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Abstract Aortic Aneurysms are among the most critical cardiovascular diseases.
The present study is focused on Ascending Thoracic Aortic Aneurysms (ATAA).
The main causes of ATAA are commonly cardiac malformations like bicuspid aor-
tic valve or genetic mutations. Research studies dedicated to ATAA tend more
and more to invoke multifactorial e�ects. In the current review, we show that all
these e�ects converge towards a single paradigm relying upon the crucial biome-
chanical role played by smooth muscle cells (SMCs) in controlling the distribution
of mechanical stresses across the aortic wall. The chapter is organized as follows.
In section 6.2, we introduce the basics of arterial wall biomechanics and how the
stresses are distributed across its di�erent layers and among the main structural
constituents: collagen, elastin, and SMCs. In section 6.3, we introduce the biome-
chanical active role of SMCs and its main regulators. We show how SMCs actively
regulate the distribution of stresses across the aortic wall and among the main
structural constituents. In section 6.4, we review studies showing that SMCs tend
to have a preferred homeostatic tension. We show that mechanosensing can be
understood as a reaction to homeostasis unbalance of SMC tension. Through the
use of layer-speci�c multiscale modeling of the arterial wall, it is revealed that the
quanti�cation of SMC homeostatic tension is crucial to predict numerically the
initiation and development of ATAA.
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6.1 Introduction

Aortic aneurysms (AA) are among the most critical cardiovascular diseases [1, 2].
Although their detection is di�cult, prevention and monitoring of AA is essential
as large AA present high risks of dissection or rupture, which are often fatal com-
plications [2, 3]. Monitoring consists in measuring the aneurysm diameter using
medical imaging methods such as echography or CT-Scan [2, 3].
The present study is focused on ascending thoracic AA (ATAA). The risk of
rupture of ATAA is estimated clinically with the maximum aneurysm diameter,
which consists in considering surgical repair for ATAA diameters larger than 5.5
cm. Other factors such as growth rate, gender or smoking can be taken into ac-
count [2�4]. It is known that the criterion of maximum diameter relies on statistics
of the global ATAA population. On an individual basis, many ruptures or dissec-
tions have been reported for aneurysms with diameters below the critical value [5].
Other criteria based on biomechanics were suggested [5], but they still need to be
validated clinically [6�8].
The main causes of ATAA are summarized in Table 6.1. ATAAs are a very spe-
ci�c class of AA due to the particularity of the ascending thoracic aorta. First,
it contains the highest density of elastic �bers of all the vasculature, which have
to resist to the mechanical fatigue induced by the wearing combination of pulsed
pressure and axial stretching repeated every cardiac beat. As elastic �bers cannot
be repaired in mature tissue [9], the ascending aortic tissue is highly prone to me-
chanical damage [3, 6]. Second, a major role of the contractile function in smooth
muscle cells (SMCs) is evident in the ascending aorta more than anywhere else
as heterozygous mutations in the major structural proteins or kinases controlling
contraction lead to the formation of aneurysms of the ascending thoracic aorta [10].
Moreover, the outer curvature of the ascending thoracic aorta is constituted of a
mix of Cardiac Neural Crest - and Second Heart Field -derived SMCs, distributed
over the di�erent Medial Lamellar Units (MLUs) (Fig. 6.1) [11]. This may be cor-
related with the observation that dilatations are more often located on the outer
curvature of the ascending thoracic aorta [12]. Third, the ascending thoracic aorta
experiences very complex �ow pro�les, with signi�cant alterations (vortex, jet �ow,
eccentricity, peaks of wall shear stress) in case of bicuspid aortic valves [13�15] or
aortic stenosis [15�17]. It was shown that these complex hemodynamics patterns
have major interactions with the aortic wall and correlate with local in�ammatory
e�ects or variations of oxidative stress in the aortic tissue [15,18,19].

Research studies dedicated to ATAA have always invoked one of the three pre-
vious particularities of the ascending thoracic aorta to account for the intrinsic
mechanism leading to the development of an ATAA, even if recent studies tend
more and more to invoke multifactorial e�ects. In this review, we show that all
these e�ects converge towards a single paradigm relying upon the crucial biome-
chanical role of SMCs in controlling the distribution of mechanical stresses across
the di�erent components of the aortic wall. The chapter is organized as follows.
In section 6.2, we introduce the basics of arterial wall biomechanics and how the
stresses are distributed across its di�erent layers. In section 6.3, we introduce the
biomechanical active role of SMCs and its main regulators and show how this can
control the distribution of stresses across the aortic wall. In section 6.4, we review
the di�erent pathways of SMCs mechanotransduction and their mechanisms at the
cellular and tissue level in the aortic wall. Finally, we review studies showing that



Title Suppressed Due to Excessive Length 3

SMCs tend to have a preferred homeostatic tension. We show that mechanosensing
can be understood as the reaction to homeostasis unbalance of SMC tension. The
review reveals though that the quanti�cation of the SMC homeostatic tension in
the ascending thoracic aorta is still an open question and the chapterF closes with
possible directions for research in measuring this tension at the tissue level and at
the cellular level.

6.2 Basics of aortic wall mechanics and passive biomechanical role of
SMCs

6.2.1 Composition of arteries

6.2.1.1 The extracellular matrix (ECM)

The ECM of the aortic tissue is made of two main �brous proteins participating
to the passive response: collagen and elastin, which are responsible for 60% in
dry weight of the entire wall [20]. There are several types of collagen, but types
I, III and V are primarily found in the media layer (see section below describing
the layers of the aorta), where the SMCs are located, representing about 35% of
global aortic wall in dry weight [20, 21]. Collagen �bers are not extensible and
ensure the mechanical resistance of the tissue in case of overloading [10,20,22]. If
collagen �bers can be produced over the lifespan, elastic �bers are actively syn-
thesized in early development, and there is a loss of e�ciency for the ones created
during adulthood [9]. Elastin has 40 years estimated half-life. It should last for an
entire life in optimal conditions, but some pathological states or natural aging will
necessarily a�ect it. Fibroblasts and SMCs can produce new ECM components
but also matrix metalloproteases (MMPs) which degrade the current ECM. If the
action of MMPs is not well regulated, the ECM may be remodeled, yielding a
di�erent mechanical behavior with possible ATAA development [9, 23]. Likewise,
the loss of elasticity may be related to an anomaly of elastic �bers. Elastic �bers
are mainly composed of a core of amorphous elastin surrounded by micro�brills.
The micro�brils comprise collagen VI and �brillin [24], a polymer encoded by the
fbn1 gene, whose mutation is involved in Marfan syndrome. The genetic mutations
a�ecting the ECM in ATAAs are summarized in Table 6.1.
Another important constituent, although with lesser mass fractions, are Gly-
cosamynoglycans (GaGs) which can contribute to the compressive sti�ness of the
aortic tissue. As they represent about 3 to 5% of the total wall by dry weight [20],
they do not participate markedly to the passive response except in speci�c cases,
like for atherosclerosis, where GaGs are piled up during lesion development and
increase therefore the wall sti�ness. GaGs refer to di�erent types of non-sulfated
(hyaluronic acid) and sulfated (keratan sulfate, dermatan sulfate, and heparan sul-
fate) polysaccharides [25]. The ECM contains also some glycoproteins that bind
to cell membrane receptors, the integrins, and allow for cellular adhesion. Among
these binding proteins, the �bronectin can also bind to collagen and heparan sul-
fate, and laminin is a major component of basal lamina which in�uences cell re-
sponses.
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6.2.1.2 A multilayered wall structure

