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REPDIGITS AS SUMS OF THREE BALANCING NUMBERS

MAHADI DDAMULIRA

Abstract. Let {Bn}n≥0 be the sequence of Balancing numbers defined by B0 = 0, B1 = 1,

and Bn+2 = 6Bn+1 −Bn for all n ≥ 0. In this paper, we find all repdigits in base 10 which can
be written as a sum of three Balancing numbers.

1. Introduction

The concept of balancing numbers was first introduced by Bahera and Panda [1] in connection
with the Diophantine equation that consists of finding a natural number n such that

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r),

for some natural number r. The number n is called the balancing number and the number r is
called the balancer corresponding to n. For example 6, 35, and 204 are balacing numbers with
balancers 2, 14, and 84, respectively.

We can also define the balancing numbers as a recurrence sequence. Let {Bn}n≥0 be the
sequence of balancing numbers given by

B0 = 0, B1 = 1, and Bn+2 = 6Bn+1 −Bn for all n ≥ 0.

This is sequence A001109 on the Online Encyclopedia of Integer Sequences (OEIS) [10]. The first
few terms of this sequence are

{Bn}n≥0 = 0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, . . . .

The Binet formula for the general terms of this sequence is given by

Bn =
γn − δn

4
√

2
, (1.1)

where (γ, δ) = (3 + 2
√

2, 3− 2
√

2) are the roots of x2 − 6x + 1 = 0, which is the characteristic
equation of the Balancing sequence.

Furthermore, it can be noted that 5 < γ < 6, 0 < δ < 1 and we can prove by induction that

γn−1 ≤ Bn < γn, (1.2)

holds for all n ≥ 1.
A repdigit is a positive integer N that has only one distinct digit when written in base 10. That

is, N is of the form

N = d

(
10` − 1

9

)
, (1.3)
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2 M. DDAMULIRA

for some positive integers d, ` with 1 ≤ d ≤ 9. The sequence of repdigits is sequence A010785 on
the OEIS.

2. Main Result

In this paper, we study the problem of writing repdigits as sums of three balancing numbers.
More precisely, we completely solve the Diophantine equation

N = Bn1
+Bn2

+Bn3
= d

(
10` − 1

9

)
, (2.1)

in non-negative integers (N,n1, n2, n3, d, `) with n1 ≥ n2 ≥ n3 ≥ 0, ` ≥ 1, and 1 ≤ d ≤ 9.
Our main result is the following.

Theorem 2.1. All non-negative integer solutions (N,n1, n2, n3, d, `) of the Diophantine equation
(2.1) with n1 ≥ n2 ≥ n3 ≥ 0, ` ≥ 1, and 1 ≤ d ≤ 9, arise from

N ∈ {1, 2, 3, 6, 7, 8}.

This paper serves as a continuation of the results in [5, 6, 7, 9]. The method of proof involves
the application of Baker’s theory for linear forms in logarithms of algebraic numbers, and the
Baker-Davenport reduction procedure. Computations are done with the help of a simple computer
program in Mathematica.

3. Preliminary results

3.1. Linear forms in logarithms. Let η be an algebraic number of degree d with minimal
primitive polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then the loga-
rithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =
log max{|p|, q}. The following are some of the properties of the logarithmic height function h(·),
which will be used in the next sections of this paper without reference:

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±1
2 ) ≤ h(η1) + h(η2), (3.1)

h(ηs) = |s|h(η) (s ∈ Z).

We recall the result of Bugeaud, Mignotte, and Siksek ([2], Theorem 9.4, pp. 989), which is a
modified version of the result of Matveev [8], which is one of our main tools in this paper.

