .

DEFINITION 4.2 (Good and super good events).

• Recalling Definition 3.3, we define A as the event that A is infected and HA as
the event that HA+Lu0 is infected.

• Recalling Definitions 3.6 and 3.8, for each SBj and ui ∈ Ŝ0, let SBi,j denote the
event that SBi,j = ∅ or SBi,j contains an infected ui-helping set. Then set SBj =⋂

ui∈Ŝ0
SBi,j .

• Recalling Definition 3.5, for each non-empty ST±
i,j let ST ±

i,j be the event that there

exist w consecutive infected sites in ST±
i,j .
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Using the above events, we then define

G(B◦) =
⋂

j>0

SBj , SG(B) =A∩HA∩G(B◦), G(T±
i ) =

⋂

j>0

ST ±
i,j.

Finally, we set SG(V +) = SG(B) ∩ ⋂
i∈[2k] G(T+

i ) and SG(V ) = SG(V +) ∩ SG(V −),

with SG(V −) the analog of SG(V +) for the left-snail.

We note that the event HA is there only to ensure the easy removal of the simpli-
fying Assumption 4.1.

REMARK 4.3. The events above are defined so as to preserve as much as possible
the original product structure of µ in the conditional measure µV (· | SG(V )). In fact,

µV ±(· | SG(V ±)) = µB(· | SG(B))⊗


 ⊗

i∈[2k]

µT±

i
(· | G(T±

i ))


 ,

µT±

i
(· | G(T±

i )) =
⊗

j>0

µST±

i,j
(· | ST ±

i,j),

µB(· | SG(B)) = µAint ⊗ δωA∪(HA+Lu0)=0 ⊗ µB◦(· | G(B◦)),

µB◦(· | G(B◦)) =
⊗

j>0

µSBj
(· | SBj),

since trapezoids and the base are pairwise disjoint by construction and likewise for
the slices of the trapezoids, the slices of the base, the annulus, its interior and the
translated half-annulus.

Taking into account this product structure, in the next observations we establish
that, as claimed in Section 4.1, all G events we will use are likely and all SG events
have roughly the same probability, qΘ(Rw).

OBSERVATION 4.4. Let R > w2 log(1/q)/qα and L 6 q4w, let r be admissible (see
Definition 3.4) and ri−1 > q−2w for some i ∈ [2k]. Then µ(G(T±

i )) > 1 − o(1) and
µ(G(B◦))> 1− o(1).

PROOF. For the first assertion notice that the condition implies that for all j > 0,
ST±

i,j is either empty or has cardinality at least Ω(q−2w). Then by Remark 4.3

µ(G(T±
i )) =

∏

j

µ(ST ±
i,j)>

(
1− (1− qw)Ω(q−2w/w)

)O(ri)
> 1− o(1),

since ri 6 L6 q4w by Definition 3.4 and by assumption.
The second assertion is proved similarly (see e.g. [20, Lemma 6.5]).

OBSERVATION 4.5. Let R>w2 log(1/q)/qα, L6 q−4w, let r be admissible such that
for some i ∈ [2k], ri+1 = 0 and ri−1 > q−2w with the convention r−1 = L. Then

µ(SG(V R
L (r))) = qΘ(Rw). (11)

PROOF. Using Remark 4.3 and Observation 4.4, it suffices to note that

µ(A∩HA)> q|A|+|HA| = qΘ(Rw).
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4.3. Key step. We are ready to state the main result of this section. In the sequel,
for any Λ⊂ Z2, any x ∈ Λ and any ωΛ ∈ ΩΛ we shall write cΛx (ωΛ) for the constraint
cx(ω) computed for the configuration ω equal to ωΛ in Λ and equal to 1 elsewhere. By
construction, cΛx (ωΛ)6 cx(ω

′) for any ω′ ∈ Ω such that ω′
Λ = ωΛ and cΛx > cΛ

′

x for any
Λ′ ⊂Λ. Then for any snail V (or base) we write γV for the smallest constant γ ∈ [1,∞]
such that the Poincaré inequality

VarV (f | SG(V ))6 γ
∑

x∈V

µV

(
cVx Varx(f)

)
(12)

holds for every function f : Ω→R.

THEOREM 4.6. There exist w0, δ0 > 0 not depending on q such that for any 0< δ 6
δ0 and w > w0 the following holds for any R = Θ(w2 log(1/q)/qα). Consider the snail
V = V R

L (r) for admissible L, r such that r2k−1 > q−2w and L6 q−4w. Then

γV 6 e−O(w4 log3(1/q)/qα). (13)

CLAIM 4.7. We have γV 6 3max(γV + , γV −).

PROOF. Set Λ1 = V + \ (B ∪ T+
0 ), Λ2 = V − \ (B ∪ T+

0 ), Λ3 = B ∪ T+
0 = B ∪ T−

0 ,

ν1 = µΛ1
(· | ⋂2k−1

i=1 G(T+
i )), similarly for ν2 and ν3 = µΛ3

(· | SG(B)∩G(T+
0 )). By Remark

4.3 we can apply Lemma 3.9 to obtain

VarV (f | SG(V ))6 γV −

∑

x∈V −

ν1

(
µV −

(
cV

−

x Varx(f)
))

+ γV +

∑

x∈V +

ν2

(
µV +

(
cV

+

x Varx(f)
))

6 (1 + o(1))(γV − + γV +)
∑

x∈V

µ
(
cVx Varx(f)

)
,

where in the last inequality we used Observation 4.4 to remove the conditioning of
ν1 and ν2.

Therefore, in order to prove (13) it suffices to prove the analogous statement with
V replaced by V ±. In the sequel we will concentrate on proving (13) for the best
constant γV + in the Poincaré inequality (12) with V replaced by its right-snail V +.
The proof is based on comparison methods between Markov processes and induction
over right-snails with different L and r as outlined in Section 4.1. If we exchange
right-snails with left-snails the same proof will then apply to the left-snail V − as well.
Since our arguments no longer require a left-snail, for lightness of notation, we drop
the superscript “+” from our notation whenever possible.

The proof of the theorem is decomposed into two quite different steps (see Propo-
sitions 4.9 and 4.12 below). In the first one, labeled the base case, we consider a
right-snail V with no trapezoids (r =0). In the second step, labeled reduction step,
roughly speaking we compare the Poincaré constant γV of a generic right-snail V
with the same constant computed for its base B.

The conclusion of Theorem 4.6 follows at once from (11), Proposition 4.9 and
Proposition 4.12. In the sequel fix δ,w,R as in the statement of the theorem and
recall that B = V R

L (0).
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K2 K4

Fig 8: Setting of the proof of Lemma 4.10. Every second strip Ki of Aint is hatched.
The annulus A is shaded.