The aortic wall is divided into three main layers surrounding the lumen where the
blood �ow circulates (Fig. 6.2). Each layer has its function and proper mechanical
properties [6, 14, 21, 22, 26, 27]. The adventitia, which is the most external layer,
contains �broblasts and it is particularly collagen-rich, according to its protective
role for the entire wall against high stress. The internal layer, called the intima,
is directly into contact with the blood �ow and constitutes a selective barrier of
endothelial cells for preventing the wall from blood products in�ltration and de-
livering oxygen and nutrients from blood to the internal wall. The inner medial
layer is separated from adventitia and intima by two elastic laminae, and repre-
sents about 2

3 of the whole thickness of the wall. All these layers have a passive
mechanical response to the loading induced by the blood �ow, but only the media
can also act actively, due to the presence of contractile SMCs. The media is struc-
tured into several MLUs (Fig. 6.1) [20,27] where a layer of SMCs is tight between
two thin elastin sheets, through a complex network of interlamellar elastin con-
nections [22]. The SMCs are oriented in the direction of the ECM �bers in order
to better transmit the forces to each other and to successive MLUs. The number
of MLUs varies according to the diameter of the artery [27] and the size of the
organism : 6− 8 for mice and 40− 70 for human body [20].

6.2.2 Basics of aortic biomechanics

It is commonly assumed that only the adventitia and the media are involved in the
mechanical response of the entire wall, neglecting the mechanical role of the intima.
This assumption is not valid in the case of pathologies resulting in a thickening of
the intima like atherosclerosis.
The aorta is submitted to four types of mechanical stresses (Fig. 6.3). The two
main components are the axial one, σz, and the circumferential one, σθ. The
two other components are, namely σr (radial stress) and τw (wall shear stress).
The wall shear stress results from the friction of the blood onto the wall. The
circumferential stress is related to the distension of the aorta with the variation of
the blood pressure. It can reach about 150 kPa under normal conditions [20]. It
can be approximated by the Laplace law according to:

σθ =
P · r
t

(6.1)

where P is the blood pressure, r the internal aortic radius and t the thickness of
the wall. If the number of MLUs varies according to the arterial diameter and
across species [28], the average tension per MLU was shown to remain constant at
T = 2 N/m [20], and its average circumferential stress can be determined by:

σθ =
T

tMLU
(6.2)

As the mean thickness of a MLU is about tMLU ' 15 µm, it was estimated that
the average normal circumferential stress across the aorta is σθ = 133 kPa [20].
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6.2.3 Passive mechanics of the aortic tissue

The passive behavior refers to the behavior of the aortic wall in absence of vascular
tone. It is mainly due to ECM components, namely elastin and collagen �bers. If
the elastin is responsible for the wall elasticity, the collagen �bers are progressively
tightened from their initial wavy con�guration while the wall stress is increasing,
and they tend to protect the other components from overstress [10, 20,22].
Given that the tissue contains about 70 to 80% of water, it is often assumed as
incompressible. As a heterogeneous composite material comprising a �uid part
(i.e., water) and a solid part (i.e., ECM and cells) [14, 21], divided into several
layers with di�erent mechanical properties (see section 6.2.1.2), the aortic wall has
a complex anisotropic mechanical behavior. To predict the rupture risk of ATAAs
[14,21,22], the passive mechanical behavior of the ECM is relevant. Numerous in
vitro tests using the bulge in�ation device [7, 8, 29�32] con�rmed that elastin in
the media is the weak element of the wall towards rupture.

6.2.4 Multilayer model of stress distribution across the wall

Single-layered homogenized models of arterial wall mechanics have provided im-
portant visions of arterial function. For example, Bellini et al. [33] proposed a bi-
layer model with di�erent material properties for the media and adventitia layers.
They split the passive contributions of elastin, SMC and collagen �bers (modeled
with four di�erent families). Eventually, the strain-energy function (SEF) at every
position may be written as [33,34]:

W = ρeW e(Ie1) +
n∑
i=1

ρciW ci(Ici4 ) + ρmWm(Im4 ) (6.3)

where superscripts e, ci and m represent respectively the elastin �ber constituent,
the constituent made of each of the n possible collagen �ber families and the SMC
constituent, all these constituents making the mixture. In Eq. 6.3, ρj refers to
mass fraction, W j stands for stored elastic energy of each constituent, depending
on the �rst (Ij1) and fourth (I

j
4) invariants of the related constituents of the mixture

(j ∈ {e, ci,m}). Let the mechanical behavior of the elastin constituent be described
by a Neo-Hookean strain energy function as in [33,35�37]

W e(Ie1) =
µe

2
(Ie1 − 3) (6.4)

where Ie1 = tr(Ce) and µe is a material parameter and has a stress-like dimension.
Ce = FeTFe denotes the right Cauchy-Green tensor where Fe = FGe

h is the
deformation gradient of the elastin constituent. F is the corresponding deformation
gradient of the arterial wall mixture and Ge

h is the deposition stretch of elastin
with respect to the reference con�guration [33, 35]. Therefore, using the concept
of constrained mixture theory (CMT) it is assumed that all constituents in the
mixture deform together in the stressed con�guration while each constituent has
a di�erent �total� deformation gradient based on its own deposition stretch.
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The SEF of passive SMC and collagen contributions is described using an
exponential expression such as [33,35,38,39]:

W k(Ik4 ) =
Dk1
4Dk2

[
exp

(
Dk2 (I

k
4 − 1)2

)
− 1
]

(6.5)

where k ∈ {ci,m}. Dk
1 and Dk

2 are stress-like and dimensionless material parame-
ters, respectively, and can take di�erent values when �bers are under compression

or tension [40]. Ik4 = Gkh
2
C : Mk ⊗Mk where Gkh, k ∈ {ci,m}, is the speci�c

deposition stretch of each collagen �ber family or SMCs, with respect to the ref-
erence con�guration. Mk, k ∈ {ci,m}, denotes a unit vector along the dominant
orientation of anisotropy in the reference con�guration of the constituent made of
the ith family of collagen �bers or of SMCs. For SMCs, Mm coincides with the
circumferential direction of the vessel in the reference con�guration while for the
ith family of collagen �bers Mci = [0 sinαi cosαi], where αi is the angle of the
ith family of collagen �bers with respect to the axial direction. C = FTF is the
right Cauchy-Green stretch tensor of the arterial wall mixture [33,35].

