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Dense emulsions, colloidal gels, microgels, and foams all display a solidlike behavior at rest
characterized by a yield stress, above which the material flows like a liquid. Such a fluidization transition
often consists of long-lasting transient flows that involve shear-banded velocity profiles. The characteristic
time for full fluidization τf has been reported to decay as a power law of the shear rate _γ and of the shear
stress σ with respective exponents α and β. Strikingly, the ratio of these exponents was empirically
observed to coincide with the exponent of the Herschel-Bulkley law that describes the steady-state flow
behavior of these complex fluids. Here we introduce a continuum model, based on the minimization of a
“free energy,” that captures quantitatively all the salient features associated with such transient shear
banding. More generally, our results provide a unified theoretical framework for describing the yielding
transition and the steady-state flow properties of yield stress fluids.
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Introduction.—Amorphous soft materials, such as dense
emulsions, foams, and microgels, display solidlike proper-
ties at rest, while they flow like liquids for large enough
stresses [1–4]. These yield stress fluids are characterized by
a steady-state flow behavior that is well described by the
Herschel-Bulkley (HB) model, where the shear stress σ is
linked to the shear rate _γ through σ ¼ σc þ A_γn, with σc the
yield stress of the fluid, A the consistency index, and n a
phenomenological exponent that ranges between 0.3 and
0.7, and is often equal to 1=2 [5–8]. However, steady-state
flow is never reached instantly and the yielding transition
may involve transient regimes much longer than the natural
timescale _γ−1 [4,9–13].
As demonstrated experimentally in Refs. [14–16], long-

lasting heterogeneous flows develop from the initial solid-
like state, involving shear-banded velocity profiles before
reaching a homogeneous steady-state flow. Depending on
the imposed variable, _γ or σ, the characteristic time τf to
reach a fully fluidized state was reported to scale, respec-
tively, as τf ∝ 1=_γα or as τf ∝ 1=ðσ − σcÞβ, where α and β
are fluidization exponents that only depend on the material
properties (see Fig. 1). Interestingly, these two power
laws naturally lead to a constitutive relation σ versus _γ
given by the steady-state HB equation with an exponent
n ¼ α=β [15].
The above experimental findings have triggered a

wealth of theoretical contributions aiming at reproducing

long-lasting heterogeneous flows, some of which have
successfully produced transient shear-banded flows together
with nontrivial scaling laws for fluidization times [18–24].
While these contributions offer potential explanations for

101 102

100

102

104

experiments

FIG. 1. Stress-induced fluidization time τf versus reduced shear
stress σ − σc for Carbopol microgels at various weight concen-
trations: 0.5% (up-pointing triangle), 0.7% (down-pointing tri-
angle), 1% (circle), and 3% (rectangle). Solid lines correspond to
the best power-law fits of the various data sets τf ∼ ðσ − σcÞ−β
with exponent β ranging from 2.8 to 6.2. Experimental conditions
are listed in Supplemental Material Table S1 together with values
of σc and β [17].
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long-lasting transients, which appear to be age dependent
and related to structural heterogeneities [19,21–23,25], none
of these numerical studies captures the link between the
exponents governing the transient regimes and that of the
steady-state HB behavior.
From a more general perspective, shear banding has often

been discussed as a first-order dynamical phase transition
[13,26–29]. In that framework, transient shear banding can
be interpreted as the coarsening of the fluid phase, which
nucleateswithin the solid region andwhose size δ can be seen
as the growing length scale that characterizes the coarsening
dynamics. In this Letter, we show that the yielding transition
and the corresponding transient shear-banding behavior can
bedescribedby a field theory basedon a “free energy,”whose
order parameter is the fluidity, i.e., the ratio between the shear
rate and the shear stress. In such a theory, as first introduced
by Bocquet et al. [28] and later analyzed in Ref. [30], shear-
banded flows can be obtained as a minimum of a free energy
that depends on the fluidity and on the nonlocal, i.e., spatially
dependent [26,27], rheological properties of the system.
A link between the fluidity order parameter and the physics
of elastoplasticity at the mesoscale has been explored in
Ref. [31] based on Eshelby elastic response functions
[32–34]. Here we build upon the fluidity approach and
extend it, leading to analytical expressions for the scaling
exponents α and β that are in quantitative agreement with
experiments and that provide a clear-cut explanation for the
link between these exponents and the HB exponent n. Our
findings demonstrate that nonlocal effects are key to under-
stand transient shear banding in amorphous soft solids.
Fluidity model.—We start by considering that the bulk

rheology of the system is governed by the dimensionless
HB model, Σ ¼ 1þ _Γn, where Σ ¼ σ=σc is the shear stress
normalized by the yield stress and _Γ ¼ _γ=ðσc=AÞ1=n is the
shear rate normalized by the characteristic frequency
for the HB law. Given the spatial coordinate y along
the velocity gradient direction and the system size L,
we next assume that the flow properties of the yield
stress fluid are controlled by a free-energy functional,
F½f� ¼ R