REMARK 4.8. For future purposes (see the discussion in Section 6) it is very im-
portant to emphasise that it is only in the first step that we use directly the definition
of the event SG(B) entering in the event SG(V ) (cf. Definition 4.2). In the second
step the only property of the event SG(B) that is needed is that it is a decreasing
event in ΩB w.r.t. the partial order ω ≺ ω′ iff ωx 6 ω′

x for all x ∈B.

4.4. Base case.

PROPOSITION 4.9. For any f : ΩB →R

VarB(f | SG(B))6 q−O(Rw logL)
∑

x∈B

µB

(
cBx Varx(f)

)
.

PROOF OF PROPOSITION 4.9. We first observe that, up to minor modifications, in
[20, Proposition 6.6] it was proved that for all f : ΩB◦ →R

1A∩HAVarB◦(f | G(B◦)))6 q−O(Rw logL)
1A

∑

x∈B◦

µB◦

(
cBx Varx(f)

)
. (14)

The next step in the proof is an analogous result for Aint.

LEMMA 4.10. For any f : ΩAint →R

1AVarAint(f)6 q−O(Rw)
1A

∑

x∈Aint

µAint

(
cA∪Aint

x Varx(f)
)
.

PROOF OF LEMMA 4.10. Let us partition Aint into disjoint strips Ki of width w per-
pendicular to u0 and number them from left to right (see Figure 8).

We can then apply [20, Proposition 3.4] on the generalised FA1f KCM to obtain

VarAint(f)6 q−O(Rw)
∑

i

µ((1H+
i
+ 1H−

i
)VarKi

(f)),

where H±
i are the events that Ki±1 is fully infected and we use the convention that

H+
i occurs for the last strip and H−

i does for the first one, which corresponds to the
boundary condition provided by A. W.l.o.g. it then suffices to bound the generic term
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µ(1H+
i
VarKi

(f)). But this can be done using Lemma 5.2 of [20] and Lemma 3.7(b),

which guarantees that if A and Ki+1 are infected, then Ki can also be infected by the
U -bootstrap percolation restricted to Ki ∪Ki+1 ∪A.

Using Lemma 3.9 with Λ1 = B◦, Λ2 = Aint, Λ3 = ∅, ν1 = µB◦(· | G(B◦)), and ν2 =
µAint , we obtain

1A∩HAVarB◦∪Aint(f | G(B◦))

6 1A∩HA (µAint (VarB◦(f | G(B◦))) + µB◦ (VarAint(f) | G(B◦))) .

The first term in the r.h.s. above is bounded by

q−O(Rw logL)
1A∩HA

∑

x∈B◦

µB◦∪Aint(cBx Varx(f)),

using (14), while the second one is bounded by

q−O(Rw logL)
1A∩HA

∑

x∈Aint

µB◦∪Aint

(
cA∪Aint

x Varx(f) | G(B◦)
)
.

by Lemma 4.10. By Remark 4.3 we immediately get that

VarB(f | SG(B)) = µB(VarB◦∪Aint(f | G(B◦)) |A ∩HA)

6 µ(SG(B))−1q−O(Rw logL)
∑

x∈B

µB(c
B
x Varx(f))

and the proposition follows from Observation 4.5.

4.5. Reduction step. Before we can state a relationship between γV and γB , we
need the following notion, which will cover all snail shapes that may arise during the

reduction. Recall that δ, w, V = V R,+
L (r) are fixed as in the statement of Theorem 4.6

and that we do not write the + index, though all snails we refer to are right-snails.
Also recall that all snails are defined by admissible sequences (see Definition 3.4).

DEFINITION 4.11. Let C be a constant chosen sufficiently large depending on Ŝ ,
but much smaller than 1/δ0 in Theorem 4.6. We say that a snail V̂ = V R

L̂
(̂r) is of type

i ∈ [2k] if

(a) r̂i+1 = 0,
(b) r̂i 6 ri,

(c) for all j < i it holds that 06 rj − r̂j 6C
(
ri − r̂i +

∑2k−1
l=i+1 rl

)
,

(d) 06 L− L̂6C
(
ri − r̂i +

∑2k−1
l=i+1 rl

)
.

We say that V̂ is relevant if there exists i ∈ [2k] such that V̂ is of type i. In particular,

a base B̂ = V R
L̂
(0) is relevant iff 06 L− L̂=O(r0).

In words, V̂ is relevant if all trapezoids except the last one are only slightly shorter
than the corresponding ones for V and similarly for the base, while the last trapezoid
may be as much shorter as needed. Indeed, observe that by admissibility

∑2k−1
l=i+1 rl <

2ri+1 for any i ∈ [2k].
Let us mention that the technical second inequalities in conditions (c) and (d)

in the definition above are only needed for the inductive procedure below to always
yield relevant snails. We invite the reader to ignore those conditions and admit that all
smaller snails arising in our argument have sizes which can be treated by induction.
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x

Ṽ

Λx

ŜT i,1

w

Fig 9: The geometric setting of Lemma 4.13. The snail is Ṽ , while ŜT i,1 = V̂ \ Ṽ is
the remaining slice on the top-right. The site x to be updated in (17) is marked by a
cross. The event H̃x corresponds to the shaded trapezoid Λx being infected and the
event Hx corresponds to the w consecutive sites next to x on one of its sides being
infected.

PROPOSITION 4.12. Let σ = 1/minV̂ µV̂ (SG(V̂ )) and Γ =maxB̂ γB̂ , where the min
and max run over relevant snails and relevant bases respectively. Then

γV 6

(
q−w4

σ
)O(logL)

Γ.

In the rest of the section we slowly build the proof of this proposition. The first
step of reduction consists in removing a trapezoid consisting of a single slice. This is
done using Lemma 3.12 and may be intuitively understood as an FA1f dynamics of w
consecutive infected sites in the slice. Recall the definition of ρi from Section 3.1.1.

LEMMA 4.13 (Removing a single slice). Let V̂ = V R
L̂
(̂r) be a snail of type i such that

r̂i = λρk+i for λ ∈ N. In other words, the last non-empty trapezoid, T̂i of V̂ consists of

λ segments orthogonal to ui+k. Then, setting r̃ = (r̂0, . . . , r̂i−1,0, . . . ,0), Ṽ = V R
L̂
(̃r), we

have

γV̂ 6

(
q−w4

)O(λ)
max

(
γṼ ,1/µV̂ (SG(V̂ ))

)
.

PROOF OF LEMMA 4.13. By induction on λ it suffices to prove the lemma for λ= 1,

in which case the last trapezoid is simply T̂i = ŜT i,1.

