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1. Introduction 1.1. Statement of the main result. The tremendous literature on Gaussian bounds for fundamental solutions of second order parabolic operators can be splitted into two classes: divergence or non-divergence operators. In the first class we only quote the deep results obtained by Aronson, following Nash's ideas, and we refer to [5] for a comprehensive treatment. The second class is more classical and can be found in the books [6,[START_REF] Ladyzhenskaja | tzeva, Linear and quasilinear equations of parabolic type[END_REF] where a fundamental solution is constructed, via the parametrix method, assuming Hölder continuity of the coefficients. By construction the fundamental solution satisfies precise upper bounds but, strangely enough, lower bounds are not proved. In this note we show that the parametrix method produces also lower bounds.

Let P = R n x × R t and set Q = {(x, t, ξ, τ ); (x, t), (ξ, τ ) ∈ P, τ < t}.

The space of continuous and bounded functions f : P → R is denoted by C 0 b (P ). Let f ∈ C 0 b (P ). We say that f is Hölder continuous with exponent α, 0 < α ≤ 1, if

[f ] α = sup |f (x, t) -f (x , t )| |(x -x , t -t )| α , (x, t), (x , t ) ∈ P, (x, t) = (x , t ) < ∞, where |(x -x , t -t )| α = |x -x | 2 + |t -t | α/2 .
We define C α (P ) = {f ∈ C 0 b (P ); [f ] α < ∞}. C α (P ) is a Banach space when it is endowed with its natural norm

f α = f ∞ + [f ] α
and we also use the notation

{f } α = sup |f (x, t) -f (x , t)| |x -x | α ; x, x ∈ R n , x = x and t ∈ R .
We consider the second order parabolic operator

(1.1) L = n i,j=1 a ij (x, t)∂ 2 ij + n i=1 b i (x, t)∂ i + q(x, t) -∂ t
with the following assumptions on its coefficients. (a1)

a ij ∈ C α (P ), 1 ≤ i, j ≤ n.
(a2) The matrix a(x, t) = (a ij (x, t)), (x, t) ∈ P , is symmetric, real-valued, and there exist constants κ > 0, M > 0 so that

κ|η| 2 ≤ a(x, t)η, η ≤ M |η| 2 , (x, t) ∈ P, η ∈ R n . (a3) b i , q ∈ C 0 b (P ), 1 ≤ i ≤ n. (a4) There exists a constant N 1 > 0 so that n i,j=1 [a ij ] α ≤ N 1 . (a5) There exists a constant N 2 > 0 so that n i=1 b i ∞ + q ∞ ≤ N 2 . (a6) {b i } α < ∞, 1 ≤ i ≤ n, and {q} α < ∞.
Henceforth we use for convenience the notation D for (n, α, N 1 , N 2 , M, κ).

In this paper the fundamental solution constructed by the parametrix method is denoted by E = E(x, t; ξ, τ ), (x, t, ξ, τ

) ∈ Q. Recall that E is a fundamental solution if E ∈ C 2 (Q), LE = 0 and lim t→τ ˆRn E(x, t; ξ, τ )f (ξ)dξ = f (x), f ∈ C ∞ 0 (R n ). Theorem 1.1. Let c = 1 8M and d = 4 ln e2 3n (M κ -1 ) n/2 Γ(n/2 + 1) κ .
Under assumptions (a1) to (a6), there exist four constants 

ℵ i = ℵ i (D), i = 0, 1, 2, 3, ℵ 0 > 0, ℵ 1 ≥ 0, ℵ 2 > 0 and ℵ 3 ≥ 0, such that ℵ 0 e -ℵ1(t-τ ) (t -τ ) -n 2 e -d |x-ξ| 2 t-τ ≤ E(x,t; ξ, τ ) (1.2) ≤ ℵ 2 e ℵ3(t-τ ) (t -τ ) -n 2 e -c |x-ξ| 2 t-τ , for all (x, t, ξ, τ ) ∈ Q. Remark 1.
0 ≤ G D Ω (x, t; ξ, τ ) ≤ ℵ 2 e ℵ3(t-τ ) (t -τ ) -n 2 e -c |x-ξ| 2 t-τ , (x, t, ξ, τ ) ∈ Q,
where the constants in this inequality are the same as in Theorem 1.1.