L
0 Φðf;m; ξÞdy, where [28,35]

Φðf;m; ξÞ≡
�
1

2
ξ2ð∇fÞ2 − 1

2
mf2 þ 2

5
f5=2

�

: ð1Þ

The quantity f ¼ fðyÞ is the local (dimensionless) fluidity
defined by fðyÞ ¼ _ΓðyÞ=ΣðyÞ and represents the order
parameter in the model. Following Refs. [28,30], m2 is
defined as

m2ðΣÞ≡ ðΣ − 1Þ1=n
Σ

for Σ ≥ 1 ð2Þ

and m2 ¼ 0 for Σ < 1. This formulation implies that, for
fðyÞ ¼ m2 independently of y, the system flows homo-
geneously and follows the dimensionless HB model.

Finally, the length scale ξ is usually referred to as the
“cooperative” scale and is of the order of a few times
the size of the elementary microstructural constituents
[28,36–39]. In steady state, the flowing properties of the
system can then be derived from the variational equation
δF=δf ¼ 0. This equation predicts heterogeneous flow
profiles as induced by wall effects, but it cannot account
for stable shear banding [30]. Moreover, transient flow
properties require that some temporal dynamics be speci-
fied for f. To overcome these limitations, we now general-
ize a recent theoretical proposal introduced in Ref. [30] and
apply it to describe transient flows.
Stress-induced fluidization dynamics.—Let us first

focus on the yielding transition under an imposed shear
stress σ for which m is a constant. We note that introducing
f̃ ¼ f=m2 and ỹ ¼ m1=2y=ξ allows us to rescale homo-
geneously the functional Φ to Φðf;m; ξÞ ¼ m5Φ̃ðf̃Þ,
where [40]

Φ̃ðf̃Þ ¼
�
1

2
ð∇̃ f̃Þ2 − 1

2
f̃2 þ 2

5
f̃5=2

�

: ð3Þ

The advantage of using f̃ and ỹ is that we can now
formulate the dynamical equation independently of both
the strength of external forcing m and ξ. We further
assume that the system reaches a stable equilibrium
configuration corresponding to a minimum of F½f̃� and
that such dynamics is governed by a “mobility” kðf̃Þ, for
which the most general dynamical equation reads [35]

∂f̃
∂t ¼ −m5kðf̃Þ δF½f̃�

δf̃

¼ m5kðf̃Þ½Δ̃ f̃þf̃ − f̃3=2�: ð4Þ

If the mobility kðf̃Þ is an analytic function of f̃ and
kð0Þ ¼ 0, then Eq. (4) can account for a shear-banding
solution in the general form f̃ðỹÞ ¼ 0 (solid branch) for
ỹ ∈ ½0; L̃ − δ̃� and f̃ðỹÞ solution of Δ̃ f̃þf̃ − f̃3=2 ¼ 0

(fluidized branch) for ỹ ∈ ½L̃ − δ̃; L̃�, where δ̃ is the rescaled
size of the fluidized region. Furthermore, transient shear
banding corresponds to the case where the solid branch
f̃ ¼ 0 is an unstable solution. To explore this latter case, we
next consider the time dynamics in Eq. (4) with kðf̃Þ ¼ f̃
and fixed initial conditions. Note that the initial conditions
influence mainly the early-time response of the fluid. A
detailed discussion on the choice of kðf̃Þ and on initial
conditions is given in the Supplemental Material [17].
Equation (4) is solved numerically for Σ ¼ 1.1 and ξ=L ¼
0.01 in Figs. 2(a) and 2(b), assuming f̃ðỹ; 0Þ ¼ f̃0 ≪ 1 for
the initial solidlike state and f̃ðL̃; tÞ ¼ 1 and ∂ ỹf̃ð0; tÞ ¼ 0