We will proceed in two steps. First, we will divide V̂ into Ṽ and ŜT i,1. The Ṽ
part is harmless, as it directly relates to γṼ appearing in the r.h.s. of the statement

of the lemma. In order to reproduce a ‘resampling’ of ŜT i,1 we will proceed in two
steps. First, using the FA1f-like dynamics, Lemma 3.12, we will reduce the problem

to resampling a single site in ŜT i,1 given that next to it there are w consecutive

infections. Then we will use Ṽ to provide additional infections to ensure that cV̂x is
satisfied and this will yield the x term of the Dirichlet form from (8). The lemma is
illustrated in Figure 9.

Recalling Remark 4.3, for any f : ΩV̂ →R Lemma 3.9 gives

VarV̂ (f | SG(V̂ ))6 µV̂

(
VarṼ (f | SG(Ṽ )) +Var

ŜT i,1
(f | ŜT i,1) | SG(V̂ )

)
. (15)



22 I. HARTARSKY, F. MARTINELLI, C. TONINELLI

Since SG(V̂ ) = SG(Ṽ )× ŜT i,1, the first term in the r.h.s. above is

µ
ŜT i,1

(
VarṼ (f | SG(Ṽ )) | ŜT i,1

)
6

γṼ

µ
ŜT i,1

(ŜT i,1)
µV̂


∑

x∈Ṽ

cV̂x Varx(f)




= (1 + o(1))γṼ

∑

x∈Ṽ

µV̂ (c
V̂
x Varx(f))

by the definition (12) of γṼ , Observation 4.4, and the fact that cṼx 6 cV̂x . To bound

the second term in (15), we use Lemma 3.12 for µ
ŜT i,1

(· | ŜT i,1) with κ = w and

constraining event H= {0} ⊂ {0,1}= Ŝ, the hypothesis of the lemma following from
Observation 4.4. This gives

Var
ŜT i,1

(f | ŜT i,1)6 q−O(w)
∑

x∈ŜT i,1

µ
ŜT i,1

(1Hx
Varx(f)), (16)

where Hx is the event that w consecutive sites immediately to the left or to the right

of x in ŜT i,1 are infected. Plugging this back in (15), we see that we need to bound
from above a generic term

µV̂

(
1Hx

Varx(f) | SG(Ṽ )
)
, x ∈ ŜT i,1. (17)

At this point we have succeeded in bringing w consecutive infected sites next to

the site x, which we want to update. In order to be sure that the constraint cV̂x is

satisfied, we would like to also bring some infections next to x in Ṽ . To do that we
first use Lemma 3.9 to include Ṽ in the variance, so that we are allowed to ‘resample’
it and then use the two-block dynamics, Lemma 3.10, to indeed obtain the desired
infections by resampling Ṽ enough times.

Applying Lemma 3.9 to Λ1 = Ṽ , Λ2 = {x}, Λ3 =∅, ν1 = µṼ (· | SG(Ṽ )), and ν2 = µx,
we bound the generic term (17) from above by

µ
ŜT i,1\{x}

(
1Hx

VarṼ ∪{x}(f | SG(Ṽ ))
)
.

We next apply Lemma 3.10 to the product space

(ΩṼ , µṼ (· |GṼ ))⊗ (Ω{x}, µx)

with constraining event H̃x ⊂ΩṼ that the trapezoid

Λx = x+
(
Hui+k−1

(w2)∩Hui+k
∩Hui+k+1

(w2)∩Hui+3k
(w)

)
∩ Ṽ

being infected. It is not hard to check that ∂ui+k
Λx contains x and the w infected

sites guaranteed by Hx. In other words, we are in the setting of Figure 9. Using
|Λx ∩ Z2|=O(w4) and noticing that by the Harris inequality [11] µṼ (H̃x | SG(Ṽ ))>

µṼ (H̃x), Lemma 3.10 gives

1Hx
VarṼ ∪{x}(f | SG(Ṽ ))6 q−O(w4)µṼ ∪{x}

(
VarṼ (f | SG(Ṽ ))

+ 1Hx∩H̃x
Varx(f) | SG(Ṽ )

)
.
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Finally, since ui+k is an isolated (quasi-)stable direction, it is easily seen (see Figure 9

and Lemma 3.7) that 1Hx∩H̃x
6 cV̂x . Recalling the definition of the Poincaré constant

γV̂ (see (12)), we conclude that

µ
ŜT i,1\{x}

(
1Hx

VarṼ ∪{x}(f | SG(Ṽ ))
)

6 q−O(w4)
(
γṼ +1/µ(SG(Ṽ ))

) ∑

y∈Ṽ ∪{x}

µV̂ (c
V̂
y Vary(f)).

Putting all together, we finally get

VarV̂ (f | SG(V̂ ))6 |ŜT i,1|q−O(w4)max
(
γṼ ,1/µṼ (SG(Ṽ ))

)

×
∑

x∈V̂

µV̂

(
cV̂x Varx(f)

)
,

where the factor |ŜT i,1|=O(L̂) =O(q−4w) comes from the fact that each vertex x ∈
ŜT i,1 produces a term of the form

∑
y∈Ṽ µV̂ (c

V̂
y Vary(f)).

The remaining induction step allows us to reduce the size of the last non-empty
trapezoid T̂i twice. The proof is illustrated in Figure 10.

LEMMA 4.14 (Bisection of a trapezoid). Let V̂ = V R
L̂
(̂r) be a snail of type i such that

r̂i is larger than some sufficiently large constant. Let λ=min{ℓ > 0, ℓui+1 ∈ Z2}=O(1)
and let x= ui+1λ⌊r̂i/(2λ〈ui+k, ui+1〉)⌋. With this choice 〈ui+k, x〉 ≃ r̂i/2. In other words,
x is the vector by which the ring should be translated so that half of the last trapezoid,
T̂i, remains above it (see Figure 10). Then we set:

r̃ = (r̂0, . . . , r̂i−1, 〈ui+k, x〉,0, . . . ,0),
r = (r̂0 − 〈uk, x〉, . . . , r̂i − 〈uk+i, x〉,0, . . . ,0),

L=min

(
L̂, L̂− 〈uk−1, x〉

〈uk−1, u0〉

)
,

Ṽ = V R
L̂
(̃r),

V = x+ V R
L
(r).

In words, Ṽ is V̂ with half of T̂i removed, while V is the snail such that its last trapezoid
T i is exactly that missing half, but with length eventually shortened, so that V fits inside
V̂ (see Figure 10). With these notations,

γV̂ 6 γṼ /µ(GV ) + γV /µ(GṼ )

and Ṽ and V are snails of type i.

