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REPDIGITS AS SUMS OF THREE BALANCING NUMBERS

MAHADI DDAMULIRA

(Communicated by Milan Pastéka)

ABSTRACT. Let {Bn},>0 be the sequence of Balancing numbers defined by Bo = 0, B; = 1, and
B2 =6Bp4+1 — By for all n > 0. In this paper, we find all repdigits in base 10 which can be written
as a sum of three Balancing numbers.
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1. Introduction

The concept of balancing numbers was first introduced by Bahera and Panda [1] in connection
with the Diophantine equation that consists of finding a natural number n such that

1424+ +(n—1)=n+1D)+n+2)+---+(n+7r),

for some natural number r. The number n is called the balancing number and the number r is
called the balancer corresponding to n. For example 6,35, and 204 are balacing numbers with
balancers 2, 14, and 84, respectively.

We can also define the balancing numbers as a recurrence sequence. Let {By},>0 be the
sequence of balancing numbers given by
By=0, Bi=1, and B,42=6B,+1—B, for all n > 0.
This is sequence A001109 on the On-Line Encyclopedia of Integer Sequences (OEIS) [10]. The first
few terms of this sequence are
{Bn}n>0 =0,1,6,35,204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, . . ..

The Binet formula for the general terms of this sequence is given by
,yn —_ "
By=-_1—— (1.1)
n 4\/5 )
where (7,0) = (3 +2v/2, 3 —2V/2) are the roots of #2 — 6z + 1 = 0, which is the characteristic
equation of the balancing sequence.
Furthermore, it can be noted that 5 < v < 6, 0 < § < 1 and we can prove by induction that
TS By <, (1.2)
holds for all n > 1.
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A repdigit is a positive integer N that has only one distinct digit when written in base 10. That
is, N is of the form

105—1)7 (1.3)

N:d(

for some positive integers d, ¢ with 1 < d < 9. The sequence of repdigits is sequence A010785 on
the OEIS.
2. Main result

In this paper, we study the problem of writing repdigits as sums of three balancing numbers.
More precisely, we completely solve the Diophantine equation

106 — 1
N:Bn1+Bn2+Bn3:d< 5 ) (2.1)

in non-negative integers (N, ni,na,ns, d, £) with ny >ng >ng >0,¢>1,and 1 <d <9.
Our main result is the following.

THEOREM 2.1. All non-negative integer solutions (N,nq,ne,ns,d,f) of the Diophantine equa-
tion (2.1) withny >nga >n3 >0,£>1, and 1 <d <9, arise from

N €e{1,2,3,6,7,8}.
This paper serves as a continuation of the results in [5-7,/9]. The method of proof involves
the application of Baker’s theory for linear forms in logarithms of algebraic numbers, and the

Baker-Davenport reduction procedure. Computations are done with the help of a simple computer
program in Mathematica.

3. Preliminary results

3.1. Linear forms in logarithms

Let n be an algebraic number of degree d with minimal primitive polynomial over the integers
d
apr? + a1zt + -+ ag = ag H(a: — ),
i=1

where the leading coefficient ag is positive and the 7(")’s are the conjugates of 7. Then the loga-
rithmic height of n is given by

d
h(n) = é(log ag + Z log (maX{|n(i)|, 1}))

i=1

In particular, if n = p/q is a rational number with ged(p,q) = 1 and ¢ > 0, then h(n) =
log max{|p|,q}. The following are some of the properties of the logarithmic height function A(-),
which will be used in the next sections of this paper without reference:

h(ni £n2) < h(m) + h(n2) +1og2,
h(mnz™) < h(m) + h(ne), (3.1)
h(n®) = |s|h(n) (s €Z).
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We recall the result of Bugeaud, Mignotte, and Siksek (|2 Theorem 9.4, pp. 989]), which is a
modified version of the result of Matveev [8], which is one of our main tools in this paper.