for boundary conditions at the two different walls. Such a
choice will be addressed below in the discussion section.
As seen in the velocity profiles vðyÞ [insets in Fig. 2(a)], the
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system forms a shear band near y ¼ L at time t > 0.
The shear band grows in time and the system eventually
reaches the stable equilibrium configuration f̃ðỹ; tÞ ¼ 1
within a well-defined fluidization time Tf. This pheno-
menology is in remarkable agreement with experimental
observations in Figs. 2(c) and 2(d) for a Carbopol
microgel. In particular, the band size δðtÞ follows very
similar growths whatever the applied stress (see Fig. S1 in
Supplemental Material [17]).
Using Eq. (4), we may predict the scaling behavior of the

fluidization time Tf as a function of m. Upon rescaling the
time as t̃ ¼ m5t, we observe that Eq. (4) no longer depends
on m. Regardless of the specific function kðf̃Þ, we expect
that the shear band expands with some characteristic
velocity ṽf independent of m. Therefore, the rescaled
fluidization time should be proportional to L̃=ṽf. It follows
that the fluidization time should exhibit the scaling Tf ∼
L̃=ðm5ṽfÞ ∼ 1=ðξm9=2Þ independently of the specific func-
tional form of kðf̃Þ. The numerical integration of Eq. (4) for
various values ofm leads to the fluidization times Tf shown
in Fig. 3(a), which nicely follow the predicted m−9=2

power-law decay. Such a scaling is also in excellent
agreement with the experimental data of Fig. 1 when
rescaled and plotted in terms of mðΣÞ based on the
experimental steady-state HB parameters [see Fig. 3(b)
and discussion below].

Strain-induced fluidization.—We now proceed to show
that the same approach allows us to rationalize the yielding
transition under an imposed shear rate _Γ. In that case, we
must supplement the theory by the fluidity equation
_Σ ¼ _Γ − fΣ, which corresponds to a single Maxwell mode
for the evolution of the stress [19]. Moreover, m being a
function of time, we can no longer use the rescaling
f̃ ¼ f=m2. Since _Γ is a constant, we rather introduce the
rescaled variable f̃ ¼ f= _Γ. Upon rescaling the spatial
variable as ỹ ¼ _Γ1=4y=ξ, the analog of Eq. (4) reads

∂f̃
∂t ¼ _Γ5=2kðf̃Þ½Δ̃ f̃þm̃ f̃−f̃3=2�; ð5Þ

where m̃ ¼ m= _Γ1=2. Under the assumption that m̃ remains
roughly constant during the shear band evolution, rescaling
time as t̃ ¼ _Γ5=2t leads to Tf ∼ L̃=ð _Γ5=2ṽfÞ ∼ 1=ðξ _Γ9=4Þ.
The inset of Fig. 4 shows the actual Tf computed numeri-
cally from Eq. (5) with kðf̃Þ ¼ f̃ for different shear rates _Γ.
The results are very well fitted by a power-law decay of
exponent 2.15� 0.10, quite close to the theoretical
exponent α ¼ 9=4, and in good agreement with experi-
ments on a 1 wt % Carbopol microgel for various geom-
etries and boundary conditions that lead to an exponent
of 2.45� 0.23 (see Fig. 4 herein and Table S2 in
Supplemental Material [17]).

(b)

(a) (c)

(d)

FIG. 2. Stress-induced fluidization dynamics in (a),(b) theory and (c),(d) experiment on a 1 wt% Carbopol microgel in a smooth
concentric cylinder geometry of gap 1 mm. (a),(c) Shear rate _Γ and _γ versus time t for a shear stress of Σ ¼ 1.1 and σ ¼ 41 Pa,
respectively. Insets: Velocity profiles v normalized by the velocity of the moving plate v0 as a function of the distance y to the fixed plate
normalized by the gap size L. Profiles taken at different times (symbol, time): (circle, 1100), (down-pointing triangle, 5.5 × 104),
(square, 3.3 × 105), (up-pointing triangle, 6.6 × 106) in (a) and (circle, 1011 s), (down-pointing triangle, 6927 s), (square, 8193 s);
(up-pointing triangle, 9522 s) in (c). (b),(d) Width δ of the fluidized shear band normalized by the gap width L versus time t. The vertical
dashed lines crossing (a),(b) and (c),(d), respectively, indicate the fluidization times Tf and τf .
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Discussion.—Let us now compare the theoretical find-
ings against experimental data. Coming back to the case of
an imposed shear stress and to the definition ofm in Eq. (2),
we note that Tf ∼m−9=2 corresponds to the scaling Tf ∼
ðΣ − 1Þ−9=4n in terms of the reduced viscous stress Σ − 1.
This corresponds to a fluidization exponent β ¼ 9=4n. To
illustrate such a scaling, numerical results are plotted in
Fig. S2 of Supplemental Material for different values of n
covering the range reported in experiments (n ≃ 0.30–0.57)
[17]. The spread of the exponents β ≃ 3–8 nicely corre-
sponds to that observed experimentally (β ≃ 2.8–6.2).
More specifically, these theoretical predictions prompt us
to revisit the experimental data shown in Fig. 1 by
computing estimates of mðΣÞ using Eq. (2) with Σ ¼
σ=σc and the HB parameters σc and n determined at steady
state [15]. When plotted as a function of mðΣÞ, the
experimental fluidization times remarkably collapse onto
the predicted scaling τf ∼mðΣÞ−9=4, provided τf is rescaled
by a characteristic time τ0 independent of the applied stress
[see Fig. 3(b)]. Although a clear physical interpretation of
τ0 is still lacking [41], the collapse of the experimental data
seen in Fig. 3(b) is a strong signature of the predictive
power of the theory.