PROOF OF LEMMA 4.14. The proof goes as follows. In Claim 4.15 we show that
the two polygons Ṽ and V are indeed snails (defined by admissible sequences) of
type i and that they do correspond to their informal definitions in the statement of
the lemma. Though technical, this claim hides no subtlety and we invite the reader
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x

Ṽ

V i−1
T i

Fig 10: The geometric setting of Lemma 4.14. The snail Ṽ is hatched, V is dotted
and their union is the original snail Ṽ . The dotted-hatched region is V i−1, while the
dotted trapezoid is T i.

to skip it. Then we apply Lemma 3.10 to reduce the problem of relaxation on V̂ to
the one on Ṽ and on V which yields the desired result. The event SG(Ṽ ) is implied

by SG(V̂ ) by construction, but the second block, V , of the dynamics corresponding

to Lemma 3.10, is updated only when the part of SG(V ) witnessed in Ṽ occurs.
We begin with some geometric observations following directly from Definitions 3.4

and 3.5.

CLAIM 4.15. Ṽ and V are snails of type i. Furthermore, we have Ṽ ∪ V = V̂ and
V̂ \ Ṽ = T i (the last trapezoid of V ).

PROOF OF THE CLAIM. The statement that Ṽ is a snail of type i follows from the
definition of r̃ and the same fact for V̂ , since r̃i 6 r̂i.

Turning to V , notice that 〈uj , x〉> 0 for all i ∈ [2k] and j ∈ [k, k + i] with equality

iff i= 2k− 1 and j = k. Thus, for all j ∈ [2k] we have r̂j > rj and clearly L̂> L. Thus,

recalling the definition of V and that V̂ is of type i, conditions (a) and (b) and the
left inequalities in (c) and (d) of Definition 4.11 are satisfied. Moreover, for 06 j < i
we have

r̂j − rj = 〈uk+j , x〉=
〈ui+1, uk+j〉
〈ui+1, uk+i〉

(r̂i − ri)6C(r̂i − ri), (18)

so the right inequality of (c) for V follows from the one for V̂ . Similarly,

L̂−L6
|〈uk−1, x〉|
〈uk−1, u0〉

6C(r̂i − ri), (19)

gives that (d) of Definition 4.11 holds for V .
We next prove that V is a snail (with admissible L and r). Recalling from Definition

3.4 that we need to prove that

(i) rj > 0 for all j ∈ [2k],
(ii) rj 6 δrj−1 for all 16 j < 2k,
(iii) r0 6 δL, and
(iv) (L̂−L)〈u0, uk−1〉/ρk−1 ∈N.

To check (i), observe that rj = r̂j − O(r̂i) > 0 for j < i by admissibility of r̂ and

ri ≃ r̃i/2 > 0. By admissibility of V̂ , r̂j − rj = 〈uk+j, x〉 = Θ(r̂i) and C < 1/δ we get
(ii). For the last two properties we consider two cases.
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First assume that i ∈ {2k− 2,2k− 1} (i.e. x corresponds to a horizontal translation
to the right—in direction u2k). It is easy to check from the definition of L that in this
case L= L̂, so that (iv) is trivial and (iii) follows from r0 6 r̂0 6 δL̂. This concludes
the proof that V is a snail of type i in this case.

Assume that, on the contrary, i < 2k− 2, so that the L̂−L= 〈uk−1,x〉
〈uk−1,u0〉

=Θ(r̂i). Then

(iii) follows from the fact that r̂0 − r0 =Θ(r̂i) as above. For (iv) simply observe that

(L̂−L)〈u0, uk−1〉= 〈uk−1, x〉 ∈ ρk−1N,

since x ∈ Z2 by the definition of x and λ. This concludes the proof that V is a snail of
type i.

By Definition 3.5 it is clear that

V̂ \ V =
(
Huk+i

(Rk+i + r̂i) \Huk+i
(Rk+i + 〈uk+i, x〉)

)

∩Huk+i−1
(Rk+i−1 + r̂i−1)∩Huk+i+1

(Rk+i+1).

It also follows from Definition 3.5 that the above trapezoid V̂ \ V is also equal to T i

as claimed. Finally, we have that V ⊂ V̂ using Definition 3.4, which completes the
proof of the claim.

Let now

V i−1 = V R
L
(r0, . . . , ri−1,0, . . . ,0) = V \ T i = V ∩ Ṽ .

By Claim 4.15 and Remark 4.3 we have

(ΩV , µV̂ (· |GV̂ )) = (ΩṼ , µṼ (· | SG(Ṽ )))⊗ (ΩT i
, µT i

(· | G(T i))) (20)

and we can apply Lemma 3.10 with the facilitating event

SG(V i−1) = SG(B)∩
⋂

j<i

G(T j)⊂ΩṼ ,

where B and T j are the base and trapezoids of V . We get

VarV̂ (f | SG(V̂ ))6 µ(SG(V i−1))
−1µV̂

(
VarṼ (f | SG(Ṽ ))

+ 1SG(V i−1)
VarT i

(f | G(T i)) | SG(V̂ )
)
,

(21)

where we used that µṼ (SG(V i−1) | SG(Ṽ )) > µ(SG(V i−1)) by the Harris inequality.

Using the definition of the Poincaré constant γṼ , the fact that cṼx 6 cVx together with

µ(SG(V i−1))> µ(SG(V )) the first term is bounded from above by

γṼ
µ(SG(V ))

µV̂


∑

x∈Ṽ

cV̂x Varx(f)


 . (22)

The term µ(SG(V i−1))
−1µV̂

(
1SG(V i−1)

VarT i
(f | G(T i)) | SG(V̂ )

)
from the r.h.s. of

(21) can be bounded from above by

µ(SG(Ṽ ))−1µṼ

(
µV i−1

(VarT i
(f | G(T i)) | SG(V i−1))

)

6 µ(SG(Ṽ ))−1µṼ

(
VarV (f | SG(V ))

)

6
γV

µ(G(V̂ ))
µṼ


∑

x∈V

cV̂x Varx(f)


 ,

(23)
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using (20), Lemma 3.9, the definition of γV and the fact that cVx 6 cV̂x .
If we now combine (21), (22) and (23) we get the statement of the lemma.

We can now assemble our main induction step from Lemmas 4.13 and 4.14.
Namely, we repeatedly use Lemma 4.14 until the last trapezoid is reduced to a
bounded number of lines and then apply Lemma 4.13 to remove them as well.

COROLLARY 4.16 (Removing a trapezoid). Let σi = 1/minVi
µ(SG(V i)) with min

running over all snails of type i. Let Γi =maxV ′
i
γV ′

i
, where the max runs over all snails

of type i with ri = 0. Let V̂ = V R
L̂
(̂r) be a snail of type i. Then

γV̂ 6 q−O(w4)σ
O(max(1,log r̂i))
i Γi.