THEOREM 3.1. Let ny,...,1: be positive real algebraic numbers in a real algebraic number field
K C R of degree Dg, by, ...,bs be nonzero integers, and assume that
A=l — 1, (3.2)

is nonzero. Then
log|A| > —1.4 x 3073 x %% x DZ(1 +log Dg)(1 +log B)A; ... Ay,
where
B > max{|b1],..., |bt|},
and
A; > max{Dxh(n;),|logn;|,0.16}, foralli=1,...,t.
3.2. Reduction procedure

During the calculations, we get upper bounds on our variables which are too large, thus we need
to reduce them. To do so, we use some result from the theory of continued fractions.

For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result
due to Dujella and Pethé (see [3: Lemma 5a)). For a real number X, we write || X || := min{|X —n| :
n € Z} for the distance from X to the nearest integer.

LEMMA 3.1. Let M be a positive integer, 2 be a convergent of the continued fraction expansion
of the irrational number T such that ¢ > 6M, and A, B, i1 be some real numbers with A > 0 and
B > 1. Furthermore, let € := ||ugq|| — M||7ql|. If € > 0, then there is no solution to the inequality

0< |ur—v+pl < AB™Y,
in positive integers u,v, and w with

w > os(dg/e)
— logB

Finally, the following Lemma is also useful. It is [4; Lemma 7].

LEMMA 3.2. Ifr > 1, H > (4r®)", and H > L/(log L)", then L < 2"H(log H)".

u< M and

4. Bounding the variables

We assume that n; > ns > ng. From (1.2)) and (2.1)), we have
10° —1

=L < B, < B, + By, + By, = d( ) <10

and
106 -1

1001 < d( 5

) = Buy  Bus + Buy < 3By, <™ *,
where we use v > 3. Thus,

log v log v
—1)—— < —-1< 1 .
(nq )log T ¢ and / < (n1+ )log 10

Since log~y/log 10 = 0.76555 - - - < 4/5, we can conclude from the above that

4
g(n1—1)<€<1+3(n1+1). (4.1)
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Running a Mathematica program in the range 0 < nz <ng <n; <100,1 <d<9,and 1 < ¢ <100
we obtain only the solutions listed in Theorem From now onwards, we assume that n; > 100.
Equation (2.1)) can be written as

n1 _ §m ny _ §n2 n3 _ §n3 102 -1
i +7 +2 —d( ).
42 42 42 9

Then, we rewrite (4.2)) in three ways and apply lower bounds for linear forms in logarithms in three
steps as follows:

(4.2)

4.1. Step 1

We have that
A §m gmz e N A8 — 43 B d-10° _d

+ —W
442 42 42 9 9

This is equivalent to

A d-10° d 1

1+ ng —nq + ng—mni _ — _7_’_ 6”1 _"_6”2 _’_6'”3 .
Thus, we have
A _ _ d-10°] d 1 1
PV By LS RNEPVLCE R (2 R <7+75n1+6n2+5n3<74\/§+37
‘Mﬂ gl L e R WAL )< 15 )
and so
" na—n nz—mn d- 10" v
L+4m27m 4 ymsmm) — < 4.3
"o (147~ 7T -5 Vo (4.3)
We divide through ([#.3) by a™ (1 4 "2~ 4 47371 /(44/2) to get
4dv/2 2ylmm ,
104y~ ! V2 ) -1l< il N
9(1 + 1N 4 g2 ns) 1+ AM2 TR 4 AM3 T
Thus, we have
4dV/2
106y " — 1| < yFm, 4.4
o7 (e ) 1 <0 =
We put
4dv/2
Ay = 10%‘”3( V2 ) -1
9L+ 7+ ymm)
In order to apply Theorem [3.1] we need to check that Ay # 0. Suppose that A; = 0, then we have
10¢ - 4dv/2
YA A = \f.

By conjugating the above relation in Q(v/2), we get

10¢ - 4dv/2
9 .
Taking absolute values on both sides of the above equation, we obtain that

10¢ - 4dv/2
9 \C = 6" + 0™ 46" <" +[6]™ + 5] < 3,

which is false for £ > 1 and d > 1. Therefore, Ay # 0.