This model can capture the stress �sensed� by medial SMCs and adventitial
�broblasts. The model shows interestingly that the stresses spit unevenly between
the media and the adventitia (Fig. 6.4). For physiological pressures, the stress is
signifcantly larger in the media but when the pressure increases, the stress increases
faster in the adventitia. As this chapter is dedicated to SMCs, the model permitted
to estimate that stresses taken by SMCs remain less than a modest 40 kPa for
normal physiological pressures [33].

6.3 Active biomechanical behavior

On top of its passive mechanical behavior, the aortic tissue exhibits an active
component thanks to the tonic contraction of SMCs, permitting fast adaptation
to sudden pressure variation during cardiac cycle.

6.3.1 Smooth Muscle Cells (SMC)

6.3.1.1 SMCs structure

SMCs have an elongated, �ber-like shape. Their length is about 50− 100 µm and
their mean diameter is 3 µm, reaching 5 µm around the nucleus [21,41�43]. SMCs
have an axial polarity. Their longest axis tends to align with the direction of the
principal stress applied to the ECM (Fig. 6.2). Each MLU in the aorta contains
a layer of SMCs that are connected to the elastic laminae thanks to micro�b-
rills [20,22]. They are circumferentially arranged throughout the media [21,22,41]
and are particularly sensitive to σz and σθ components of the wall stress [44].
This speci�c structure may also explain the fact that the media has been revealed
stronger circumferentially than longitudinally [14] and that the forces produced
by the SMCs are maximized in this direction [41]. This ability of endothelial cells
and SMCs to align along the direction of the applied stress has been con�rmed by
a number of in vitro studies [45�47].
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The arrangement of SMCs in the media used to be controversial [48]. The most
recent studies (1980's [28, 49], 1990's [50], 2000 [51]) describe SMC orientation
as circumferential whereas a helical and oblique disposition was reported earlier
(1960's [52], 1970's [53]). Fujiwara & Uehara showed an oblique orientation in
1992 [41]. Likewise, data are controversial about alignment parallelly to the vessel
surface: Clark & Glagov [49] agree with this statement unlike Fujiwara & Ue-
hara [41]. Furthermore, some authors mention a change of SMC orientation in
each subsequent MLU, creating a herringbone-like layout [51,54]. Humphrey sug-
gested the SMCs are oriented helically, closer to a circumferential direction [21],
but O'Connell suggested the SMCs may also be slightly radially tilted [48].
A recent study pointed out the importance of the helical disposition, suggesting
that SMCs are oriented according to two intermingled helices [55]. This disposi-
tion was assumed in several tissue models [56, 57]. Moreover, a tissue model for
coronaries taking into account the orientation of SMCs suggested they contribute
both to circumferential and axial stresses and tend to reorient towards the cir-
cumferential direction when blood pressure is increased [58]. Other studies [49,59]
suggested that the almost circumferential orientation is only valid for inner MLUs
of the ascending thoracic aorta because SMCs seem to orient more axially close to
the adventitia. This pattern was also con�rmed by Fujiwara & Uehara [41].

6.3.1.2 Principle of SMC contractility

The contractility of SMCs is their de�ning feature, thanks to a strongly con-
tractile cytoskeleton. SMCs have a well-developed contractile apparatus organized
in cross-linked actin bundles, regularly anchored into the membrane with dense
bodies [60] (Fig. 6.5). This layout implies a bulbous morphological aspect during
contraction [61]. There may be two types of actin �laments in the same bundle.
The thick �lament serves as a support for myosin heads and permits sliding of thin
�laments during contraction, de�ning a so-called �contractile unit�. Thin �laments
are made of Alpha Smooth Muscle Actin (α-SMA), an actin isoform specialized in
the increase of cellular traction forces [62�64]. This isoform is speci�c to certain
cell types, namely SMCs and myo�broblasts [65]. The α-SMA �laments are created
from their rod-like form, synthesized and assembled when focal adhesions (FAs)
undergo high stresses [62, 63]. Genetic mutations may a�ect the genes encoding
the components of the contractile apparatus (Fig. 6.6) and lead to ATAAs (Table
6.1).
The main signaling pathways controlling SMC contraction are summarized in Fig.
6.6. More details about these pathways may be found in [66�71]. However, it is
important to mention that SMCs contractility is controlled by the modulation of
intracellular ionic calcium concentration [Ca2+]i. The SMC membrane has many
invaginations called caveolae where extracellular Ca2+ ions can enter the cell [72].
The increase of [Ca2+]i triggers the contraction above a certain threshold, acti-
vating myosin chains [67]. Some studies revealed [Ca2+]i is a reliable indicator
of SMC contractility, because it increases from 100 nM in the relaxed state to
600 − 800 nM once fully contracted [21]. But Hill-Eubanks et al. [67] underlined
later that a 400 nM concentration is su�cient to cause a complete contraction.
Calcium entries in the SMC after some stimuli resulting in membrane depolariza-
tion, widely studied in vitro with electrical [61], electrochemical [73�75], chemical,
or even mechanical stimulation [76,77]. In fact, some of these studies suggested that
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SMCs undergo a progressive membrane depolarization as intraluminal pressure in-
creases under normal conditions [67,76,77]. But when the mechanical stimulation
becomes higher than normal, some studies have also highlighted that the SMCs
undergo more depolarization, resulting in an alteration of their reactivity [78].
The most common protocol used to control SMCs contraction in vitro remains the
addition of potassium ionsK+ from aKCl solution with a 50 to 80 mM concentra-
tion, that depolarizes the membrane [73�75,78,79]. The extracellular media must
also contain a calcium concentration [Ca2+]e to cause the activation of myosin
heads by calcium entry into the cell. This is the reason for adding CaCl2 solution
to the media [79], or immersing the cells in a physiological Krebs-Ringer solu-
tion [74]. The latter has the advantage of keeping biological tissues alive. Calcium
entry is also regulated thanks to a cytosolic oscillator which allows periodic re-
lease of calcium from intracellular reservoirs (i.e., endoplasmic reticulum) [66,80].
The frequency is highly dependent on external stimuli like neurotransmitters, hor-
mones or growth factors. If its primary role is to induce a single cell contraction,
the secondary role of the cytosolic oscillator is also responsible for membrane de-
polarization of neighboring cells, in order to synchronize the contraction of several
SMCs [66,81]. The Ca2+ signaling pathway was included in the mechanical cellu-
lar model of Murtada et al. [82] to model SMCs contractility.
The Angiotensin II (Ang II) signaling pathway has been widely developed in mice
models and its link with aneurysms is well explained by Malekzadeh et al. [83]. It
may lead to SMCs contraction and may be used as a vasoconstrictor agonist in
mice models [15,83] or for isolated cells by addition in a bath [84]. But the review
of Michel et al. suggests that angiotensin II may also damage the intima [15]. In
this case, intimal degradation leads to the activation of other signaling pathways
that have an in�uence on SMC tone. Moreover, some studies suggested very ac-
tive biological role of the intima through the secretion of nitric oxide (NO) that is
involved in a pathway controling cell relaxation [78, 84]. Accordingly, the intimal
integrity seems to have a strong in�uence on cell contractile response.
The �lament overlap involved in SMC contraction creates a �cross-bridge� whose
function has been early described by some subcellular models based on the sliding-
�lament theory [85,86]. The cross-bridges have been assumed to be based on con-
tractility activation/deactivation cycles through phosphorylation of the contractile
unit. That is what Dillon et al. [87] have called the �latch state� which was used
later in association with the sliding �lament theory to develop another subcellular
model for the SMC contractile unit [74]. Several other cellular models combine the
proper active behavior of SMCs with the passive behavior of its ECM [58,88,89].
The SMC is protected from a too high lengthening thanks to the intermediate
�laments (made of desmine), linking dense bodies together [62].