PROOF OF COROLLARY 4.16. Let c be a sufficiently large constant. We prove by
induction on r̂i that

γV̂ 6 q−cw4

σ
cmax(1,log r̂i)
i Γi.

The base of the induction, r̂i 6
√
c, follows from Lemma 4.13, since γṼ > 1 by defi-

nition. Assume that r̂i >
√
c. Then Lemma 4.14 and the induction hypothesis applied

to both Ṽ and V from that lemma give

γV̂ 6 σiq
−cw4

σ
c log(2r̂i/3)
i Γi 6 q−cw4

σc log r̂i
i Γi,

since both r̃i and ri in Lemma 4.14 are smaller than 2r̂i/3. This completes the proof
of the induction step and the corollary.

We are now ready to conclude the proof of Proposition 4.12 and of Theorem 4.6.

PROOF OF PROPOSITION 4.12. Applying Corollary 4.16 to each non-zero coordi-
nate of r, we obtain

γV 6

(
q−O(w4)σ

)O(logL)
Γ

with the notation of the statement of Proposition 4.12.

PROOF OF THEOREM 4.6. Combining Propositions 4.9 and 4.12 we get

γV 6

(
q−w4

σq−Rw
)O(logL)

6 e−O(w4 log3(1/q)/qα),

where the last equality follows from Observation 4.5.

5. Proof of Theorem 1. Recall that w is a large constant much bigger than the
constants in any O(·) notation. Let t∗ =

1
we

w5 log3(1/q)/qα and T = e1/q
3α

. Then we have

Eµ(τ0) =

∫ +∞

0
ds Pµ(τ0 > s)

=

∫ t∗

0
ds Pµ(τ0 > s) +

∫ T

t∗

ds Pµ(τ0 > s) +

∫ +∞

T
ds Pµ(τ0 > s)

6 t∗ + TPµ(τ0 > t∗) +

∫ +∞

T
ds Pµ(τ0 > s).
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The term t∗ has exactly the form required in Theorem 1. The last term in the r.h.s.
above tends to zero as q → 0. Indeed, using [20, Theorem 2] we have that ∀s >
0,Pµ(τ0 > s)6 e−sλ0 with λ0 > e−Ω((log q)4/q2α) and therefore

∫ +∞

T
ds Pµ(τ0 > s)6 λ−1

0 e−Tλ0 → 0 as q→ 0.

In conclusion, the proof of the upper bound in Theorem 1 boils down to proving

lim
q→0

TPµ(τ0 > t∗) = 0. (24)

That requires a sequence of simple steps ((a)-(d) below) and a more involved part
((e) below). Before turning to the details of the proof of Theorem 1, let us sketch our
approach.

5.1. Roadmap.

(a) In order to prove that w.h.p. τ0 6 t∗, it suffices to prove the result for the (sta-
tionary) U -KCM process on to the torus Λ and with side K = 2ew

5 log3(1/q)/qα (see
(25)).

(b) Let L=Θ(λ)/q3w for a large positive constant λ= λ(U , δ), let R=w2 log(1/q)/qα,
and recall the good and super good events described in Section 4.1.1 and Defini-
tion 4.2. Given a snail V = V R

L (r) =B ∪⋃
i∈[2k] T

±
i ⊂ Λ (recall Definitions 3.4 and

3.5) with base B and trapezoids T±
i , we will construct a new event E ⊂ ΩΛ∩Z2

which will guarantee that (in particular) the following occurs.
(i) For any (translate of) V ⊂ Λ as above, the good events G(T±

i ) occur for all
i ∈ [2k].

(ii) In every strip of Λ parallel to u0 and of width 2R there exists a translate of the
base B for which the super good event holds.

(c) We will prove that µ(E) > 1− e−1/qw , which will allow us to conclude that it is
sufficient to analyse the infection time of the origin of the stationary U -KCM in Λ
restricted to E (see (29)).

(d) For the latter process we will follow the standard “variational” approach (see
[1, Theorem 2] and also [20, Section 2.2]) and get that

TPµ(τ0 > t∗)6 Te−t∗λF (1 + o(1)).

Here λF is related to the Dirichlet problem for the U -KCM on the torus and re-
stricted to E with boundary condition f

∣∣
{ω∈E:ω0=0}

= 0. In particular (see (31))

λF > inf
f
q

Dper
Λ (f)

VarΛ(f | E)
,

where Dper
Λ (f) is the Dirichlet form of the U -KCM on the torus Λ and the supremum

is taken over all f : E →R.
(e) The last and most important step will be to prove that

VarΛ(f | E)6 eO(w4 log3(1/q))/qαDper
Λ (f),

implying that t∗λF diverges as q → 0 rapidly enough. The high-level intuition be-
hind the above Poincaré inequality is as follows. A super good base (i.e. a base B
for which the super good SG(B) event holds), whose presence is guaranteed by
(b.ii), will be able to move in Λ using an FA1f-like dynamics as in Lemma 3.12
with ν̂(H) given by

eΘ(w3 log2(1/q))/qα .
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Λ
(2)
i

Λ
(1)
i−1

W = 1
q3w

W + 2R0

2R0 ≈ 2w2

qα
log 1

q

Fig 11: The partition of Λ into strips Λi = Λ
(1)
i ∪ Λ

(2)
i , i ∈ [M ]. The hatched region

represents a square Qi,j , which we would like to resample. The thick polygon is the
snail V with its trapezoids. Note that its base B does not intersect Qi,j and (almost)
spans the squares Qi,j+1, . . . ,Qi,j+λ.

Indeed, we will reproduce each step of that dynamics with a resampling of an ap-
propriate super good translate of the snail V , since (b.i) guarantees that the super
good base does extend to a super good translate of the snail V . Indeed, the snail
(see Figure 6) does extend on both sides of the base for a distance Θ(r2k−1), so
taking r2k−1 of order L, one can induce a change on both sides of the base by re-
sampling the configuration inside the snail. Thanks to Theorem 4.6, the relaxation
time of the super good snail is eO(w4 log3(1/q))/qα . The conclusion of Theorem 1 then
follows rather naturally.

5.2. Proof. Let K = 2exp(w5 log3(1/q)/qα) and let Λ=R2/(Ku0Z+KukZ) be the
torus in R2 of side K directed by u0, which we think of as centred at 0. Further set

R=w2 log(1/q)/qα, W =1/q3w, M =K/(2R0 +W ),

recalling the notation R0 = ρ0⌊R/ρ0⌋ from Definition 3.3. For simplicity we assume
that u0(2R0 +W ) ∈ Z2 and that M is an even integer (W and K can be modified by
O(1) and O(1/q3w) respectively, so that these both hold).