We say that Ω satisfies the chain condition if there exists a constant > 0 such that for any two points x, y ∈ Ω and for any positive integer m there exists a sequence (x i ) 0≤i≤m of points in Ω such that x 0 = x, x m = y and

|x i+1 -x i | ≤ m |x -y|, i = 0, . . . , m -1.
The sequence (x i ) 0≤i≤m is named a chain connecting x and y.

Since any bounded Lipschitz domain has the chain condition (this fact can be easily deduced from [4, Corollary A.1]), an adaptation of the proof of [2, Theorem 3.1] (see also [3]) and the reproducing property enable us to get the following result.

Corollary 1.2. If the coefficients of L satisfy assumptions (a1) to (a6) then there exist five constants c

0 = c 0 (D) and ℵ i = ℵ i (D) > 0, i = 0, 1, 2, 3, such that ℵ 0 e -ℵ1(t-τ ) (t -τ ) -n 2 e -c0 |x-ξ| 2 t-τ ≤ G N Ω (x,t; ξ, τ ) ≤ ℵ 2 e ℵ3(t-τ ) (t -τ ) -n 2 e -c |x-ξ| 2 t-τ ,
for all (x, t, ξ, τ ) ∈ Q, where c is as in Theorem (1.1).

Preliminaries

In this section the coefficients of L satisfy assumptions (a1) to (a5).

Basic properties of generalized Gaussian kernels.

In the sequel we frequently use

(2.1) ˆR e -ρ 2 dρ = √ π.
The Gaussian heat kernel is defined as follows

(2.2) G(x, t) = 1 (4πt) n 2 e -|x| 2 4t , x ∈ R n , t > 0.
We have, according to Fubini's theorem,

ˆRn G(x, t)dx = ˆR 1 2 √ πt e -y 2 4t dy n , t > 0.
Then the change of variable ρ = y

2 √ t yields (2.3) ˆRn G(x, t)dx = 1, t > 0,
where we used the value of the Gauss integral (2.1).

If a = (a ij ) is n × n symmetric positive definite matrix, we define the generalized Gaussian heat kernel by

(2.4) G a (x, t) = √ det a (4πt) n 2 e -ax,x 4t , x ∈ R n , t > 0.
Let d = diag(d 1 , . . . , d n ) be a diagonal matrix and u an orthogonal matrix, that is u t u = I, so that uau t = d. Then

ax, x = dux, ux , det a = n i=1 d i and ˆRn G a (x, t)dx = ˆRn √ det a (4πt) n 2 e -dux,ux 4t dx, t > 0. Since |det u| = 1, the change of variable y = ux gives ˆRn G a (x, t)dx = ˆRn √ det a (4πt) n 2 e -dx,x 4t dx, t > 0.
Applying again Fubini's theorem, we get ˆRn

G a (x, t)dx = √ det a n j=1 ˆR 1 2 √ πt e -d i ρ 2 4t dρ (2.5) = √ det a n j=1 ˆR 1 2 √ d i πt e -ρ 2 4t dρ = n j=1 ˆR 1 2 √ πt e -ρ 2 4t dρ = 1, t > 0. It is straightforward to check that G a ∈ C ∞ (R n × (0, ∞)) and, since ∂ k ax, x = 2 n j=1 a kj x j = 2(ax) k , x ∈ R n , we have (2.6) ∂ k G a (x, t) = - 1 2t G a (x, t)(ax) k , x ∈ R n , t > 0.
We easily derive from (2.6)