Theorem 3.1. Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic number field
K ⊂ R of degree DK, b1, . . . , bt be nonzero integers, and assume that

Λ := ηb11 · · · η
bt
t − 1, (3.2)

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2
K(1 + logDK)(1 + logB)A1 · · ·At,



REPDIGITS AS SUMS OF THREE BALANCING NUMBERS 3

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{DKh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

3.2. Reduction procedure. During the calculations, we get upper bounds on our variables which
are too large, thus we need to reduce them. To do so, we use some result from the theory of
continued fractions. For a nonhomogeneous linear form in two integer variables, we use a slight
variation of a result due to Dujella and Pethő (see [3], Lemma 5a). For a real number X, we write
‖X‖ := min{|X − n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.1. Let M be a positive integer, p
q be a convergent of the continued fraction of the

irrational number τ such that q > 6M , and A,B, µ be some real numbers with A > 0 and B > 1.
Furthermore, let ε := ‖µq‖ −M‖τq‖. If ε > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

Finally, the following Lemma is also useful. It is Lemma 7 in [4].

Lemma 3.2. If r ≥ 1, H > (4r2)r, and H > L/(logL)r, then

L < 2rH(logH)r.

4. Bounding the variables

We assume that n1 ≥ n2 ≥ n3. From (1.2) and (2.1), we have

γn1−1 ≤ Bn1
≤ Bn1

+Bn2
+Bn3

= d

(
10` − 1

9

)
≤ 10`

and

10`−1 ≤ d
(

10` − 1

9

)
= Bn1

+Bn2
+Bn3

≤ 3Bn1
< γn1+1,

where we use γ > 3. Thus,

(n1 − 1)
log γ

log 10
≤ ` and `− 1 ≤ (n1 + 1)

log γ

log 10
.

Since log γ/ log 10 = 0.76555.. < 4/5, we can conclude from the above that

3

5
(n1 − 1) < ` < 1 +

4

5
(n1 + 1). (4.1)

Running a Mathematica program in the range 0 ≤ n3 ≤ n2 ≤ n1 ≤ 100, 1 ≤ d ≤ 9, and 1 ≤ ` ≤ 100
we obtain only the solutions listed in Theorem 2.1. From now onwards, we assume that n1 > 100.

Equation (2.1) can be written as

γn1 − δn1

4
√

2
+
γn2 − δn2

4
√

2
+
γn3 − δn3

4
√

2
= d

(
10` − 1

9

)
. (4.2)

Then, we rewrite (4.2) in three ways and apply lower bounds for linear forms in logarithms in three
steps as follows:
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4.1. Step 1. We have that

γn1 − δn1

4
√

2
+
γn2 − δn2

4
√

2
+
γn3 − δn3

4
√

2
− d · 10`

9
= −d

9
.

This is equivalent to

γn1

4
√

2

(
1 + γn2−n1 + γn3−n1

)
− d · 10`

9
= −d

9
+

1

4
√

2
(δn1 + δn2 + δn3).

Thus, we have∣∣∣∣ γn1

4
√

2

(
1 + γn2−n1 + γn3−n1

)
− d · 10`

9

∣∣∣∣ ≤ d

9
+

1

4
√

2
(δn1 + δn2 + δn3)

<
1

4
√

2
(4
√

2 + 3),

and so ∣∣∣∣ γn1

4
√

2

(
1 + γn2−n1 + γn3−n1

)
− d · 10`

9

∣∣∣∣ < γ

2
√

2
. (4.3)

We divide through (4.3) by αn1(1 + γn2−n1 + γn3−n1)/(4
√

2) to get∣∣∣∣∣10`γ−n3

(
4d
√

2

9(1 + γn1−n3 + γn2−n3)

)
− 1

∣∣∣∣∣ <
2γ1−n1

1 + γn2−n1 + γn3−n1
< γ2−n1 .

Thus, we have ∣∣∣∣∣10`γ−n3

(
4d
√

2

9(1 + γn1−n3 + γn2−n3)

)
− 1

∣∣∣∣∣ < γ2−n1 . (4.4)

We put

Λ1 := 10`γ−n3

(
4d
√

2

9(1 + γn1−n3 + γn2−n3)

)
− 1.