5+ 6" 4 5 =
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So we apply Theorem [3.1] with the data

4dv/2
(1L 4 ymr—ns 4 yn2—ns)’

t:=3, n = 10, N2 =1, N3 1=
b1 = g, b2 = —ns, b3 = 1.

Since 11, 12,2 € Q(v/2), we take the field K := Q(+/2) with degree Dx := 2. Since max{1,¢,n3} <
ni1, we take B := n;. The minimal polynomial of v over Z is 2 — 6z + 1 has roots v and § with
5<~vy<6and0< < 1. Thus, we can take h(v) = Llog~, h(10) = log 10, and h(v/2) = % log2.
Also,

() < B(A4V) + B(O((1 497" 44727
B + h{d) + B(V2) + h(9) + R((1 47" " 497 70))
< h(4) + h(d) + h(\[) + h(9) + h(1) + ((n1 — n2) + (n2 — n3))h(7) + 2log 2
glog2 +4log3 + 2(n1 —n3)logy <8+ %(nl — ng)log~y.
Thus, we can take A; := 2log 10, Ay := log~y, and A3 := 16 + (n; — n3)log~y. So, Theorem
tells us that the left-hand side of is bounded below by
log|A1] > — 1.4 x 30% x 3%5 x 2%(1 4+ log 2)(1 + log ny)
x (21og 10)(log7)(16 + (n1 — n3) log7)
> —4.37 x 10" (ny — n3)logn,.

By comparing the above inequality with the right-hand side of we get that

ny < 2.48 x 10" (ny — n3)logn. (4.5)

4.2. Step 2
We have that
,ynl _fm ,yng — N2 d- 10@ d ,yng —§ns
- - = —
42 4v/2 9 9 44/2

This is equivalent to

d-10°  d A"

1 + no—mi\ __ - __ _ + 5711 5712 + 5713 .
4f 5 (1) 9 9 42 4\/ ( )
Thus, we can conclude that
A _ d-10° d A"
14427 — < -+ +75"1+5"2+5"3
r; AL A al e o Rl )

s 3 3+ 42 + "3 na+l
<1414 _3t4vadam amtt
42 42 42 42

Thus, we have

7711 no—n d- 10[ 7n3+1
14" — < . 4.6
4%2( ! ) T R 0
Dividing through (4.6) by a2 (1 4+ ~y™7"2)/(44/2), we get
4d\/§ ,7113—77,2—4-1
{ —n _ ny—no—+1
‘10 5 2(9(1+7n1”2)> 1 < o <7 (4.7)
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We put
4dv/2 ) _
(L +ymnz)

As before, in order to apply Theorem we need to check that Ay # 0. Suppose that Ay = 0,
then we have

A2 = IOZ’Y_HQ(

10¢ - 4dv/2
,.Ynl +,_Y’I’L2 — 9 f.

By conjugating the above relation in Q(v/2), we get

10° - 4dv/2
5 :
Taking absolute values on both sides of the above equation, we obtain that

10° - 4dv/2
9
which is false for £ > 1 and d > 1. Therefore, Ay # 0. So we apply Theorem [3.1] with the data

4dv/2
(1 +yma=nz)’
We take D :=2, B :=nq, A1 :=2log10, Ay :=log~ and
Az = 2h(n3) = 2(h(4dV2) + h(9) + h(1 + 4™ 7"2))
< 2(h(4) + h(d) + h(vV2) + h(9) + (n1 — n2)h(7) 4+ log2) < 14 + (ny — ny) log .
So, Theorem [3.1] tells us that
log |[Ag| > — 1.4 x 305 x 35 x 22(1 + log 2)(1 4 logn1)(21log 10)
x (logy)(14 4 (n1 — n2)logy)
> — 248 x 10" (ny — ngy)logn,.

§ 4§ =
= |67 4+ 872 < |8]™ + |2 < 2,

t:=3, m:=10, mne:=-, n3:= b1 :=1¥{, by:=—ng, bg:=1.