(2.7) ∂ 2 k G a (x, t) = 1 4t 2 G a (x, t)(ax) k (ax) - 1 2t G a (x, t)a k , x ∈ R n , t > 0. Let a -1 = (a ij ). Inserting the identity n k, =1 a k (ax) k (ax) = a -1 ax, x = ax, x in (2.7) we obtain (2.8) n k, =1 a k ∂ 2 k G a (x, t) = 1 4t 2 ax, x - n 2t G a (x, t), x ∈ R n , t > 0.
On the other hand, it is straightforward to check that (2.9)

∂ t G a (x, t) = 1 4t 2 ax, x - n 2t G a (x, t), x ∈ R n , t > 0.
We define the parabolic operator L a -1 by

L a -1 = n i,j=1 a ij ∂ 2 ij -∂ t .
Comparing (2.8) and (2.9) we see that G a satisfies (2.10)

L a -1 G a (x, t) = 0, x ∈ R n , t > 0.
2.2. The parametrix. Let a -1 (x, t) = (a ij (x, t)), (x, t) ∈ P , where (a ij (x, t)) is the inverse of the matrix (a ij (x, t)), and define

Z(x, t; ξ, τ ) = G a -1 (ξ,τ ) (x -ξ, t -τ ), (x, t, ξ, τ ) ∈ Q, that is (2.11) Z(x, t; ξ, τ ) = det a -1 (ξ, τ ) (4π(t -τ )) n 2 e -a -1 (ξ,τ )(x-ξ),(x-ξ) 4(t-τ ) , (x, t, ξ, τ ) ∈ Q.
This function is usually called the parametrix associated to the parabolic operator L. According to the results of the previous subsection, for any (ξ, τ

) ∈ P , Z(•, •; ξ, τ ) ∈ C ∞ (P τ ) with P τ = {(x, t) ∈ R n ; t > τ }, and
(2.12)

n i,j=1 a ij (ξ, τ )∂ 2 ij Z(•, •; ξ, τ ) -∂ t Z(•, •; ξ, τ ) = 0 in P τ .
Let us define

d i (x, t; ξ, τ ) = - 1 2(t -τ ) n j=1 a ij (ξ, τ )(x j -ξ j ), d ij (x, t; ξ, τ ) = - a ij (ξ, τ ) 2(t -τ ) + d i (x, t; ξ, τ )d j (x, t; ξ, τ ).
From (2.6) and (2.7) we have

∂ i Z = d i Z and ∂ 2 ij Z = d ij Z.
Therefore, taking into account (2.12), we have

(2.13) LZ =   n i,j=1 (a ij (x, t) -a ij (ξ, τ )) d ij + n i=1 d i b i + q   Z = ΨZ, where Ψ = n i,j=1 (a ij (x, t) -a ij (ξ, τ )) d ij + n i=1 d i b i + q.
We need a pointwise estimate for LZ. To this end, we start with the following lemma Lemma 2.1. We have

(2.14) |a -1 (x, t)η| ≤ 1 κ |η|, (x, t) ∈ P, η ∈ R n , (2.15) sup 1≤i,j≤n a ij ∞ ≤ 1 κ .

and

(2.16)

a -1 (x, τ )(x -ξ), x -ξ 4(t -τ ) ≥ 1 4M |x -ξ] 2 t -τ .
Proof. From assumption (a2), we have

a(x, t)η, η ≥ κ|η| 2 , (x, t) ∈ P, η ∈ R n .
In this inequality we get by substituting η by a -1 (x, t)η 

|a -1 (x, t)η||η| ≥ a -1 (x, t)η, η ≥ κ|a -1 (x,
d i ∞ ≤ |x -ξ| 2κ(t -τ ) or d i ∞ ≤ 2κ √ t -τ where = |x -ξ| √ t -τ .
It is easy to see that (2.15) and (2.17) entail (2.18)

d ij ∞ ≤ 1 2κ + 2 4κ 2 1 t -τ . Hence (2.19) n i,j=1 (a ij (x, t) -a ij (ξ, τ )) d ij ≤ N 1 1 2κ + 2 4κ 2 (1 + 2 ) α 2 (t -τ ) 1-α 2 .
On the other hand, we get from (2.17)

