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Université Paris 6, Paris, France

e-mail : george.haiman@upmc.fr

Cristian Preda
Laboratoire Paul Painlevé
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Abstract

A method of approximating the distribution function of the partial
maximum sequence generated by a 1-dependent stationary sequence
can be applied to estimate the distribution function of one or multi
dimensional scan statistics. The method, which provides error bounds
for the approximations, was investigated and evaluated in several pa-
pers.
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1 Introduction

Let {Yi}1≤i≤n be a sequence of length n of identically distributed random
variables and let

Sn = max
1≤t≤n−m+1

t+m−1∑
i=t

Yi, n ≥ m, (1)

be the one dimensional discrete scan statistic with scanning window of length
m.

We recall that a sequence of r.v.’s {Xi}i≥1 is d − dependent, d ≥ 0 , if
for any t ≥ 1, the σ-fields generated by {X1, . . . , Xt} and {Xt+d+1,...,} are
independent.
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Let assume that n = (K+1)(m−1), K ∈ N, and let define for any integer
k, 1 ≤ k ≤ K, the random variables Wk, the scan statistics over sequences of
length 2(m− 1) :

Wk = max
(k−1)(m−1)+1≤t≤k(m−1)

t+m−1∑
i=t

Yi. (2)

It can be seen that {Wk} is a 1-dependent stationary sequence and we have :

P (Sn ≤ s) = P (max(W1, . . . ,WK) ≤ s). (3)

The approximation method for the distribution of the scan statistics Sn pre-
sented in this work is based on the following result of Haiman (1999):

Theorem 1 Let {Wi}i≥1be a 1-dependent sequence of r.v.’s and let

qn = qn(s) = P{max(W1, ...,Wn) ≤ s}. (4)

Then, for any s such that p1 = p1(s) = 1 − q1(s) ≤ .025 and any integer
n > 3 such that 3.3np21 ≤ 1 we have∣∣∣∣qn − 2q1 − q2

[1 + q1 − q2 + 2(q1 − q2)2]n

∣∣∣∣ /qn ≤ p21[3.3n(1+4.7np21)+9+561p1]. (5)

Let

q1 = P (W1 ≤ s) = P ( max
1≤t≤m−1

t+m−1∑
i=t

Yi ≤ s) (6)

and

q2 = P (W1 ≤ s,W2 ≤ s) = P ( max
1≤t≤2(m−1)

t+m−1∑
i=t

Yi ≤ s). (7)

Thus, for the values of s such that 1− q1(s) ≤ .025, the theorem provides
the approximation of the scan statistic distribution

P (Sn ≤ s) ' 2q1 − q2
[1 + q1 − q2 + 2(q1 − q2)2]K

(8)

with an error of less than about 3.3(K + 1)(1− q1)2.
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Remark 1

a) For any n ≥ 2(m − 1) not a multiple of (m − 1), let K = [ n
m−1
− 1]

where [x] =integer part of x. Then, we have

P (max(W1, . . . ,WK+1) ≤ s) ≤ P (Sn ≤ s) ≤ P (max(W1, . . . ,WK) ≤ s).
(9)

b) The result presented in 1 has been improved by Amarioarei (2012) en-
larging the range of values of q1 = 1 − p1 and providing tighter error
bounds.

As it will be shown in the following sections, the previous method, which
requires a prior calculation of q1(s) and q2(s), can be adapted to one di-
mensional continuous scan statistics, to multi dimensional scan statistics,
and also, in the discrete case, when the underlying random variables are d-
dependent, d ≥ 1.The approximation is particularly efficient to obtain critical
values for P (Sn ≤ s) such as .95 or .99 with high precision and for large K.
The application domain of the approximation corresponds to the situation
where 1−q1 is small and 2q1−q2

[1+q1−q2+2(q1−q2)2]K ' (1−q1+q2)
K ' 1−K(q1−q2) '

.95 or .99. Since (see Haiman et al (1998), Proposition 2.1) for 1− q1 suffi-
ciently small q1− q2 ≥ 1

2
(1− q1), the error bound 3.3(K + 1)(1− q1)2 is then

negligible with respect to the term K(q1 − q2) ' .05 or .01.

2 Application to 1-dimensional scan statis-

tics.

2.1 1-dimensional discrete scan statistic

For 1-dimensional discrete scan statistics, approximation (8) was investigated
for some i.i.d. and 1−dependent underlying Yn’s.