We partition Λ into alternating strips Λ
(1)
i ,Λ

(2)
i , i ∈ [M ], of length K and parallel to

u0 (see Figure 11). The strips Λ
(1)
i have width 2R0 while the strips Λ

(2)
i have width W .

We write Λi = Λ
(1)
i ∪ Λ

(2)
i and we think of the thin strip Λ

(1)
i as being just below the

thick one Λ
(2)
i , when u0 points left. In turn, we partition Λi into consecutive squares

Qi,j, j ∈ [M ], of side length equal to 2R0 +W and sides parallel to u0 and uk and we

write Q
(a)
i,j =Qi,j ∩Λ

(a)
i , a ∈ {1,2}.

REMARK 5.1. Recalling Definition 3.3, the width of the thin strips is chosen so
that an annulus A of radius R would fit tightly inside.

We are now ready to detail the steps (a)-(e) sketched in the roadmap above.

5.2.1. Step (a). Notice that t∗ =K/(2w) and let τ0, τ
Λ
0 denote the infection times

of the origin for the U -KCM process on Z2 and for the U -KCM process on the discrete
torus Λ∩Z2 respectively. Using the fact that the jump rates of the KCM are bounded, a
standard argument of finite speed of information propagation (see e.g. [18]) implies
that

Pµ (τ0 > t∗)6 PµΛ

(
τΛ0 > t∗

)
+ e−Ω(K) as q→ 0. (25)
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5.2.2. Step (b). Given a small positive constant ε= ε(U) = Ω(1) and a large one
λ= λ(U , δ) to be specified later (recall the constant δ from Definition 3.4) let

(i) SG
(
Q

(1)
i,j

)
be the event that the rightmost and leftmost annuli A in Q

(1)
i,j are in-

fected and any segment I ⊂Q
(1)
i,j intersecting Z2, of length εR and orthogonal to

some ui ∈ Ŝ0 contains an infected ui-helping set in Q
(1)
i,j ;

(ii) G(Qi,j) be the event that any segment I ⊂Qi,j intersecting Z2, of length εW and

orthogonal to some u ∈ Ŝ contains w infected consecutive sites;
(iii) Ei be the event that for all the squares Qi,j ⊂ Λi the event G(Qi,j) holds and

moreover there exists j ∈ [M ] such that
⋂j+λ

j′=j+1SG
(
Q

(1)
i,j′

)
also holds;

(iv) E =
⋂

i∈[M ] Ei.

REMARK 5.2. Similarly to Definition 4.2, (i) needs to be modified slightly if As-
sumption 4.1 is not satisfied, but we keep working under that assumption.

5.2.3. Step (c). With our choice of K,R,W , as in Observation 4.5, it follows that

µ
(
SG

(
Q

(1)
i,j

))
= qO(Rw). Moreover, using the Harris inequality

µ


 ⋂

j∈[λ]

SG
(
Q

(1)
i,j

)

> qO(λRw). (26)

Also,

µ


 ⋂

j∈[M ]

G(Qi,j)


> 1−O

(
MW 2

)
e−qwεW/w2

> 1− e−q−2w+o(1)

.

In conclusion,

1− µ(Ei)6 e−q−2w+o(1)

+
(
1− qO(λRw)

)⌊M/λ⌋
6 e−q−2w+o(1)

(27)

and µ(E) > 1−M(1− µ(Ei)) > 1− e−q−2w+o(1)

. Therefore, writing τΛEc for the hitting
time of Ec for the U -KCM process in Λ and recalling that t∗ =K/(2w), we obtain

PµΛ
(τΛEc 6 t∗)6O(K2t∗)µ(Ec) + e−Ω(K2t∗) 6 e−q−2w+o(1)

. (28)

In the second inequality above we used a simple union bound over the updates for
the U -KCM in Λ together with the fact that the law of the U -KCM process in Λ started
from µΛ is equal to µΛ at any given time and a simple large deviations result on the
number of updates.

Thus, if F = {ω : ω0 = 0} ∪ Ec then (25) together with (28) imply that

Pµ(τ0 > t∗)6 Pµ(τ
Λ
0 > t∗) + e−Ω(K)

6 PµΛ
(τΛF > t∗) + PµΛ

(τΛEc 6 t∗) + e−Ω(K)

6 PµΛ
(τΛF > t∗) + e−q−2w+o(1)

.

(29)
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5.2.4. Step (d). As in [1, Theorem 2],

PµΛ
(τΛF > t∗)6 e−λF t∗ , (30)

with

λF = inf

{Dper
Λ (f)

µΛ(f2)
, f |F = 0

}
,

where Dper
Λ (f) denotes the Dirichlet form of the U -KCM process on the torus Λ (see

(8)). Observe now that for any f : ΩΛ →R such that f |F = 0

VarΛ(f | E) =
1

2

∑

ω

∑

ω′

µΛ(ω | E)µΛ(ω
′ | E)(f(ω)− f(ω′))2

> µΛ(ω0 = 0 | E)µΛ(f
2 | E)> qµΛ(f

2),

where for the last inequality we used the Harris inequality ({ω : ω0 = 0} and E are
both decreasing events) and the fact that f2

1E = f2. Hence,

λF > q inf
f

Dper
Λ (f)

VarΛ(f | E)
. (31)

Notice the absence of the conditioning event E in the Dirichlet form Dper
Λ (f).

5.2.5. Step (e). Our main result on the above variational problem is as follows.

THEOREM 5.3. For all w > 0 large enough, all ε > 0 small enough and all f : ΩΛ →
R

VarΛ(f | E)6 eO(w4(log(1/q))3)/qαDper
Λ (f), (32)

i.e.

λF > e−O(w4(log(1/q))3)/qα . (33)

Before proving this theorem, let us first complete the proof of (24). Using t∗ =
w−1 exp(w5(log(1/q))3/qα) and (33) we get that for any w large enough

t∗λF > 1/qw

which, together with (29) and (30) and the choice of T = e1/q
3α

, gives

TPµ(τ0 > t∗)6 T
(
e−λF t∗ + e−q−2w+o(1)

)
→ 0. (34)

This proves (24) and therefore Theorem 1 modulo Theorem 5.3.

PROOF OF THEOREM 5.3. The two main ingredients of the proof will be Lemma
3.12 and Theorem 4.6. The definition of the event E =

⋂
i Ei and the fact that the

strips Λi are disjoint imply that µΛ(· | E) =
⊗

i µΛi
(· | Ei). In turn, Lemma 3.9 gives

VarΛ(f | E)6
∑

i

µΛ(VarΛi
(f | Ei) | E). (35)

Hence, it is enough to analyse a generic term µΛ(VarΛi
(f | Ei) | E) and for this purpose

we plan to apply Lemma 3.12 to bound from above VarΛi
(f | Ei).