6.3.1.3 Intracellular connections

Each SMC is covered by a basal lamina, a thin ECM layer (40− 80 nm [21]) com-
prising type IV collagen, glycoproteins and binding proteins ensuring cell adhesion:
the �bronectin and the laminin. The basal lamina represents about 12 to 50% of
the volume of SMCs. This lamina is open around the gap junctions to allow cell
communication [60]. These junctions allow the cells to exchange electrochemical
stimuli required to synchronize the contraction of the whole MLU and to match
with the successive MLUs [90]. SMCs are linked together thanks to thin collagen
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micro�brils permitting to transmit cell forces.
Interactions between the media and the other layer (intima and adventitia) also
have to be considered. The synchronization of the contraction is induced in the
outermost MLU by their innervation thanks to the vasa vasorum present in the
adventitia, and the nervous signal is transmitted to inner MLUs thanks to gap
junctions. The vasa vasorum also provides nutrients in the thickest arteries to
complete the action of the intima for innermost SMCs [21]. Moreover, endothelial
cells communicate with innermost SMCs (Fig. 6.7) secreting vasoactive agonists,
neurotransmitters and GaGs, notably the Heparan Sulfate, which seems to in�u-
ence the quiescence of the SMCs [91,92]. Further information about this topic can
be found in [93].

6.3.2 Multiscale mechanics of SMC contraction

6.3.2.1 Subcellular behavior

Many experiments were developed to characterize SMCs traction forces thanks
to [Ca2+]i measurements [87] or Traction Force Microscopy (TFM) techniques,
from common substrate deformation methods [63, 76, 94] to uncommon speci�c
microdevices [95�97]. SMC sti�ness is closely linked to their contractile state [84,
98]. The reported values depend strongly on the measurement method. Common
magnetic twisting cytometry gives a range of [100− 102] Pa against [103− 105] Pa
for Atomic Force Microscopy (AFM) [99]. Published sti�ness and traction force
values for SMCs are reported in Table 6.2 .

If the AFM was mainly used on the ECM of aneurysm samples [100, 101],
only Crosas-Molist et al. [102] characterized aortic SMCs using AFM and showed
an increase of their sti�ness in the Marfan syndrome (from 3 kPa for healthy
tissue to 7 kPa for pathological one). Interestingly, another team focused on rat
vascular SMCs (without aneurysm) and tested them by AFM indentation with a
functionalized tip to measure the adhesion forces to type I collagen. This work
suggested that contracted (with Ang II) or relaxed SMCs regulate their focal
adhesions [84].

6.3.2.2 (Sub)cellular models for the SMC

A common mechanical model of the SMCs and their contractile apparatus is the
sliding �lament theory. The original sliding �lament theory permitted to model
the α-SMA �laments sliding on myosin heads. It was initially published by Huxley
& Huxley in 1953 [86]. The �lament overlap (i.e., thin �laments linked to thick
�laments by myosin heads, see section 6.3.1.2) creates a �cross-bridge� modeling
the contractile unit of a single SMC.
Another important study was those of Dillon et al. [87] where the latch state
was introduced to describe the activation/blockage cycles of the contractile unit
through phosphorylation process. In low phosphorylation states, the active force
can be maintained by the SMCs [85]. Dillon et al. [87] also highlighted that SMCs
generate a maximal force when stretched at an optimal length. Gradually, further
models took into account the orientation of the SMCs in the media [58] and the
interaction between the cell and its ECM [88,89,103]. Only Murtada's model [82]
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has integrated the regulation of [Ca2+]i controlling SMC contraction (see section
6.3.1.2).

6.3.3 E�ect of SMC contraction on the distribution of stresses across the aortic
wall

The e�ects of SMCs contraction on the stress distribution across the wall were
investigated in several studies, which the opening angle experiment. This permitted
to assess the intramural stress induced by SMC contractility [103,104]. Indeed the
opening angle experiment reveals residual stresses, which can be related to passive
ECM mechanics and to SMCs active contraction [103,104].

It was shown that at physiological pressure, the pure passive response of the
wall does not ensure uniform stress distributions, suggesting an essential role of the
basal tone of SMCs to maintain a uniform stress distribution [103,104]. But under
the e�ects of a vasoactive agonist, SMCs contract through myogenic response and
can provoke a rise of intraluminal pressure up to 200 mmHg. As they change
the intraluminal pressure, SMCs may also induce nonuniform stress distributions
across the wall [104].

In summary, SMCs are very sensitive to mechanical stimuli. They tend to
keep the intramural circumferential stress as uniform as possible for physiological
variations of the blood pressure, but the stress becomes non uniform for higher
pressures [104]. They adapt their myogenic response, ranging from 50 kPa for the
basal tone under normal physiological conditions to 100 kPa for maximal SMC
contraction [103].

6.4 Mechanosensing and mechanotransduction

Given its highly sensitive cytoskeleton and focal adhesions (Fig. 6.8), SMCs rep-
resent real sensors of the local mechano-chemical state of the ECM. Many exper-
imental models have permitted to investigate this mechanosensing role and how
it is involved in ATAAs and dissections [15]. One of the main response to stimuli
mechanosensing is mechanotransduction [105�109], which is the process of trans-
ducing wall stress stimuli into tissue remodeling [20,21,44,110,111].