2.1.1 Scan statistics for i.i.d. Yi’s

Let the scan statistic be generated by i.i.d. Yn’s. If the Yn are Bernoulli
B(1 , p) r.v.’s, Naus (1982) provides exact expressions for q1(s) and q2(s), 0 ≤
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k ≤ m. In the same paper, based on heuristics supposing a Markov-like
behaviour of the sequence {Wn}n≥1, the authors propose the well known
approximation

P (Sn ≤ s) ' q1(s)

(
q2(s)

q1(s)

)K−2

, K = [
n

m− 1
− 1] (10)

which also depends only on q1 and q2. In Haiman (2007), using the Naus
exact expressions of q1 and q2, we illustrate and compare numerically ap-
proximations (8) and (10). Notice that Fu (2001) has developed the well
known Markov embedding algorithm. This algorithm enables the exact com-
putation of the distribution function of scan statistics generated by Markov
chains (in particular i.i.d. sequences) of Bernoulli Yn’s.

Another situation where exact formulas for q1 and q2 are available, is
(see Saperstein (1976) and Karve (1993)) when the Yn take values 0, 1, 2 (or
−1, 0, 1). In Haiman (2007) we use the tables established in Karve (1993) for
q1 and q2 to compare numerically approximations (8) and (10).

In other cases there are no exact formulas for q1 and q2 . Thus, in order
to use approximation (8), these quantities are calculated by Monte Carlo
simulation methods. But then, one has to add to the above approximation
error the error due to the simulation which depends in particular on the
number of iterations used to estimate q1 and q2. This problem will be ap-
proached with more details in the further section concerning the application
of approximation (9) to two and multi dimensional scan statistics.

For i.i.d. normal Yn’s , Glaz et al. (2012) propose approximations for
P (Sn ≤ s) based on bounds established in Glaz and Naus (1991). More
details about these results are given below.

2.1.2 Scan statistics for d− dependent Yn’s

Let the scan statistic defined in equation (1) be generated by d−dependent
Yn’s and for any integer k ≥ 1, let

Wk = max
(k−1)(m+d−1)+1≤t≤k(m+d−1)

t+m−1∑
i=t

Yi. (11)

It can be seen that the above sequence {Wk} is also stationary, 1-dependent
and that, if n = (K + 1)(m+ d− 1)− d, K ≥ 1, we have
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P (Sn ≤ s) = P (max(W1, ...,WK) ≤ s). (12)

Thus, for any n ≥ 2(m+ d− 1)− d and K = [ n+d
m+d−1

− 1] we have

P{max(W1, ...,WK+1) ≤ s} ≤ P (Sn ≤ s) ≤ P{max(W1, ...,WK) ≤ s} (13)

and we can use again approximation (8) for P (Sn ≤ s) with an error of less
than about 3, 3(K + 1)(1− q1)2. Here

q1 = P (W1 ≤ s) = P ( max
1≤t≤m+d−1

t+m−1∑
i=t

Yi ≤ s) (14)

and

q2 = P (W1 ≤ s,W2 ≤ s) = P ( max
1≤t≤2(m+d−1)

t+m−1∑
i=t

Yi ≤ s). (15)

For i.i.d. normal Yn’s , Glaz et al. (2012) propose approximations for
P (Sn ≤ s) based on bounds established in Glaz and Naus (1991). These ap-
proximations are similar to approximation (8) and also depend only on q1 and
q2. In Haiman and Preda (2013) we use approximation (8) to illustrate numer-
ically the effect of dependence on the scan statistics distribution. We consider
scan statistics generated by i.i.d. standard normal Yn’s and by 1−dependent
sequences {Yn}n≥1 such that Yn = aZn +

√
1− a2Zn+1, 0 <| a |≤ 1/2 ,

where {Zn}n≥1 is a i.i.d. sequence of standard normal r.v.’s ( if a = 0, Yn
are i.i.d.). The values of q1 and q2 are approximated by their corresponding
empirical distributions q∗1 and q∗2 obtained by Monte Carlo simulation. It can
then be seen that the total error on P (Sn ≤ s) at confidence level .95 is

bounded by about 3.3(K + 1)(1− q∗1(s))2 + 2K × 1.96
√

q∗1(s)(1−q∗1(s))
I

, where

I is the number of replications used to estimate q1 and q2. The numerical
results show that the distribution of scan statistic is very sensitive to the
dependence parameter a.

In Amarioarei and Preda (2014) the authors extend this particular de-
pendence model to block-factor models obtained from i.i.d. sequences in the
context of the one and two dimensional scan statistics. For more details see
also Amarioarei (2014).