Recall that the strip Λi is the disjoint union of M squares (Qi,j)
M
j=1 and recall the

definition of the “single square” events SG
(
Q

(1)
i,j

)
and G(Qi,j) given in (i) and (ii)
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above. Those definitions allow us to write (in what follows the index i of the strip is
fixed)

µΛi
(· | Ei) = νi


· |

⋃

j

j+λ⋂

j′=j+1

SG
(
Q

(1)
i,j′

)



where νi,j = µQi,j
(· | G(Qi,j)) and νi =

⊗
j νi,j . We can now apply Lemma 3.12 to the

product measure νi with SG
(
Q

(1)
i,j

)
as the event H, M as the parameter n, and λ

as the parameter κ. The choice of the key parameter κ entering the definition of the
associated facilitating events Hi,j in the periodic case,

Hi,j =

j+k⋂

j′=j+1

SG
(
Q

(1)
i,j′

)
∪

j−k⋂

j′=j−1

SG
(
Q

(1)
i,j′

)
,

will be postponed to Lemma 5.4 below. There κ will be chosen to be large enough
but independent of q. The requirement of Lemma 3.12 that (1− ν̂(H)κ)n/(3κ) < 1/16
is implied by (27).

In the above setting, Lemma 3.12 gives

VarΛi
(f | Ei)6 q−O(Rwλ)

∑

j

νi
(
1Hi,j

VarQi,j
(f | G(Qi,j))

)
.

By combining the above with (35) we finally get

VarΛ(f | E)6 q−O(Rwλ)
∑

i,j

µΛ



1Hi,j

VarQi,j
(f | G(Qi,j)) |

⋂

i′,j′∈[M ]

G(Qi′,j′)


 .

We shall now analyse a generic term in the sum above with the help of Theorem 4.6.

LEMMA 5.4. There exists an constant λ = λ(U , δ) such that the following holds. If
the parameter κ of the facilitating events Hi,j is taken equal to λ then, for any function
f : ΩΛ →R and any i, j,

µΛ



1Hi,j

VarQi,j
(f | G(Qi,j)) |

⋂

i′,j′

G(Qi′,j′)




6 q−O(w4 log3(1/q)/qα)
∑

x∈Λ
d(x,Qi,j)6O(λW )

µΛ (cxVarx(f)) .

If we assume the lemma, we immediately recover (32), concluding the proof of
Theorem 5.3.

PROOF OF LEMMA 5.4. We assume that 1Hi,j
= 1 and that w.l.o.g. the event H+

i,j =⋂j+λ
j′=j+1SG

(
Q

(1)
i,j′

)
occurs. Next, we recall Definition 3.4 of the snail V R

L (r) and we

choose rl = ρk+l⌊δrl−1/ρk+l⌋ for all l ∈ [2k], setting r−1 = L= λ(W + 2R0)− 2R0. We
choose λ sufficiently large, depending on δ and U but not on w and q, in such a way

that Qi,j ⊂ x+ V R
L (r), where x is the center of the rightmost annulus in Q

(1)
i,j+λ. We

write V = x+ V R
L (r) and observe that, by construction, Qi,j ∩B =∅, where B is the
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base V . Finally, we recall Definition 4.2 of the events SG(B),G(T±
l ) and SG(V ) =

SG(B) ∩ ⋂
l∈[2k](G(T+

l ) ∩ G(T−
l )) for the snail V . It is easy to verify the following

implications (see Figure 11):

H+
i,j ⊂ SG(B)

⋂

i′,j′

G(Qi′,j′)⊂
⋂

l∈[2k]

(G(T+
l )∩ G(T−

l )). (36)

Indeed, for the first inclusion, recalling (i) it is clear that A and HA occur (since the
leftmost annulus in Qi,j+1 contains HA and the rightmost one in Qi,j+λ contains A)
and that all SBm,p occur (for SBm,p contained in two consecutive squares Qi,j′ ,Qi,j′+1

at least in one of them we are guaranteed to have the helping sets; for SB0,p close to
the left boundary of Qi,j′ the infected rightmost annulus provides the desired helping
sets). To see the second one, observe that for all l,m, ST±

l,m intersects at least one of

the squares Qi′,j′ in a segment of length at least εW .
Using (36) and µΛ(E) = 1− o(1), we have that

µΛ



1H+

i,j
VarQi,j

(f | G(Qi,j)) |
⋂

i′,j′

G(Qi′,j′)




6 (1 + o(1))µΛ

(
1SG(B)1

⋂
i′,j′ G(Qi′,j′ ) infa

µQi,j

(
1G(Qi,j)(f − a)2

))

6 (1 + o(1))µΛ

(
inf
a
µQi,j

(
1SG(V )(f − a)2

))

6 µΛ

(
1SG(V ) (f − µV (f | SG(V )))2

)
/µ(SG(V ))

= µΛ (VarV (f | SG(V ))) .

If we now apply the bound (13) of Theorem 4.6 and use the fact that V is contained
in a deterministic O(λW )-neighborhood of the square Qi,j we get the conclusion of
the lemma, once we observe that cVx 6 cx, where cx are the constraints on the torus
Λ.

6. Open problems. With Theorem 1 establishing universality, the next natural
goal is to determine the relaxation time up to a constant factor. This would correspond
to reaching the refined universality partition in bootstrap percolation proved in [5].
However, for KCM, we expect that the partition, even restricted to the finite stable set
case studied in this work, will be more subtle. In order to state it we need one more
definition adapted from [22, Definition 2.3].

DEFINITION 6.1. A critical update family of difficulty α is called rooted if there
exist two non-opposite directions of difficulty strictly larger than α and unrooted oth-
erwise.

The importance of this distinction, though not the one initially suggested in [20,
22], is the following. In a rooted model, a droplet may not reproduce in certain
directions, which forces it to perform an East-like motion, as explained in Section 2.
As it was established in the present work this obstruction can be circumvented using
the mechanism explained in Section 2 on length scale q−O(1). However, e.g. for the
rooted model in Figure 1, typically the first pairs of infections are found at a distance
q−2 from the droplet and, before reaching them, the droplet can only move right East-
like. Therefore, for rooted models with finitely many stable directions we expect that
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the bottleneck of the dynamics consists in creating log(1/q) disjoint droplets close to
each other. For unrooted models one may hope to directly move droplets in an FA1f-
like way (creating a droplet and immediately erasing the previous one), as in Section
5, since they may locally move in all directions.

On the other hand, as identified in [5], balanced models have droplets whose prob-
ability of occurrence is exp(−Θ(1)/qα), while unbalanced ones only have droplets
with probability exp

(
−Θ(log2(1/q))/qα

)
. Putting these two intuitions together and

the mechanism put forward in the present work, this leads us to the following con-
jecture.

