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The apparition of the cavitation phenomenon in chemical precipitation reactors with rapid micromixing can 
significantly affect the elaboration process. The bubbles appear in the reactive fluid flow when the local 
hydrostatic pressure decreases down to the liquid vapour pressure, which also corresponds to the maximum 
energy input producing the micromixing. In this paper, we study the bubbles kinetics (trajectory, size and 
number density evolution along the outlet leg of our exocentric T-mixer) in water experimentally by light 
scattering SLS/DLS measurements and numerically via FLUENT software using the cavitation and population 
balance models. We conclude about the generation and oscillatory movement of cavitation bubbles with the 
most abundant sizes between 0.1 and 1 μm, which control allows exploring the cavitation regime of the 
reactors. 
Keywords:  T-mixer, Cavitation, Light scattering (DLS/SLS), FLUENT modelling. 

1. Introduction 

Cavitation plays an important role in chemical engineering processes. It allows activating chemical reactions 
by a local temperature increase for water purification (Jyoti et al., 2004, Dular et al., 2016) and may affect the 
size and the polydispersity of nanoparticles elaborated by the sol-gel method (Azouani et al., 2010). The 
occurrence of this phenomenon in the T-mixture (Oualha et al., 2017a; ibid. 2017b) consumes a significant 
part of the turbulent energy input directed to the micromixing that alters the process kinetics. However, studies 
of the related regime of chemical reactors with ultra-rapid micromixing is still missing in literature. 
The dynamics of bubbles resulting from cavitation in a biphasic flow have been extensively studied in the past 
(Lauterborn et al., 1975, Ye et al., 2015, Xiong et al., 2015). Several methods have been applied to the 
analysis of cavitation bubbles, including laser Doppler anemometry (Huisman et al., 2012), phase Doppler 
anemometry (Liu et al., 2010) and particle image velocimetry (Shokri et al., 2017).  
In this study, we apply experimental laser techniques SLS (static light scattering) and DLS (dynamic light 
scattering) to analyse the bubbles kinetics in a T-mixer reactor.  

2. Experimental Setup 

In order to characterize the bubbles and their dynamics inside the T-mixer, we have assembled a new 
experimental device. The schema of the device is shown in Figure 1a. The water inlet is provided by an 
adjustable flow meter (Conrad) operating in the range of 0.1-10 l/min. The water input splits into two branches 
with equal flow rates before being injected into the inlet arms of a T-mixer of a Hartridge-Roughton type 
depicted in Figure 1b. These inlet arms have equal inner diameters of din = 1 mm and the outlet tube has the 
diameter of dout = 2 mm in order to conserve Reynolds number of the fluid (Rein=Reout) according to: 

Re=4QρkBT/μπd                 (1) 

Where Q, ρ and µ are flow rate, density and dynamic viscosity of the flow, kB is Boltzman constant and T is the 
fluid temperature. The T-mixer is made of transparent material (glass) which allows optical measurements of 
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the fluid flow. The device is mounted on millimetric displacement stages, which allow measurements at 
different distances along the outlet tube (z-axis) of the T-mixer at different flow rates of the liquid injection. All 
experiments were conducted at room temperature of 20 °C. 
The light scattering measurements were performed using a single frequency 40 mW / 640 nm Cube 640-40 
Circular (Coherent) laser using two monomode optical fibers placed very close to the exit tube surface. One 
(emitting) fiber transmits the light from the laser to the sample and another receives the photons scattered at 
right angles to the incident light for analysis. The analysis of the measured light was carried out with a digital 
255 channels photon correlator (PhotoCor Instruments). The size of the particles (2R, nm) and the intensity of 
the scattered light (I, Hz) were measured along z-axis of the T-mixer using respectively the DLS (dynamic light 
scattering) and SLS (Static light scattering). The measurements were performed in automatic sampling mode 
with a data storage period of 60 s. 
 

 

Figure 1: Schema of experimental device (a) and T-mixer (b). 

3. Results and discussion 

The results of SLS measurement along z-axis of outlet leg of the T-mixer are shown in Figure 2 for fluid flow 
rates above the cavitation threshold of Q*=0.75 l/min (Re*=8000) (Oualha et al., 2017b). The scattering light 
intensity underwent a general trend to decrease along z-axis distance after the mixing point (z=0) of two inlet 
flows, exerting in the same time an oscillatory behaviour. Since laser light scattering is produced on the 
medium inhomogeneities related to the vapour-liquid interface of cavitation, we tentatively explain this general 
attenuation of intensity by a decrease of the vapour-liquid interface area. This area decrease may be due to 
the relaxation phenomena consisting in a decrease of the bubbles number and/or size. 
On the other hand, the oscillatory variation of the scattered light intensity cannot be explained by the cavitation 
bubble collapse. We relate this behaviour to the bubbles motion. Indeed, helical trajectories of the fluid inside 
the T-mixer were experimentally observed as shown in Figure 3a and confirmed by computational fluid 
dynamics (CFD) simulations shown in Figure 3b. The simulation was performed using FLUENT V15.0 
software and based on the k-ε turbulence model, and treated the behaviour of the multiphase fluid with an 
Eulerian/Eulerian approach (Singhal et al., 2002). The basic two-phase cavitation model has also been added, 
which consists of using the conventional mixture transport equations. The helical propagation of the fluid was 
evidenced, consisting in the circular movement in the (x-y) plane and quasi-linear one along the z-axis with a 
period ~1 cm close to the outlet tube entrance (z=0). Moreover, due to the friction phenomena, the circular 
velocity slowly decreased, which results in the period elongation which was experimentally confirmed. This 
helical movement explains the intensity variations in Figure 2. In fact, the laser beam does not cover the entire 
(x-y) cross-section area of the tube; therefore the scattered light signal was received from the closest and 
furthest regions, while the neighbour left and right regions escaped observation. The maximum scattered light 
intensity therefore was obtained in positions 1, 2, 3 etc. along z-axis, as shown in Figure 3c, where flow lines 
of the biphasic vapour-liquid fluid approached the receiving optical fiber displaced.  
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Figure 2: Evolution of scattered light intensity in outlet tube of T-mixer (z-axis) for different flow rates Q above 
the cavitation threshold (Q*=0.75 l/min). 
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Figure 3: Helical fluid trajectories in T-mixer experimentally observed (a) and calculated (b). Positions of the 
receiving fiber, corresponding to intensity maxima in Figure 2, are depicted by 1, 2 and 3 in (c). 