Another key outcome of the proposed approach is that,
assuming an underlying HB rheology, it provides the first
theoretical analytical expressions for both fluidization
exponents α and β, in quantitative agreement with exper-
imental results. Moreover, the ratio of these exponents,
α=β ¼ ð9=4Þ=ð9=4nÞ ¼ n, coincides with the Herschel-
Bulkley exponent exactly as in experiments [15,16].
Therefore, the present theory provides a natural framework
for justifying the empirical connection between transient
and steady-state flow behaviors.
Furthermore, the scaling found here for τf is extremely

robust and depends only weakly on the initial conditions.
As illustrated in Figs. S3 and S4 of Supplemental Material
for two different initial values of the fluidity in the gap, the
shear rate either shows a monotonic increase up to complete
fluidization or displays a decreasing trend with a well-
defined minimum before increasing towards steady state
[17]. Yet, the fluidization time remains comparable in both
cases. Note also that, at early stage, _Γ shows a power-law
decrease in time that is strongly reminiscent of the primary
creep regime reported in amorphous soft materials
[11,15,42–46]. In the present model, the power-law expo-
nent may take any value between −2=3 and 0 depending on
the choice of kðf̃Þ, thus providing an explanation for the
diversity of exponents reported in the literature.
To conclude, our results show that the “free-energy”

approach originally introduced to account for nonlocal
effects in steady-state flows of complex fluids [28] also
captures long-lasting transient heterogeneous flows: thanks
to cooperative effects, a fluidized band nucleates and grows
until complete yielding, which quantitatively matches the
experimental phenomenology. In this framework, transient
shear banding appears as the dynamical signature of the

FIG. 3. Stress-induced fluidization time as a function of mðΣÞ
defined by Eq. (2). (a) Theoretical predictions Tf. (b) Experiments
from Fig. 1 where each dataset for τf was rescaled by the time τ0
shown in the inset as a function of the microgel concentration C
(see also Supplemental Material Table S1 [17]). Red lines show
the predicted power law with exponent −9=2. The best power-law
fits of the whole datasets yield exponents −4.46� 0.10 and
−4.69� 0.33, respectively, for theory and experiments. The gray
line in the inset is τ0 ∼ C4.

FIG. 4. Strain-induced fluidization time τf versus shear rate _γ
for a 1 wt % Carbopol microgel under the various experimental
conditions listed in Supplemental Material Table S2 [17]. Inset:
Theoretical prediction for Tf versus _Γ. Red lines show the
predicted power law with exponent−9=4. The best power-law fits
of the whole datasets yield exponents −2.15� 0.10 and
−2.45� 0.23, respectively, for theory and experiments.
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unstable nature of the solid branch at _γ ¼ 0 in the flow
curve [4,47,48]. More generally, as explored in Ref. [30],
the present model also accounts for steady-state shear
banding when cooperative effects are hindered, e.g., by
mechanical noise that prevents the shear band from grow-
ing through cascading plastic events. Such a connection
between transient and steady-state behaviors in terms of
cooperativity-induced stability of the shear band offers for
the first time a unified framework for describing the local
scenario associated with the yielding dynamics of soft
glassy materials.

The authors thank David Tamarii for help with the
experiments as well as Emanuela Del Gado and Suzanne
Fielding for fruitful discussions. This research was sup-
ported in part by the National Science Foundation under
Grant No. NSF PHY-1748958 through the KITP program
on the Physics of Dense Suspensions.
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