In order to apply Theorem 3.1 we need to check that Λ1 6= 0. Suppose that Λ1 = 0, then we have

γn1 + γn2 + γn3 =
10` · 4d

√
2

9
.

By conjugating the above relation in Q(
√

2), we get

δn1 + δn2 + δn3 = −10` · 4d
√

2

9
.

Taking absolute values on both sides of the above equation, we obtain that

10` · 4d
√

2

9
= |δn1 + δn2 + δn3 | ≤ |δ|n1 + |δ|n2 + |δ|n3 < 3,

which is false for ` ≥ 1 and d ≥ 1. Therefore, Λ1 6= 0.
So we apply Theorem 3.1 with the data

t := 3, η1 := 10, η2 := γ, η3 :=
4d
√

2

9(1 + γn1−n3 + γn2−n3)
,

b1 := `, b2 := −n3, b3 := 1.

Since η1, η2, η2 ∈ Q(
√

2), we take the field K := Q(
√

2) with degree DK := 2. Since max{1, `, n3} ≤
n1, we take B := n1. The minimal polynomial of γ over Z is x2 − 6z + 1 has roots γ and δ with



REPDIGITS AS SUMS OF THREE BALANCING NUMBERS 5

5 < γ < 6 and 0 < δ < 1. Thus, we can take h(γ) = 1
2 log γ, h(10) = log 10, and h(

√
2) = 1

2 log 2.
Also,

h(η3) ≤ h(4d
√

2) + h(9((1 + γn1−n3 + γn2−n3)))

≤ h(4) + h(d) + h(
√

2) + h(9) + h((1 + γn1−n3 + γn2−n3))

≤ h(4) + h(d) + h(
√

2) + h(9) + h(1) + ((n1 − n2) + (n2 − n3))h(γ) + 2 log 2

≤ 9

2
log 2 + 4 log 3 +

1

2
(n1 − n3) log γ

≤ 8 +
1

2
(n1 − n3) log γ.

Thus, we can take A1 := 2 log 10, A2 := log γ, and A3 := 16 + (n1 − n3) log γ. So, Theorem 3.1
tells us that the left-hand side of (4.4) is bounded below by

log |Λ1| > −1.4× 306 × 34.5 × 22(1 + log 2)(1 + log n1)

×(2 log 10)(log γ)(16 + (n1 − n3) log γ)

> −4.37× 1014(n1 − n3) log n1.

By comparing the above inequality with the right-hand side of (4.4) we get that

n1 ≤ 2.48× 1014(n1 − n3) log n1. (4.5)

4.2. Step 2. We have that

γn1 − δn1

4
√

2
+
γn2 − δn2

4
√

2
− d · 10`

9
= −d

9
− γn3 − δn3

4
√

2
.

This is equivalent to

γn1

4
√

2

(
1 + γn2−n1

)
− d · 10`

9
= −d

9
− γn3

4
√

2
+

1

4
√

2
(δn1 + δn2 + δn3).

Thus, we can conclude that∣∣∣∣ γn1

4
√

2

(
1 + γn2−n1

)
− d · 10`

9

∣∣∣∣ ≤ d

9
+
γn3

4
√

2
+

1

4
√

2
(δn1 + δn2 + δn3)

≤ 1 +
γn3

4
√

2
+

3

4
√

2
=

3 + 4
√

2 + γn3

4
√

2

<
γn3+1

4
√

2
.

Thus, we have ∣∣∣∣ γn1

4
√

2

(
1 + γn2−n1

)
− d · 10`

9

∣∣∣∣ < γn3+1

4
√

2
. (4.6)

Dividing through (4.6) by αn2(1 + γn1−n2)/(4
√

2), we get∣∣∣∣∣10`γ−n2

(
4d
√

2

9(1 + γn1−n2)

)
− 1

∣∣∣∣∣ < γn3−n2+1

1 + γn1−n2
< γn3−n2+1. (4.7)

We put

Λ2 := 10`γ−n2

(
4d
√

2

9(1 + γn1−n2)

)
− 1.
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As before, in order to apply Theorem 3.1 we need to check that Λ2 6= 0. Suppose that Λ2 = 0,
then we have

γn1 + γn2 =
10` · 4d

√
2

9
.