(2.20) n i=1 b i d i + q ≤ N 2 2k √ t -τ + 1 ≤ N 2 1 + 2κ (t -τ ) 1-α 2 , t -τ ≤ 1.
In light of (2.19) and (2.20) we obtain

(2.21) Ψ ∞ ≤ N 1 1 2κ + 2 4κ 2 (1 + 2 ) α 2 (t -τ ) 1-α 2 + N 2 1 + 2κ (t -τ ) 1-α 2 , t -τ ≤ 1. Now (2.16) implies (2.22) |Z(x, t)| ≤ 1 (4κπ(t -τ )) n 2 e -1 4M 2 .
Recall that c = 1 8M and let

(2.23) C = 1 (4κπ) n 2 max λ>0 N 1 1 2κ + λ 2 4κ 2 (1 + λ 2 ) α/2 + N 2 λ κ + 1 e -cλ 2 .
If Φ 1 = LZ = ΨZ, then a combination of (2.21) and (2.22) gives (2.24)

|LZ| = |ΨZ| ≤ C(t -τ ) -n 2 -1+β e -c 2 , t -τ ≤ 1, with β = α 2 .

Two-sided Gaussian bounds

In this section the coefficients of L satisfy (a1) to (a6). Let Φ 1 = LZ,

Φ +1 (x, t, ξ, τ ) = ˆt τ ˆRn Φ 1 (x, t; η, σ)Φ (η, σ, ξ, τ )dηdσ, ≥ 1 
and define Φ =

≥1

Φ .

Let E be the fundamental solution, associated to L, constructed by the parametrix method. According to [6, 7], E is given by

(3.1) E(x, t; ξ, τ ) = Z(x, t; ξ, τ ) + ˆt τ ˆRn Z(x, t; η, σ)Φ(η, σ; ξ, η)dηdσ,
for all (x, t, ξ, τ ) ∈ Q.

We refer to [6, Chapter 1] or to [7, Chapter IV] for more details.

Preliminary estimate.

The following lemma will be useful in the sequel.

Lemma 3.1. ([6, Chapter 1, Section 4]) Let λ > 0 and -∞ < γ, δ < 1. Then

ˆt τ ˆRn (t -σ) -n 2 -γ e -λ|x-η| 2 t-σ (σ -τ ) -n 2 -δ e -λ|η-ξ| 2 σ-τ dηdσ = 4π λ n 2 B (1 -γ, 1 -δ) (t -τ ) -n 2 +1-γ-δ e -λ|x-ξ| 2 t-τ
, where B is the Euler beta function.

Let C be the constant given by (2.23) and assume that t -τ ≤ 1. We deduce from (2.24)

(3.2) |Φ 1 | ≤ C(t -τ ) -n 2 -1+β e -c 2 . Let C = 4π c n 2 .
We have by applying Lemma 3.1

|Φ 2 | ≤ CC 2 B(β, β)(t -τ ) -n 2 -1+2β e -c 2 .
By induction in , wo obtain

|Φ | ≤ C -1 C -1 j=1 B(β, jβ)(t -τ ) -n 2 -1+ β e -c 2 , ≥ 2.
If Γ is the Euler gamma function, we recall that

B(β, jβ) = Γ(β)Γ(jβ) Γ((j + 1)β) . Therefore -1 j=1 B(β, jβ) = Γ(β) Γ( β)
and hence

|Φ | ≤ C -1 Λ Γ( β) (t -τ ) -n 2 -1+ β e -c 2 , ≥ 2 
,
where Λ = C CΓ(β). Since t -τ ≤ 1, we obtain

(3.3) |Φ | ≤ C -1 Λ Γ( β) (t -τ ) -n 2 -1+β e -c 2 , ≥ 2, If C = C -1 , then (3.3) takes the form (3.4) |Φ | ≤ C Λ Γ( β) (t -τ ) -n 2 -1+β e -c 2 , ≥ 2.
From Stirling's formula for the Γ function (see for instance [8, Chapter V, Section 3]) we have Γ(x + 1) ∼ x x e -x √ 2πx, x → ∞. Therefore, the series