By comparing the above ineqguality with (4.7]), we conclude that
ng —nz < 1.42 x 1014(711 —ng)logng. (4.8)

4.3. Step 3

We have that
’7”1 _fm d - 10€ _ d ,7712 — N2 ,yng —§ns

44/2 9 9 44/2 42

This is equivalent to

™ d-10° d "2 ™3 1
— =——=— — + O 4+ 6"+ 0™3).
44/2 9 9 4v/2 4V2 4V2 ( )

Thus, we can conclude that

™ d-10° d "2 ™3 1
- I+ =+ ™ 4 §"2 4 §"e
‘4@ 9 |79 4V2 42 4V2 ( )
<1+ 7”2 + ,yng 3 _ 34+ 4\/§+ ,)/TLQ 4 ,yng ,yn2+2.
- 42 42 442 42
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Thus, we have

’Ynl d- 10[ ,yn2+2
_ . 4.9
42 9 44/2 (4.9)
Dividing through (4.9) by a”'/(4v/2), we get
4d+/2
‘10%”1 (9{) - 1‘ < qnrTmt?, (4.10)
We put
4dv/2
Ay =10fa™™ (9\[> ~ 1.

As in the previous cases, in order to apply Theorem we need to check that As # 0. Suppose
that Ag = 0, then we have

ny _ 10°-4dV2
S
By conjugating the above relation in Q(\/ﬁ), we get
‘
s 10 ~4d\/§.
9
Taking absolute values on both sides of the above equation, we obtain that
10¢ - 4dv/2
WAV gy < o <1,
which is false for £ > 1 and d > 1. Thus, A3 # 0. So, we apply Theorem [3.I] with the data
4dv/2
t:= 3, m = 10, N2 ‘=7, N3 = T, b1 = 6, b2 = —Nga, bg =1.

We take D := 2, B :=nyq, Ay := 2log 10, Ay :=log~y and As := 2h(n3) < 11. Theorem tells
us that

log|As| > —1.4 x 30° x 3% x 22(1 +log 2)(1 + logn1)(21og 10) (log ) x 11
> —1.73 x 10 log ns.

By comparing this with (4.10]), we obtain that
ny —ny < 9.8 x 103 logn;. (4.11)
Now we combine the inequalities (4.5]), (4.8) and (4.11]) to obtain the bound on n; as follows:

ny < 2.48 x 104 (1.42 x 1014 (9.8 x 1013 log nl) log nl) log nq
< 3.5 x 10" (logn,)®.

Now, we apply Lemma on the above inequality (4.12) with the data: r := 3, H := 3.5 x
1042, L := ny. We obtain that n; < 2.6 x 10*°. We record what we have proved.

(4.12)

LEMMA 4.1. Let (N,ny,ns,ng,d,£) be the nonnegative integer solutions to the equation (2.1) with
np>ne>n3>0,1<d<9, and { > 1. Then we have

0 < ny < 10%.
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5. Reducing the bounds

The bounds ontained in Lemma [4.1] are too large to carry out meaningful computations on the
computer. Thus, we need to reduce these bounds. To do so, we return to , , and
and apply Lemma via the following procedure.

First, we put

4dv/2
I3 :KlogIOnllog’erlog(g[), 1<d<9.

For technical reasons, we assume that n; — ng > 20 for the moment and go to (4.10). We will
discuss how to get rid of this condition later. Note that e'3 —1 = A3 # 0. Thus, I's 0. If '3 < 0

then
1

pynlfn272 :

0< |F3| < e‘r‘“"l —1= |A3| <

If T's > 0, then we have that |e® — 1| < 1/2. Hence e'® < 2. Thus, we get that

2
0< I <6F3 —1 =eF3|A3| < W
Therefore, in both cases, we have that
4d/2 272
0< |5 = £10g10—nllog7+log(\[>‘< T
9 ,Ynl—ng
Dividing through the above inequality by log~y, we get
log 10 1 4dv/2)/9 2~2
log~y log~y Y2 logy
If we put
log 1 1 4d/2
poo 0810 s(UdVD)/9) g
log v logy
we can rewrite (b.1)) as
0 < |01 —ny + pg| <394~ (M7n2), (5.2)

We now apply Lemma on . We put M := 10%°. A quick computer search in Mathematica
reveals that the convergent

prog  2703843740443108411802421359516257223259008405220106

qos | 2069931281589203990595364033267574277731383243231951
of 7 is such that gios > 6M and g4 > 0.0623392 > 0. Therefore, with A := 46 and B := v we
calculated each value of log(39¢10s/£4)/ logy and found that all of them are at most 70. Thus, we
have that n; — ny < 70. In the case that n; — ny < 20, we would have that n; — ny < 20 < 70.
Thus, n1 — ny < 70 holds in both cases.