6.4.1 Mechanosensing

Many recent studies have highlighted the e�ects of the environment on SMCs
response, in terms of protein synthesis, proliferation, migration, di�erentiation or
apoptosis, thanks to its mechanosensitive architecture [105�109,112]. Mechanosens-
ing relies on links between the ECM, focal adhesions and the cytoskeleton. The
micro�brils provide an adhesive support to the SMCs through collagen VI [24].
Because of this, when the micro�brils are damaged, SMCs sense an increase in sti�-
ness and are no more able to transmit forces to each other through elastic �ber.
According to several studies, the elastin acts for the maturation of the contractile
apparatus of the SMCs and may encourage their quiescent phenotype [9,113,114].
In the ECM, two proteins are mainly involved in mechanosensing: �bronectin and
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laminin. Fibronectin is known for being mainly present in the ECM of blood ves-
sels during early development and seems to encourage SMCs proliferation and
migration in order to build the tissue [70, 115]. On the contrary, the laminin may
be required later for SMCs maturation towards a contractile phenotype [116].

Since SMCs are dynamic systems, their cytoskeleton remains in constant evo-
lution during cellular processes. This speci�c structure allows the cell for shape
maintenance and generation of traction forces required notably during migration
(Fig. 6.8). The cytoskeleton of SMCs is particularly rich in contractile α-SMA thin
�laments (see section 6.3.1) that are used to enhance traction forces required for the
cell function. SMC contraction involves a quick remodeling of its cytoskeleton in
order to recruit contractile thin �laments in the direction of applied forces [62,63]
and to follow its change of shape while renewing non-contractile cortical struc-
tures [84].
In summary, the SMC may be considered as a powerful sensor of the mechani-
cal state across the aortic wall. The high sensitivity of SMCs led many research
teams to point out their implication in arterial disease, including aortic aneurysms
[21,42,44,113,115,117,118].

6.4.2 The key role of SMCs in ATAAs

The role of SMCs in the development of ATAAs is now well accepted [22,41].
Several studies have already mentioned the change of SMC behavior in cardio-
vascular disease, and the consequences on the arterial wall. It was shown that
hypertension is perceived by SMCs as permanent stimuli through the increase of
wall stress, which induces collagen synthesis to reinforce the wall resulting in an
increasing thickness [15,21,68,119].
In atherosclerosis and restenosis, the growth of plaques between the media and the
intima is due to SMCs proliferation and migration towards the intima, forming a
neointima [113,120]. The neointimal SMCs are also able to gather lipids, increasing
the sti�ness and weakening the wall. Intimal integrity may also control the qui-
escence of SMCs thanks to Heparan Sulfate [91, 92] or vasoactive agonists [21, 84]
synthesis. Hence, the degradation of the endothelial cell layer leads to SMC pro-
liferation and ECM synthesis until whole intimas repair [121].
All of these changes suggest that SMCs can switch to another phenotype, in or-
der to repair the damaged tissue through migration towards the injured region,
proliferation and ECM synthesis [121]. Under normal conditions, mature SMCs ac-
quire a �contractile� (C) phenotype from an immature �synthetic� (S) one, which
is mainly present in early development [42, 113, 120]. But SMCs demonstrate a
high plasticity as they are not fully di�erentiated cells, and they can return to a
(S) phenotype in response to many stimuli. The phenotypic switching is due to a
number of factors summarized Table 6.3 below.

The cytoplasm of (S) SMCs has more developed synthetic organites like endo-
plasmic reticulum and Golgi apparatus, leading to hypertrophy [21]. The pheno-
typic switching does not radically change the cytoskeleton as microtubules remain
intact, but the contractile apparatus (i.e., α-SMA thin �laments) is clearly af-
fected [62,64,91,113,114,121]. SMC contractility involves a reorganization of their
contractile apparatus. In other words, high traction forces require high adhesion
to the ECM, hence it is suggested that SMCs undergo a regulation of their focal
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adhesions [62, 63, 84, 122], evolving towards super focal adhesions (suFAs) in the
direction of the applied stress [62, 63].
Hyperplasia concerns the loss of SMCs' quiescence in favor of a proliferating and
migrating behavior [21,42]. During hypertension, the increase in wall thickness has
been shown to result in more from hypertrophy than hyperplasia [68,123], but the
two phenomena are involved in several pathological states [21]. ATAAs also involve
a reduction of the elastin/collagen ratio in the aortic wall, inducing sti�ness in-
crease and leading to phenotypic switching of SMCs [124]. But the whole thickness
is not uniformly a�ected: Tremblay et al. [12] have assessed SMC densities across
ATAAs and deduced it was greater in the outer curvature. The reduced contractile
behavior suggests more phenotypic switching in this area.

6.4.3 SMC mechanotransduction

As previously highlighted in several studies [20, 33], SMCs tend to remain in a
speci�c mechanical state called homeostasis. It is considered as a reference value
for the stress they undergo into the wall under normal physiological pressure. Dur-
ing any cardiac cycle, SMCs do not activate suddenly their contractile apparatus
according to the short variations of blood pressure. In fact, they always remain
partially contracted and tend to adapt gradually to any constant increase of the
mean pressure (Fig. 6.9).

Facing a constant rise of wall stress, SMC response may be divided into two
main categories according to time. In the short term, SMCs react in a progressive
contraction until they reach maximal contraction, permitting to regulate the blood
�ow through arterial diameter control. But beyond a given stress threshold, col-
lagen �bers from the adventitia are recruited to protect the cells and the medial
elastic �bers from higher stress values [21, 33]. In the long term, the remaining
mechanical stimuli of SMCs lead to phenotypic switching or apoptosis. In this
way, SMCs tend to coordinate the renewal of ECM, and particularly synthetizing
collagen �bers to increase the wall resistance to high stress.

6.4.4 Mechanical homeostasis in the aortic wall

Mechanical homeostatis means that SMCs try to regulate their contractile appa-
ratus and their surrounding ECM to maintain a target wall stress corresponding
to a certain mechanobiological equilibrium. The presence of a mechanobiological
equilibrium was �rst proposed by the constant mean tension of a single MLU in a
stressed aorta in spite of di�erent species and aortic diameter [20, 28]. Humphrey
[20] estimated that the circumferential stress per MLU is about σθ = 133 kPa.
It is assumed that SMCs and �broblasts tend to maintain a preferred mechani-
cal state through homeostasis. Kolodney et al. showed that cultured �broblasts
on unloaded gel substrates generate a steady tension of 3.2 kPa [125]. Moreover,
Humphrey [20] suggested that homeostasis expression is similar throughout scales,
from organ level (vessel mechanoadaptation), tissue level (ECM prestressing and
synthesis/degradation), cellular level (traction forces applied onto the ECM, see
section 6.3.2.1), subcellular level (focal adhesions and actin/myosin bundles) and
even molecular level ([Ca2+]i). These �ndings suggest that the cell is able to
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adapt its proper stress state through the regulation of [Ca2+]i, cytoskeleton and
focal adhesions turnover, and by controlling its surrounding ECM as well. Ex-
perimental studies of Matsumo et al. [104] showed a change of the intramural
strain distribution in response to SMCs contraction (and relaxation) on radially
cut aortic rings and con�rm that SMCs actively adapt their contractile state to
keep the intramural stress uniform. In summary, SMCs can both work actively
(through contraction/relaxation) and passively by deposition and organization of
the ECM [20].
That is why SMCs may undergo a phenotypic switching towards a synthetic one
under several stimuli (see section 6.4.2). Through phenotypic switching, SMCs
tend to remodel their ECM to go back to a preferred state and facing the vari-
ations of their environment. Humphrey has well described this equilibrium state
saying: �When a homeostatic condition of the blood vessel is disturbed the rate of