The DLS method was applied to measurements of a mean apparent size (2R) of the cavitation bubbles.  
As it has been previously shown (Rivallin et al., 2003; Rivallin et al., 2005), in agitated media the Stokes-
Einstein equation can still be applied to the particle size measurements by replacing the diffusion coefficient 
due to Brownian thermal motion DB by the sum of DB+DAG, where DAG represents particles movement due to 
the mechanical agitation:  

Rapp=kBT/6πη(DB+DAG)                 (2) 

Where η is the dynamic viscosity of the fluid and DAG is related to the local specific power input ε: 

DAG=λ(ε / ν)1/2                 (3) 
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Where λ is a constant and ν is kinematic viscosity of the carrying fluid.  
According to Eq. (2), the measurements in our agitated fluid with a strong energy input provide an apparent 
radius Rapp that underestimates the real radius of the cavitation bubbles.  
As shown in Figure 4 for different distances along z-axis of the T-mixer. According to these measurements, 
the size of the bubbles in the zone of nucleation (z≤1 cm) is about 2R=450 nm (Oualha et al., 2017b) and it 
steeply decreases to 20 nm at z=2 cm and then slowly grows at longer z up to ~100 nm at z=8 cm. 
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Figure 4: Mean radius of cavitation bubbles along z-axis of outlet tube of T-mixer  

To validate these measurements, the size distribution of cavitation bubbles was numerically calculated at 
different distances of z-axis as shown in Figure 5.  
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Figure 5: Concentration of bubbles with different sizes (2R) along z-axis of T-mixer (p=7 bar). 

In these calculations, cavitation bubbles of different diameters ranging to very small to tens of microns 
nucleate at the inlet fluids contact in the T-mixer. We consider here physically relevant sizes 2R≥200 nm, 

70



which are beyond the Rayleigh domain (R<<λ) and significantly contribute to the scattering light intensity. The 
contributions of different classes of bubbles depend on their surface area of each class (σ) 

Iscatt(R) ∝ σ = S x N = 4πR² ⋅ N(R)                  (4) 

Despite a broad range of sizes of the cavitation bubbles, the calculated surface area (S) shown in Figure 6 
indicates that the major contribution of sizes is between 0.1 and 1 μm, which is in a general agreement with 
the measured apparent sizes 2Rapp (see Figure 4 and Equation 2) at small z-axis distances, but significantly 
exceeds sizes measured at longer distances z>2 cm. This may indicate an unusually weak perturbation of 
DLS measurements in the bubbles generation zone filled with the biphasic vapour-liquid fluid, which 
understanding requires further studies. On the other hand, much smaller bubbles R<<R* measured at z>2 cm 
correspond to an expected perturbation of DLS measurements due to the dissipation of turbulent energy. The 
following increase of the apparent radius Rapp (from 50 nm to 100 nm) of the cavitation bubbles with z-axis 
distance can be explained by the decrease of DAG (Equations 2 and 3), connected to the dissipated energy ε 
decrease with z, confirmed in our numerical simulations.  
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Figure 6: Liquid-vapour area of bubbles with different sizes (2R) along z-axis (p=7 bar) 

Conclusions 

In this work, the cavitation bubbles kinetics (trajectory, size and number density evolution along the outlet leg 
of our exocentric T-mixer) in water were studied experimentally by light scattering SLS/DLS measurements 
and numerically using FLUENT software including the cavitation and population balance models. The 
appearance of the biphasic (vapour-liquid) fluid at the water injection with Re>R*=8000 enabled light scattering 
from the fluid. An oscillatory character of the biphasic fluid flow in the outlet tube was observed experimentally 
and numerically validated, which consisted in the circular movement in the (x-y) plane and quasi-linear 
propagation along the z-axis. The simulation indicated an appearance of the cavitation bubbles with the most 
abundant sizes between 0.1 and 1 μm. In contrast, DLS measurements showed the mean apparent radius of 
the bubbles Rapp~450 nm close to the zone of the biphasic fluid generation, which steeply decreases down to 
~20 nm beyond this zone and subsequently grows at longer distances. The understanding of this behaviour, 
which is seemingly connected to local changes of the dissipated turbulent energy, needs further studies.  
This study contributes to the development of biphasic chemical reactors for nanomaterials elaboration.  
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