By conjugating the above relation in Q(
√

2), we get

δn1 + δn2 = −10` · 4d
√

2

9
.

Taking absolute values on both sides of the above equation, we obtain that

10` · 4d
√

2

9
= |δn1 + δn2 | ≤ |δ|n1 + |δ|n2 < 2,

which is false for ` ≥ 1 and d ≥ 1. Therefore, Λ2 6= 0. So we apply Theorem 3.1 with the data

t := 3, η1 := 10, η2 := γ, η3 :=
4d
√

2

9(1 + γn1−n2)
, b1 := `, b2 := −n2, b3 := 1.

We take D := 2, B := n1, A1 := 2 log 10, A2 := log γ and

A3 := 2h(η3) = 2(h(4d
√

2) + h(9) + h(1 + γn1−n2))

≤ 2(h(4) + h(d) + h(
√

2) + h(9) + (n1 − n2)h(γ) + log 2)

≤ 14 + (n1 − n2) log γ.

So, Theorem 3.1, tells us that

log |Λ2| > −1.4× 306 × 34.5 × 22(1 + log 2)(1 + log n1)(2 log 10)

×(log γ)(14 + (n1 − n2) log γ)

> −2.48× 1014(n1 − n2) log n1.

By comparing the above ineqguality with (4.7), we conclude that

n2 − n3 < 1.42× 1014(n1 − n2) log n1. (4.8)

4.3. Step 3. We have that

γn1 − δn1

4
√

2
− d · 10`

9
= −d

9
− γn2 − δn2

4
√

2
− γn3 − δn3

4
√

2
.

This is equivalent to

γn1

4
√

2
− d · 10`

9
= −d

9
− γn2

4
√

2
− γn3

4
√

2
+

1

4
√

2
(δn1 + δn2 + δn3).

Thus, we can conclude that∣∣∣∣ γn1

4
√

2
− d · 10`

9

∣∣∣∣ ≤ d

9
+
γn2

4
√

2
+
γn3

4
√

2
+

1

4
√

2
(δn1 + δn2 + δn3)

≤ 1 +
γn2 + γn3

4
√

2
+

3

4
√

2
=

3 + 4
√

2 + γn2 + γn3

4
√

2

<
γn2+2

4
√

2
.

Thus, we have ∣∣∣∣ γn1

4
√

2
− d · 10`

9

∣∣∣∣ < γn2+2

4
√

2
. (4.9)
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Dividing through (4.9) by αn1/(4
√

2), we get∣∣∣∣∣10`α−n1

(
4d
√

2

9

)
− 1

∣∣∣∣∣ < αn2−n1+2. (4.10)

We put

Λ3 = 10`α−n1

(
4d
√

2

9

)
− 1.

As in the previous cases, in order to apply Theorem 3.1 we need to check that Λ3 6= 0. Suppose
that Λ3 = 0, then we have

γn1 =
10` · 4d

√
2

9
.

By conjugating the above relation in Q(
√

2), we get

δn1 = −10` · 4d
√

2

9
.

Taking absolute values on both sides of the above equation, we obtain that

10` · 4d
√

2

9
= |δn1 | ≤ |δ|n1 < 1,

which is false for ` ≥ 1 and d ≥ 1. Thus, Λ3 6= 0. So, we apply Theorem 3.1 with the data

t := 3, η1 := 10, η2 := γ, η3 :=
4d
√

2

9
, b1 := `, b2 := −n2, b3 := 1.

We take D := 2, B := n1, A1 := 2 log 10, A2 := log γ and A3 := 2h(η3) ≤ 11. Theorem 3.1, tells
us that

log |Λ3| > −1.4× 306 × 34.5 × 22(1 + log 2)(1 + log n1)(2 log 10)(log γ)× 11

> − 1.73× 1014 log n1.