tissue growth is proportional to the increased stress� [21]. But SMCs lose their
contractility in return and may irrevocably a�ect the wall vasoactivity in which
they may have a key role [20, 75, 126]. In fact, Humphrey suggests in his review
that fully contractile SMCs can react mainly to circumferential wall stress (150
kPa in physiological conditions) with a 100 kPa equivalent traction forces exerted
on their ECMs while synthetic SMCs may only apply 5− 10 kPa [20].

6.4.5 Consequences for aortic tissue

Reduction or loss of SMC contractility alters the stress distribution across the
aortic wall [64, 84, 114, 127]. In reaction, the development of synthesis abilities
ensures recovery processes by ECM remodeling. SMCs keep a key role in the
aortic wall remodeling. In ATAAs, they tend to adapt their response through
complex signaling pathways. An important one is Rho kinase (ROCK), mainly
involved in cytoskeleton turnover for the control of cell shape and movement during
migration [126]. The Rho kinase seems to in�uence the formation of α-SMA thin
�laments and the regulation of FAs that are involved in SMCs contractility and
anchoring to the ECM [62,63,122,128]. Moreover, the oxidative stress induced by
ATAAs enhances the in�ammatory response of SMCs, increasing MMP synthesis
and further disruption of elastin �bers [18].

Remodeling was shown to be uneven in human [13] and porcine [12] aortic
tissues. Authors highlighted that the outer curvature of ATAAs is more a�ected.
Remodeling implies phenotypic switching towards a synthetic phenotype able to
synthesize both ECM compounds (i.e., collagen and glycoproteins) and MMPs to
degrade the �dysfunctional� ECM, leading to ECM wear [21,91,120,127]. Likewise,
elastin degradation results in a permanent decrease of the elastin/collagen ratio
since elastic �bers cannot be regenerated in adulthood [9]. On top of the induced
sti�ening, the ability of SMCs to restore an healthy state is altered as well as
it was shown that elastin is also important for activating actin polymerization
[111]. Moreover, SMCs undergo a general apoptosis to reduce their number when
they sense an unappropriate chemo-mechanical state, inducing further reduction of
elasticity and mechanical resistance through a vicious circle loop [18,44,124,129].
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6.4.6 Towards an adaptation of SMCs in ATAAs?

Any disruption of the mechanical or chemical homeostasis is interpreted by the
SMCs as a distress signal, and several recovery processes can be activated in reac-
tion, but the regulation loop is similar to a vicious circle because of the complexity
to return naturally to equilibrium (Fig. 6.10). Interestingly, in hypertension, the
increase of wall stress results in an increase in the arterial diameter [21,119]. Con-
versely, a decrease in mean wall stress leads to an atrophy [21]. Since the (S) SMCs
can recover their (C) phenotype once the tissue returns to its original homeostatic
stress, the phenotypic switching seems to be a reversible process [110, 114, 127].
These observations suggest a two-way mechanoadaptive process.
But once a�ected by ATAAs, remodeled aortic ECM is known not to reach com-
plete recovery, particularly because disrupted elastic �bers can not be rebuilt in
adulthood [9]. Aortic tissue would, therefore, evolve more or less quickly according
to some factors that may slow it down. As the review study of Michel et al. [15]
has already pointed it out, ATAAs may result in some epigenetic modi�cations
that have an in�uence on the cellular response. It could be de�ned as the acqui-
sition of new constant and heritable traits without requiring any change in the
DNA sequence, which results for instance in gene modulation. The suggested the-
ory explains that SMCs reprogramming is likely to induce a progressive dilatation
of the aorta without dissection, whereas no reprogramming SMCs promote acute
rupture of the wall [15]. Finally, it is well accepted that SMCs play a major role
in controlling the wall evolution after aortic injury, either toward partial recov-
ery of initial mechanical properties or fatal rupture through dissection. However,
quanti�cation of levels of SMC contractility that result in one type of evolution
or another is still an open issue. There is still a pressing need to characterize the
basal tone of SMCs in healthy aortas ATAAs at the cellular scale.

6.5 Summary and future directions

Mechanobiology and physiopathology of the aorta have received much attention so
far but there is still a pressing need to characterize the roles of SMCs at the cellular
scale. Despite the di�culties of characterizing cells having complex dynamics and
fragility, techniques such as Atomic Force Microscopy or Traction Force Microscopy
could permit important progress about SMC nanomechanics and provide relevant
information on how SMC biomechanics is related to the irreversible alteration
of stress distribution in ATAAs. This will also imply the development of new
biomechanical models of the aortic wall taking into account the contractility of
SMCs.
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Table 6.1. Main causes of ATAAs a�ecting both the ECM and the SMCs

Causes of ATAAs E�ects Ref.
Genetic mutations a�ecting the ECM

fnb1 (Marfan syndrome) Micro�brils anomalies => wrong force trans-
mission and alteration of the mechanotrans-
duction.

[3, 117]

Types I and III collagen Anomalies of collagen �bers. [20]
Genetic mutations a�ecting the SMC

ACTA2 (α -SMA) Dysfunction of the contractile apparatus. This
mutation represents about 12% of ATAAs.

[117,118]

MYH11 (Myosin light
chain)

Dysfunction of the contractile apparatus. [117,126]

TGFB (TGF-β) Anomalies of TGFB receptors TGBFR1/2.
Wrong regulation of traction forces.

[62, 117,130]

MYLK (Myosin light chain
kinase)

Alteration of myosin RLCs (regulatory light
chains) phosphorylation, and thus force gener-
ation.

[69]

PRKG1 Kinase activation resulting in SMCs relax-
ation.

[69]

MMP genes Alteration of myosin RLCs (regulatory light
chains) phosphorylation, and thus force gener-
ation.

[69]

Phenotypic switching : Contractile (C) => Synthetic (S)

Sti�ening and weakening of
the arterial wall.
Pathologies : atheroscle-
rosis, arteriosclerosis, ar-
teritis, aging.

The SMCs move on to synthetic phenotype (S)
(hypertrophy), they lose their quiescence (hy-
perplasia), they order wall remodeling by the
synthesis of MMPs (degradation) and ECM
(renewal). Moreover, atheroma plaques con-
tain many SMCs.