(3.5) S = C + C ≥2 Λ Γ( β) is convergent.
We get from (2.24) and (3.4)

(3.6) |Φ| ≤ S(t -τ ) -n 2 -1+β e -c 2 .
3.2. The upper bound. In light of (2.24) and (3.6), Lemma 3.1 yields

(3.7) ˆt τ ˆRn Z(x, t; η, σ)Φ(η, σ; ξ, τ )dηdσ ≤ SB(1, β) (κc) n 2 (t -τ ) -n 2 +β e -c 2 , for all (x, t, ξ, τ ) ∈ Q and t -τ ≤ 1. Let C = 1 (4κπ) n 2 + SB(1, β) (κc) n 2
.

As an immediate consequence of (2.24) and (3.7), we have

(3.8) |E(x, t; ξ, τ )| ≤ C(t -τ ) -n 2 e -c 2 , (x, t, ξ, τ ) ∈ Q, t -τ ≤ 1.
We recall that E possesses the so-called reproducing property

(3.9) E(x, t; ξ, τ ) = ˆRn E(x, t; η, σ)E(η, σ; ξ, τ ) dη, τ < σ < t.
Applying (3.8), we get

(3.10) |E(x, t, ξ, τ )| ≤ C 2 ˆRn (t -σ) -n 2 e -c |x-η| 2 4(t-σ) (σ -τ ) -n 2 e -c |η-ξ| 2 4(σ-τ ) dη,
for all t -τ ≤ 2, where σ = t+τ 2 . We introduce a variable z so that

c |x -η| 2 4(t -σ) + c |η -ξ| 2 4(σ -τ ) = c |x -ξ| 2 4(t -τ ) + |z| 2 .
Using the identity |x -

η| 2 = |x -ξ| 2 + |ξ -η| 2 + x -ξ, ξ -η , we get |x -η| 2 t -σ + |η -ξ| 2 σ -τ - |x -ξ| 2 t -τ = (σ -τ )|x -ξ| 2 (t -σ)(t -τ ) + (t -τ )|η -ξ| 2 (t -σ)(σ -τ ) + 2 x -ξ, ξ -η (t -σ) 2 . = σ -τ (t -σ)(t -τ ) 1 2 (x -ξ) + t -τ (t -σ)(σ -τ ) 1 2 (ξ -η) 2 .
Therefore, we can for instance take

z = c t -τ t -σ 1 2 η -ξ 2(σ -τ ) 1 2 + c σ -τ t -σ 1 2 ξ -x 2(t -τ ) 1 2
.

Passing to the variable z in (3.10), we deduce

|E(x, t, ξ, τ )| ≤ C C 2 (t -τ ) -n 2 e -c 2 , t -τ ≤ 2.
Next assume that t -τ > 2 and let m be the smallest integer so that t -τ ≤ m. Define

σ 0 = τ, σ 1 = τ + t -τ m , . . . , σ m-1 = τ + (m -1) t -τ m , σ m = t.
Iterating the reproducing property (3.9), we get

E(x, t; ξ, τ ) = ˆRn . . . ˆRm E(x, σ m , η m , σ m-1 )E(η m ,σ m-1 , η m-1 , σ m-2 ) . . . E(η 1 , σ 1 , ξ, σ 0 )dη 1 . . . dη m .
Repeating inductively the case m = 2, we find

|E(x, t, ξ, τ )| ≤ C m-1 C m (t -τ ) -n 2 e -c 2 .
This and the fact that m < t -τ + 1 entail

|E(x, t, ξ, τ )| ≤ C -1 e max 0,ln( C C) e max 0,ln( C C) (t-τ ) (t -τ ) -n 2 e -c 2 .
This is the expected Gaussian upper bound.