CONJECTURE 6.2. Let U be a critical update family with finite number of stable
directions and difficulty α. Then

Eµ[τ0] = exp

(
logγ(1/q)(log log(1/q))O(1)

qα

)
,

where

• γ = 0 if there exists at most one direction u ∈ S1 such that α(u) > α (balanced
unrooted models),

• γ = 1 if there exist at least two directions u ∈ S1, such that α(u) > α, but not two
opposite ones (balanced rooted models),

• γ = 2 if there exists u such that min(α(u), α(u + π)) > α, but α(v) 6 α for v 6=
u,u+ π (unbalanced unrooted models),

• γ = 3 otherwise, i.e. there exist three different directions with difficulty larger than
α, two of which are opposite (unbalanced rooted models).

Furthermore, we conjecture that the (log log(1/q))O(1) correction is in fact Θ(1), except,
possibly, for models with exactly one direction u ∈ S1 with α(u)> α.

It should be noted that such sharp results are not known for any critical model, so
Conjecture 6.2 provides the highest precision currently feasible. In fact, the level of
precision of the conjecture is not attained for any model, including the most classical
FA2f model falling in the first class.3

Since the present work was submitted, in two companion papers Marêché and the
first author [13] and the first author [12], proved Conjecture 6.2. Moreover, they es-
tablished that the peculiar log log correction left uncertain in the conjecture is indeed
present. We refer the reader to those works for more detailed discussions of the bot-
tlenecks and mechanisms involved, particularly for the anomalous case with exactly
one direction of difficulty larger than α dubbed semi-directed there.

APPENDIX

PROOF OF LEMMA 3.12. We will consider the linear case—the periodic one is
treated identically. For simplicity we assume that 2k divides n. Partition [n] into
blocks I0, . . . , IN−1 where Ii := {iκ, . . . , (i + 1)κ − 1} and N = n/κ. Let H(ℓ) be the
event that there exists i in the left half [N ](ℓ) := [N/2] of [N ] such that ωj ∈ H for

all j ∈ Ii. Let H(r) be defined similarly but for the blocks with index in the right half

3Since the submission of the present work, a much sharper result was proved for FA2f by the authors

[15].
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[N ](r) := [N ] \ [N ](ℓ). Using the assumption of the lemma ν(H(ℓ)) = ν(H(r)) > 15/16
and [4, Lemma 6.5], we get

Varν(f |ΩH)6 24ν
(
1H(r) Var(ℓ)(f) + 1H(ℓ) Var(r)(f) |ΩH

)
,

where Var(ℓ) denotes the variance computed w.r.t. the variables corresponding to the
blocks in the left half and similarly for Var(r).

Given H(ℓ), let ξ be the smallest label in [N ](ℓ) such that ωj ∈ H for all j ∈ Iξ .
Using Lemma 3.9 and the fact that the event {ξ = i} is independent of the variables
(ωj)j>(i+1)κ, we get that

ν
(
1H(ℓ) Var(r)(f) |ΩH

)
6

∑

i∈[N ](ℓ)

ν
(
1{ξ=i}Var>(i+1)κ(f) |ΩH

)

6
1

ν̂(H)κ

∑

i∈[N ](ℓ)

ν
(
1{ξ=i}Var>(i+1)κ(f)

)
,

(37)

where Var>(i+1)κ(f) is the variance w.r.t. the variables (ωj)j>(i+1)κ. The r.h.s. above
can now be bounded above using [20, Proposition 3.4]. If HIj is the event that ωl ∈H
for all l ∈ Ij , with the convention that HIN and HI−1

do not occur, we get that

1{ξ=i}Varj>(i+1)κ(f)6
1

ν̂(H)O(κ)

N−1∑

j=i+1

ν>(i+1)κ
(
1{ξ=i}1H±

j
VarIj (f)

)
,

where H±
j = HIj−1

∪ HIj+1
and VarIj is the variance w.r.t. the variables in Ij . By

inserting the r.h.s. above into the r.h.s. of (37), we obtain that ν
(
1H(ℓ) Var(r)(f) |ΩH

)

is smaller than

1

ν̂(H)O(κ)
ν




N−1∑

j=1

j−2∑

i=0

1{ξ=i}1H±

j
VarIj (f) +

∑

i∈[N ]ℓ

1{ξ=i}1H±

i+1
VarIi+1

(f)




6
2

ν̂(H)O(κ)

N−1∑

j=1

ν
(
1H±

j
VarIj (f)

)
,

where we have isolated the term j = i+ 1 and used
∑

i 1{ξ=i} 6 1 and 1{ξ=i} 6 1 for
the two terms respectively. Exactly the same argument can be applied to the term

ν
(
1H(r) Var(ℓ)(f) |ΩH

)
to conclude that

Varν(f |ΩH)6
96

ν̂(H)O(κ)

N−1∑

j=0

ν
((
1HIj+1

+ 1HIj−1

)
VarIj (f)

)
. (38)

We finally bound from above a generic term, considering ν
(
1HI1

VarI0(f)
)

for con-
creteness.

We apply Lemma 3.10 with X1 = ωκ−1,X2 = (ω0, ω1, . . . , ωκ−2) and facilitating
event {ωκ−1 ∈H} to VarI0(f) in order to get

VarI0(f)6
2

ν̂(H)
νI0

(
Varκ−1(f) + 1{ωκ−1∈H}VarI0\{κ−1}(f)

)
. (39)

Thus, we obtain
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ν
(
1HI1

VarI0(f)
)
6

2

ν̂(H)

(
ν
(
1HI1

Varκ−1(f)
)
+ ν

(
1HI1

1{ωκ−1∈H}VarI0\{κ−1}(f)
))

6
2

ν̂(H)

(
ν
(
1Hκ−1

Varκ−1(f)
)
+ ν

(
1Hκ−2

VarI0\{κ−1}(f)
))

We can repeat the step leading to (39) with X1 = ωκ−2,X2 = (ω0, . . . , ωκ−3) and facil-
itating event {ωκ−2 ∈H} and so on. At the end of the iteration we finally get that

ν
(
1HI1

VarI0(f)
)
6

(
2

ν̂(H)

)κ∑

i∈I0

ν (1Hi
Vari(f)) .

Putting all together, we have finally proved that

Varν(f)6
96

ν̂(H)O(κ)

∑

j∈[N ]

ν
((

1HIj+1
+ 1HIj−1

)
VarIj (f)

)

6

(
2

ν̂(H)

)O(κ)∑

j

∑

i∈Ij

ν (1Hi
Vari(f)) .
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