Next, we put

4dv/2
(L +Aymn2)
For technical reasons, as before we assume that ns — ng > 20 for the moment and go to (4.7). We
will discuss how to get rid of this condition later. Note that e —1 = Ay # 0. Thus, 'y # 0. If
I'ys <0, then

Fg::ﬁloglo—nglogy—&—log( ), 1<d<9.

1

,-Yngf’ngfl :

0< Tyl <ell2l —1=|Ay| <
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If Ty > 0, then we have that |e'2 — 1| < 1/2. Hence e'2 < 2. Thus, we get that

2
0< Ty <€F2 -1 :€F2|A2| < W
Therefore, in both cases, we have that
4d/2 2y
0< o] = ‘Zlog 10 — nq log v + log (9(1 +7m_n2)>’ < et
Dividing through the above inequality by logy, we get
log 10 1 4d~/2)/9(1 mi—na 2
log~y log~y 27" logy
We put
log 1 log((4dv/2)/9(1 + ~*
p o= 0810 e = o8l 4v2)/9(1 + 7 ) 1<d<o, 1<k<T0,
log ~y ’ logy
where k := n; — ny. We can rewrite (5.3)) as
0< |01 —ng + pap| < 7.~ (M2m3), (5.4)

We now apply Lemma on . We put M :=10°°. A quick computer search in Mathematica
reveals that the 108-th convergent of 7 is such that giops > 6M and 4 > 0.00139047 > 0.
Therefore, with A := 7 and B := v we calculated each value of log(7qi0s/ca,x)/log~y and found
that all of them are at most 72. Thus, we have that no — ng < 72. In the case that no — ng < 20,
we would have that no — ng < 20 < 72. Thus, ny — ng < 72 holds in both cases.

Lastly, we put

4dv/2
(L +ymns 4 ynamns)

We use the original assumption that n; > 100 and go to (4.4). Note that e!'* —1 = A; # 0. Thus,
Iy # 0. If I'y <0, then

F1:£10g10n310g7+1og< ), 1<d<9.

1
0< Ty <eltl—1=A] <« —.

77’7,172

If I'; > 0, then we have that |e'* — 1] < 1/2. Hence e'* < 2. Thus, we get that

2
0<Ty<elr —1=e"|Ay] < .
T
Therefore, in both cases, we have that
4d\/2 22
0< || = ‘Elog 10 — n3logy + log (9(1 oy +7n2_n3)>' < S

Dividing through the above inequality by logy, we get

log 10 log((4dv/2)/9(1 + 4™ =18 4 727713 272
< |plog20 _ | los(( V2)/9(1 + )] BURNT Gl (5.5)
log log " logy
We put
log 10 log((4dv/2)/9(1 +~* +~°
0810 4 pup, = 08UV ) g
logy ’ log
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where 1 < k:=n; —n3 = (n1 —na2) + (ng —n3) <142 and 1 < s:=ny — n3 < 72. We can rewrite
(5.5) as

0< |ET —ns + ,ud,k’5| <3947, (56)
We again apply Lemma on (5.6). We also put M := 10°°. A quick computer search in
Mathematica reveals that the 108-th convergent of 7 is such that g1g9g > 6M and g4 s > 0.00125 >
0. Therefore, with A := 39 and B := 7 we calculated each value of log(39¢10s/€a,k,s)/ logy and

found that all of them are at most 76. Thus, we have that ny < 76. This contradicts our assumption
that ny > 100. Hence, Theorem [2.I] holds. O

Acknowledgement. The author thanks the referee for the useful comments and suggestions that
greatly improved the quality of presentation of the paper.
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