By comparing this with (4.10), we obtain that

n1 − n2 < 9.8× 1013 log n1. (4.11)

Now we combine the inequalities (4.5), (4.8) and (4.11) to obtain the bound on n1 as follows:

n1 < 2.48× 1014
(
1.42× 1014

(
9.8× 1013 log n1

)
log n1

)
log n1

< 3.5× 1042(log n1)3. (4.12)

Now, we apply Lemma 3.2 on the above inequality (4.12) with the data: r := 3, H := 3.5 ×
1042, L := n1. We obtain that n1 < 2.6× 1049. We record what we have proved

Lemma 4.1. Let (N,n1, n2, n3, d, `) be the nonnegative integer solutions to the equation (2.1) with
n1 ≥ n2 ≥ n3 ≥ 0, 1 ≤ d ≤ 9, and ` ≥ 1. Then we have

` < n1 < 1050.
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5. Reducing the bounds

The bounds ontained in Lemma 4.1 are too large to carry out meaningful computations on the
computer. Thus, we need to reduce these bounds. To do so, we return to (4.4), (4.7), and (4.10)
and apply Lemma 3.1 via the following procedure.

First, we put

Γ3 := ` log 10− n1 log γ + log

(
4d
√

2

9

)
, 1 ≤ d ≤ 9.

For technical reasons, we assume that n1 − n2 ≥ 20 and go to (4.10). Note that eΓ3 − 1 = Λ3 6= 0.
Thus, Γ3 6= 0. If Γ3 < 0 then

0 < |Γ3| < e|Γ3| − 1 = |Λ3| <
1

γn1−n2−2
.

If Γ3 > 0, then we have that |eΓ3 − 1| < 1/2. Hence eΓ3 < 2. Thus, we get that

0 < Γ3 < eΓ3 − 1 = eΓ3 |Λ3| <
2

γn1−n2−2
.

Therefore, in both cases, we have that

0 < |Γ3| =

∣∣∣∣∣` log 10− n1 log γ + log

(
4d
√

2

9

)∣∣∣∣∣ < 2γ2

γn1−n2
.

Dividing through the above inequality by log γ, we get

0 <

∣∣∣∣∣` log 10

log γ
− n1 +

log((4d
√

2)/9)

log γ

∣∣∣∣∣ < 2γ2

γn1−n2 log γ
(5.1)

If we put

τ :=
log 10

log γ
and µd :=

log((4d
√

2)/9)

log γ
, 1 ≤ d ≤ 9,

we can rewrite (5.1) as

0 < |`τ − n1 + µd| < 39 · γ−(n1−n2). (5.2)

We now apply Lemma 3.1 on (5.2). We put M := 1050. A quick computer search in Mathematica
reveals that the convergent

p108

q108
=

2703843740443108411802421359516257223259008405220106

2069931281589203990595364033267574277731383243231951

of τ is such that q108 > 6M and εd ≥ 0.0623392 > 0. Therefore, with A := 46 and B := γ we
calculated each value of log(39q108/εd)/ log γ and found that all of them are at most 70. Thus, we
have that n1 − n2 ≤ 70. In the case that n1 − n2 < 20, we would have that n1 − n2 < 20 < 70.
Thus, n1 − n2 < 70 in both cases.

Next, we put

Γ2 := ` log 10− n2 log γ + log

(
4d
√

2

9(1 + γn1−n2)

)
, 1 ≤ d ≤ 9.

For technical reasons, as before we assume that n2− n3 ≥ 20 and go to (4.7). Note that eΓ2 − 1 =
Λ2 6= 0. Thus, Γ2 6= 0. If Γ2 < 0 then

0 < |Γ2| < e|Γ2| − 1 = |Λ2| <
1

γn2−n3−1
.