[3, 21, 91, 124,
131]

Chronic overstress.
Pathologies : hyperten-
sion, dissection, ATAAs.

The (C) SMCs move on to (S) : remodeling,
hypertrophy, hyperplasia.

[9, 123]

Contact with blood �ow.
Pathologies : intimal in-
jury, porosity of the wall.

The (C) SMCs move on to (S), formation
of a neointima containing SMCs and GAGs
through hyperplasia.

[110]

Blood-borne components interacts with SMCs. [15]
Change in ECM chemical
composition.
Laminin/�bronectin ratio.
Elastin/collagen ratio.

The (C) phenotype may be favored on laminin
or Matrigel (collagen+laminin) in vitro.
A high elastin concentration may activate
actin polymerization and thus the develop-
ment of the contractile apparatus.

[70, 100, 115,
121]
[111]

Cell culture in vitro.
High passage.
Substrate (physical proper-
ties).

Wrong development of the contractile appa-
ratus => more (S) SMCs as cell passage in-
creases.
Necessity to use some stimuli like vasoactive
agonists or suitable substrates.

[74, 114, 120,
121,132]

Partially identi�ed causes

Biochemical imbalance.
Signaling pathways in-
volved in cell contraction.

Angiotensin II, Growth factors : TGF-β,
PDGF.

[2,20,44,65,69,
70,105,128]

Ca2+ ionic channel. [66, 67, 71, 74,
75,77,79]

Intercellular interactions.
Vasoactive agonists, neu-
rotransmiters, hormones,
ions, mechanical stimuli.

Interaction with endothelial cells from the in-
tima.

[21, 84, 91�93,
121]

Synchronization of several SMCs. [21,66,81]
Local changes in hemody-
namics.
Bicuspid aortic valve, dis-
section, ATAAs.

Disturbance of the mechanotransduction
through endothelial cells and SMCs.

[3, 15,21,127]

Embryonic origin of the
SMCs.
Transition area between
aortic root and arch :
the media combines SMCs
from di�erent origin.

Outermost SMCs are from second heart �eld
and innermost ones from neural crest. This
area is prone to ATAAs and dissections.

[11]
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Table 6.2. Sti�ness and traction force values for in vitro SMCs

SMCs mechanical
properties

Value
(Pa)

Description Ref.

STIFFNESS

103 − 105 Pa AFM technique [99]
Viscoelastic properties In response to a vasoactive agonist (serotonin)

[98] (Airways SMCs)Storage modulus G' −→ 150% increase
Loss modulus G" −→ 67% increase

Hysterisis −→ 28% decrease after AFM stimulus : The
cell elasticity prevails gradually more (�latch
state�)

Elastic properties Comparison between control an Marfan induced aneurysm tissue

Young Modulus

3k Increase in SMCs and ECM sti�ness in the
pathological case [102](aortic SMCs)7k

↪→ Increase in focal adhesions size
Comparison between control and stimulated tissue with Angiotensine II
(vasoconstrictor)
13.5k Increase in SMCs sti�ness after having their

contraction induced (after 2 min)

[84] [98]

18.5k
22k After 30 min ( actin polymerisation dynamics)
↪→ Increase in focal adhesions size (Stronger

adhesion to functionalized AFM tip with type
I collagen)

100 − 102 Pa Magnetic twisting cytometry [99]
Increase in SMCs sti�ness with substrate rigidity [133]

12.6± 1.6 N/m2 12.6 �Hard�substrate : high density collagen
4.3± 0.3 N/m2 4.3 �Soft�substrate : low density collagen

Increase in SMC sti�ness with contraction [133]
More e�ect on �Soft�substrate
Increase linked to myosin heads activation and
actin polymerisation [134] (Airways SMCs)

9.91± 0.75 N/m2 9.9 Unstimulated
14.27± 0.85 N/m2 14.3 Vasoconstrictor agonist : serotonin

TRACTION FORCES

Traction forces measured according to the calcium concentration of the KCl bath
2.9± 0.4× 105 N/m2 290k [Ca2+] = 1.6 mM [87] (Carotid SMCs)
3.9± 0.2× 105 N/m2 390k [Ca2+] = 25 mM

TFM on a PDMS micro needles array with a �bronectin coating, simulating a soft material : cellular stress
applied by the entire cell

SMCs applied stress, adhering
to the pattern, unstimulated

4.6k Inhibition of the myosin contractility and the
actin polymerisation

[96](Airway SMCs)Increase in the applied stress
per needle with cell spreading

10k Weakly spread (440 µm2)

30k Strongly spread (1520 µm2)

TFM on a gel substrate including �uorescent and magnetic microbeads with �bronectin coating: Traction forces
measurement and mechanical stimulus

1 N/m2 1 Unstimulated SMCs [76] (Renal vSMCs)
1.6 N/m2 1.6 Stimulated SMCs : 60% increase

Standard TFM on gel substrate with �uorescent microspheres : measurement of the deformation �eld after a
chemical stimulus

Increase in mean traction
force (mean vector of the
deformation �eld)

50 Unstimulated SMCs

[94] (Airway SMCs)
100 Vasoconstrictor agonist : histamine

The contractile apparatus is made of non-contractile thick �laments, linked to classic focal adhesions (FA), and
highly contractile Î±-SMA �laments, linked to super focal adhesions (suFA)

Increase in mean traction
force (mean vector of the
deformation �eld)

8.5k Stress produced by suFAs

[63] (Myo�broblasts)
3.1k Stress produced by classic FAs
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Table 6.3. SMCs phenotypic switching characteristics

SMCs phenotypic
switching

E�ects

High plasticity The SMCs are not entirely di�er-
entiated when they reach maturity
through contractile (C) phenotype,
and can move on to a synthetic (S)
phenotype

[20, 21, 42, 110,
115,121,127]

(The (S) phenotype is mainly present
in the aorta during early development)

ECM synthesis and
degradation (through
MMPs synthesis)

The SMCs undergo an increase in
volume (hypertrophy), with the de-
velopment of their synthetic organ-
ites (Golgi apparatus and endoplasmic
reticulum)

[21, 91, 120,
127]

Loss of quiescence : hy-
perplasia

(S) SMCs tend to proliferate and mi-
grate

[42]

Loss of contractility Stress produced into the wall : [20]
(C) SMCs : 100 kPa ; (S) SMCs : 5−10
kPa

Degradation of the
contractile apparatus

The cytoskeleton is not entirely remod-
eled (undamaged microtubules), but
there are weaker actin and myosin con-
centrations (contractile �bers) in (S)
SMCs

[91, 113, 114,
121]

Modi�cation of the
basal side

Regulation of the focal adhesions [84,114,127]

(They grow according to the traction
force direction, ensuring a strong ad-
hesion to the ECM in response to high
stress)