A more precise upper bound can be obtained by optimizing the constants appearing in the previous computations. We do it in the special case b i = q = 0, where the iteration procedure based on (3.9) is not needed.

Corollary 3.1. If b i = q = 0, then E(x, t; ξ, τ ) ≤ 1 (4κπ) n 2 (t -τ ) -n 2 e - 2 4M 1 + c 1 (t -τ ) α 2 e c2((t-τ )+ γ ) ,
for all (x, t, ξ, τ ) ∈ Q, where = |x-ξ| √ t-τ and γ = 4α+8 3α+4 < 2.

Proof. First we note that the restriction t -τ ≤ 1 is not needed in (2.21), since it comes from (2.20) only. Then we define C as in (2.23) with c = 4M , N 2 = 0. It is easy to see that C ≤ A -2-α with A > 0 and this leads to (2.24) with this C and c = (1-) 4M . Next we write (3.4) with β instead of β, since we no longer assume that t -τ ≤ 1.

Entering this estimate in the constants C, Λ defining S (see (3.5)), using [1, Theorem 2, Section 15, Chapter V] and Stirling's formula again, we deduce that

≥2 Λ (t -τ ) β Γ( β) ≤ c 1 (t -τ ) 2β e c2((t-τ )+Λ 1 β )
and S ≤ c 1 e c2((t-τ )+ -(2+ 4 α

) ) . Then we use this estimate in (3.7) with c = (1-) 4M to get ˆt τ ˆRn Z(x, t; η, σ)Φ(η, σ; ξ, η)dηdσ

≤ c 1 (t -τ ) -n 2 +β e -(1-) 4M 2 +c2 -(2+ 4 α ) +c2(t-τ ) .
Optimizing over and using (3.1), the corollary follows.

3.3. The lower bound. From the previous analysis, we easily get

Z(x, t; ξ, τ ) ≥ 1 (4πM ) n 2 (t -τ ) -n 2 e -1 κ ρ 2 . Hence, (3.11) Z(x, t; ξ, τ ) ≥ e -1 (4πM ) n 2 (t -τ ) -n 2 , |x -ξ| 2 ≤ κ(t -τ ).
A combination of (3.7) and (3.11) yields

E(x, t; ξ, τ ) ≥ e -1 (4πM ) n 2 (t -τ ) -n 2 - SB(1, β) (κc) n 2 (t -τ ) -n 2 +β ,
for all |x -ξ| 2 ≤ κ(t -τ ) and t -τ ≤ 1. Fix δ ≤ 1 sufficiently small in such a way that

e -1 (4πM ) n 2 - SB(1, β) (κc) n 2 δ β ≥ e -1 2(4πM ) n 2 . Then, with µ = e -1 2(4πM ) n 2 , (3.12) E(x, t; ξ, τ ) ≥ µ(t -τ ) -n 2 , |x -ξ| 2 ≤ κ(t -τ ), t -τ ≤ δ.
Let x and ξ be given so that 2|x -ξ| > κ(t -τ ) and let m ≥ 2 be the smallest integer so that (3.13) 4|x -ξ| 2 m ≤ κ(t -τ ).

Define the sequence (x k ) 0≤k≤m where we used 

x k = x + k m (ξ -x), 0 ≤ k ≤ m.
|x i+1 -x i | = 1 √ m |x -ξ| √ m ≤ 1 

  -τ ) √ m andσ k = τ + k m (t -τ ), 0 ≤ k ≤ m.Using (3.12), the positivity of E and the reproducing property, we getE(x, t;ξ, τ ) ≥ µ m ˆB(x1,r) . . . ˆB(xm-1,r) (σ 1 -σ 0 ) -n 2 . . . (σ m -σ m-1 ) -n 2 dη 1 . . . dη m-1 ,

  By inspecting the proof of Theorem 1.1 we see that, in the Gaussian upper bound, we can substitute c by c = 4M , 0 < < 1, and ℵ i by ℵ i , i = 2, 3, with an explicit dependence of ℵ 2 and ℵ 3 on .
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