REPDIGITS AS SUMS OF THREE BALANCING NUMBERS 9

If Γ2 > 0, then we have that |eΓ2 − 1| < 1/2. Hence eΓ2 < 2. Thus, we get that

0 < Γ2 < eΓ2 − 1 = eΓ2 |Λ2| <
2

γn2−n3−1
.

Therefore, in both cases, we have that

0 < |Γ2| =

∣∣∣∣∣` log 10− n1 log γ + log

(
4d
√

2

9(1 + γn1−n2)

)∣∣∣∣∣ < 2γ

γn2−n3
.

Dividing through the above inequality by log γ, we get

0 <

∣∣∣∣∣` log 10

log γ
− n2 +

log((4d
√

2)/9(1 + γn1−n2))

log γ

∣∣∣∣∣ < 2γ

γn2−n3 log γ
. (5.3)

We put

τ :=
log 10

log γ
and µd,k :=

log((4d
√

2)/9(1 + γk))

log γ
, 1 ≤ d ≤ 9, 1 ≤ k ≤ 70,

where k := n1 − n2. We can rewrite (5.3) as

0 < |`τ − n2 + µd,k| < 7 · γ−(n2−n3). (5.4)

We now apply Lemma 3.1 on (5.4). We put M := 1050. A quick computer search in Mathematica
reveals that the 108-th convergent of τ is such that q108 > 6M and εd,k ≥ 0.00139047 > 0.
Therefore, with A := 7 and B := γ we calculated each value of log(7q108/εd,k)/ log γ and found
that all of them are at most 72. Thus, we have that n2 − n3 ≤ 72. In the case that n2 − n3 < 20,
we would have that n2 − n3 < 20 < 72. Thus, n2 − n3 ≤ 72 holds in both cases.

Lastly, we put

Γ1 := ` log 10− n3 log γ + log

(
4d
√

2

9(1 + γn1−n3 + γn2−n3)

)
, 1 ≤ d ≤ 9.

We use the original assumption that n1 > 100 and go to (4.4). Note that eΓ1 − 1 = Λ1 6= 0. Thus,
Γ1 6= 0. If Γ1 < 0, then

0 < |Γ1| < e|Γ1| − 1 = |Λ1| <
1

γn1−2
.

If Γ1 > 0, then we have that |eΓ1 − 1| < 1/2. Hence eΓ1 < 2. Thus, we get that

0 < Γ1 < eΓ1 − 1 = eΓ1 |Λ1| <
2

γn1−2
.

Therefore, in both cases, we have that

0 < |Γ1| =

∣∣∣∣∣` log 10− n3 log γ + log

(
4d
√

2

9(1 + γn1−n2 + γn2−n3)

)∣∣∣∣∣ < 2γ2

γn1
.

Dividing through the above inequality by log γ, we get

0 <

∣∣∣∣∣` log 10

log γ
− n3 +

log((4d
√

2)/9(1 + γn1−n3 + γn2−n3))

log γ

∣∣∣∣∣ < 2γ2

γn1 log γ
. (5.5)

We put

τ :=
log 10

log γ
and µd,k,s :=

log((4d
√

2)/9(1 + γk + γs))

log γ
, 1 ≤ d ≤ 9,
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where 1 ≤ k := n1 − n3 = (n1 − n2) + (n2 − n3) ≤ 142 and 1 ≤ s := n2 − n3 ≤ 72. We can rewrite
(5.5) as

0 < |`τ − n3 + µd,k,s| < 39 · γ−n1 . (5.6)

We again apply Lemma 3.1 on (5.6). We also put M := 1050. A quick computer search in
Mathematica reveals that the 108-th convergent of τ is such that q108 > 6M and εd,k,s ≥ 0.00125 >
0. Therefore, with A := 39 and B := γ we calculated each value of log(39q108/εd,k,s)/ log γ and
found that all of them are at most 76. Thus, we have that n1 ≤ 76. This contradicts our assumption
that n1 > 100. Hence, Theorem 2.1 holds. �
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