[62,63]

Decrease in α-SMA
concentration

Degradation of the thin �laments that
are responsible for amplifying and reg-
ulating the cell traction forces

[62,64]

Reversible process Once the tissue is repaired, the SMCs
return to a contractile phenotype

[110,114,127]

General apoptosis Decrease of SMCs number and degra-
dation of the ECM=> loss of wall elas-
ticity and resistance

[44,124,129]
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ola, PDGF : Platelet-Derived Growth Factor, PDGFRβ: PDGF
receptor, ROCK : Rho kinase involved in cytoskeleton turnover,
TGF-β: Beta transforming growth factor, TGFBR1/2: TGF-β re-
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ACTA2: encoding the α-SMA, MYH11 : encoding the Myosin Heavy
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6.8 The cytoskeleton of the migratory cell is composed of a complex
network of actin bundles where three speci�c structures are ob-
served: (a) The cortex: a crosslinked network surrounding the cell
and ensuring the modulation of cell shape by rapid turnover dur-
ing migration. (b) Stress �ber: contractile structures made of an-
tiparallel actin bundles linked to a molecular motor, the myosin.
(c) Lamellipodium: large membrane extension made of crosslinked
and branched bundles, pushing the cell forward. (d) Filopodia: thin
membrane extension made of parallel bundles, and projected for-
ward to sense the mechanical properties of the substrate. Each of
these structures has its proper mechanical behavior: (A) Contrac-
tile elements activated by the myosin motor. (B) Viscoelastic ele-
ments based on a kelvin-Voigt model (viscous damper and elastic
spring connected in parallel). (C) Sti� elements associated with
�lopodium. Here the cell is represented on a 2D substrate instead
of the 3D real ECM. That is why the cell has adopted an apico-basal
polarity. The apical side refers to the unattached membrane above
the nucleus, and the basal one to the contact with the substrate,
through focal adhesions. Inspired from the lecture of Planus [136]. 35

6.9 All the smooth muscle have not the same behavior. The SMCs are
normally partially contracted and adapt their contractile response
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6.10 A vicious circle: under some stimuli (orange box), the homeostatic
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green) and thus the equilibrium is di�cult to reach again, especially
as the elastin degradation leads to a permanent loss of elasticity and
this e�ect is ampli�ed with the duration of the pathological sate.
Hence, although the phenotypic switching may be reversible, the
permanent alteration of the ECM may prevent the cells to go back
to homeostatic conditions, that enhances the pathology. . . . . . . 37
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Figure 6.1. Anatomy of the whole aorta: The thoracic part is separated from the
abdominal one by the diaphragm. The thoracic aorta is divided into four parts
from di�erent embryological origins. The ascending aorta is particularly subject
to ATAAs, and contains a mix of CNC- and SHF-derived SMCs. Inspired from the
works of Isselbacher [3] and Sawada et al. [11].
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Figure 6.2. Structure of the arterial wall (courtesy of Gasser [135])
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Figure 6.3. Schematic representation of the mechanical stresses in the aortic wall,
and particularly in the media. The intima is neglected in the case of aneurysms,
but it cannot be the case for pathologies resulting in an intimal thickening; t is
the thickness of the wall, r the internal aortic radius, and P is the blood pressure
and tMLU the mean thickness of a MLU.
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Figure 6.4. Predicted transmural distributions of di�erent components of Cauchy
stress at mean arterial pressure (MAP ∼93 mmHg) by bi-layered model of [33].
The mean circumferential stress, as obtained from Laplace's relation, is shown for
comparison. All components of stress are plotted versus the normalized current
radius, with 0 and 1 corresponding to inner and outer radii, respectively.
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Figure 6.5. Cellular and subcellular architecture of the SMC
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Figure 6.6. Summary of the main signaling pathways involved in SMCs contrac-
tility and phenotypic switching. α-SMA : Aplha Smooth Muscle Actin, Ang II :
Angiotensin II, AT1: angiotensin receptor, Cv : caveola, PDGF : Platelet-Derived
Growth Factor, PDGFRβ: PDGF receptor, ROCK : Rho kinase involved in cy-
toskeleton turnover, TGF-β: Beta transforming growth factor, TGFBR1/2: TGF-
β receptor. Speci�c genes mainly involved in the loss of contractility: ACTA2:
encoding the α-SMA, MYH11 : encoding the Myosin Heavy chains. Shape and
orientation of a SMC according to its ECM. The SMCs can synchronize their
contraction along their strongest axis thanks to intercellular interactions: between
several SMCs through gap junctions, or between endothelial cells from the intima
and innermost MLUs of SMCs through vasoactive agonists, neurotransmitters or
secreted GaGs.
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Figure 6.7. Shape and orientation of a SMC according to its ECM. The SMCs
can synchronize their contraction along their strongest axis thanks to intercellular
interactions: between several SMCs through gap junctions, or between endothelial
cells from the intima and innermost MLUs of SMCs through vasoactive agonists,
neurotransmitters or secreted GaGs.
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Figure 6.8. The cytoskeleton of the migratory cell is composed of a complex
network of actin bundles where three speci�c structures are observed: (a) The
cortex: a crosslinked network surrounding the cell and ensuring the modulation of
cell shape by rapid turnover during migration. (b) Stress �ber: contractile struc-
tures made of antiparallel actin bundles linked to a molecular motor, the myosin.
(c) Lamellipodium: large membrane extension made of crosslinked and branched
bundles, pushing the cell forward. (d) Filopodia: thin membrane extension made
of parallel bundles, and projected forward to sense the mechanical properties of the
substrate. Each of these structures has its proper mechanical behavior: (A) Con-
tractile elements activated by the myosin motor. (B) Viscoelastic elements based
on a kelvin-Voigt model (viscous damper and elastic spring connected in parallel).
(C) Sti� elements associated with �lopodium. Here the cell is represented on a
2D substrate instead of the 3D real ECM. That is why the cell has adopted an
apico-basal polarity. The apical side refers to the unattached membrane above
the nucleus, and the basal one to the contact with the substrate, through focal
adhesions. Inspired from the lecture of Planus [136].
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Figure 6.9. All the smooth muscle have not the same behavior. The SMCs are
normally partially contracted and adapt their contractile response and maintain
it for a long time. Figure inspired of [137].
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Figure 6.10. A vicious circle: under some stimuli (orange box), the homeostatic
state is endangered and the cell (violet circle) sets up complex chain reactions.
Several regulation loops cross each other (blue, grey, green) and thus the equi-
librium is di�cult to reach again, especially as the elastin degradation leads to a
permanent loss of elasticity and this e�ect is ampli�ed with the duration of the
pathological sate. Hence, although the phenotypic switching may be reversible, the
permanent alteration of the ECM may prevent the cells to go back to homeostatic
conditions, that enhances the pathology.