In Haiman (2013) we have developed a model of 1-dependent stationary
sequences adapted to any given joint distribution of two consecutive r.v.’s
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provided it is sufficiently close to independence. Namely, if the Yn’s are
integer valued, the condition is that there exists α, .75 ≤ α ≤ 1 such that

P (Yn = i, Yn+1 = j)− αP{Y1 = i}P{Y1 = j} ≥ 0 ∀i, j ∈ N∗ . (16)

Notice that the previous condition is weaker than the more classical mixing
condition

max
i,j

| P{Yn = i, Yn+1 = j} − P{Y1 = i}P{Y1 = j} |
P{Y1 = i}P{Y1 = j}

≤ .25. (17)

The joint distribution of our model of sequence {Yn}n≥1 is given by the
recurrence formula :

P{Y1 = l1, ..., Yn+1 = ln+1} = p(l1, ..., ln+1) =

p(l1, ..., ln)p(ln+1) + p(l1, . . . , ln−1)× [ p(ln, ln+1)−p(ln)p(ln+1 )] , (18)

li ∈ N, i = 1, . . . , n+ 1, n ≥ 3.
For Bernoulli B(1, p) Yn’s, the sequences satisfying condition (16) are

members of either one of the following one parameter families a) and b) :
Let p = P (Y1 = 1) = 1 − p(0), 0 < p < 1 be fixed and consider the set
of bivariate distributions p(i, j) = P (Yn = i, Yn+1 = j), i, j ∈ {0, 1}, such
that :

a) if p(0, 0) < p2(0) = (1− p)2,
p(0, 0) = (1− p)2ν, p(0, 1) = p(1, 0) = 1− p− (1− p)2ν and
p(1, 1) = 2p− 1 + (1− p)2ν where
1− 1

4
( p
1−p)2 ≤ ν < 1 if p ≤ 1

2
and 3

4
≤ ν < 1 if p > 1

2
.

b) if p(0, 0) ≥ p2(0),
p(0, 0) = 1− p− (1− p)pν, p(0, 1) = p(1, 0) = (1− p)pν and
p(1, 1) = p− (1− p)pν, where 3

4
≤ ν < 1 .

In Haiman and Preda (2013) we compare numerically the distributions
of scan statistics generated by the previous 1-dependent model of Bernoulli
Yn’s with those generated by Markov chains having the same distribution
for two consecutive r.v.’s. For the 1-dependent model we use approximation
(8) whereas for the Markov chain we use the Markov embedding algorithm
of Fu (2001). For the 1-dependent sequences, the exact values of q1 and
q2 are calculated using the recurrence formula (18). The numerical results
show in particular that a higher dependence (model b, ν = .75) between
consecutive r.v.’s changes significantly the distribution of the scan statistics
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as compared to the corresponding i.i.d. case ν = 1.These results also show
that the Markov and the associated 1-dependent model generate significantly
different distributions of scan statistics.

2.2 One-dimensional continuous scan statistics

Let N be a Poisson process of intensity λ on R+ and let u > 0 and T > u
be fixed constants. The one dimensional continuous scan statistic is defined
as

ST (u, λ) = ST = max
0≤t≤T−u

(N(t+ u)−N(t)) (19)

Let T = (K + 1)u,K integer ≥ 1, and let

Wk = max
(k−1)u≤t≤ku

(N(t+ u)−N(t)), k = 1, ..., K. (20)

As for the discrete scan statistic , {Wk} is a 1-dependent stationary sequence
and

P (ST ≤ s) = P (max(W1, ...,WK) ≤ s), s ∈ N. (21)

We then also can apply approximation (8), with

q1 = q1(s) = P (W1 ≤ s) = P{max
0≤t≤u

(N(t+ u)−N(t)) ≤ s}, s ∈ N (22)

and

q2 = q2(s) = P (W1 ≤ s,W2 ≤ s) = P{ max
0≤t≤2u

(N(t+ u)−N(t)} ≤ s), s ∈ N.
(23)

Huntigton and Naus (1975) give an exact formula for P (ST ≤ s) that sums
many products of determinants and for large T requires excessive computer
time. This formula is used in Neff and Naus (1980) to establish tables for
the d.f. of Sn(1, λ) (notice that ST (u, λ) = ST/u(1, λu)), for several discrete
values of λ and n ≤ 100. In Haiman (2000) we have applied and compared
approximations (8) and (10) with q1 and q2 from Neff and Naus (1980)
tables, for several values of λ and n = 1000.
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3 Application to multi dimensional scan statis-

tics.

3.1 Two dimensional discrete scan statistic

Let m1 and m2 be positive integers and let n1 and n2 be integers such that
1≤ m1 ≤ n1 and 1 ≤ m2 ≤ n2. Let {Yi,j}i,j≥1 be a family of non negative
i.i.d. integer valued r.v.’s and let the two dimensional scan statistic generated
by {Yi,j} be defined as

S = Sn1,n2 = Sn1,n2(m1,m2) = max
1≤u≤n1−m1+1,1≤v≤n2−m2+1

u+m1−1∑
i=u

v+m2−1∑
j=v

Yi,j.

(24)
Let n1 = (K + 1)m1− 1 and n2 = (L+ 1)m2− 1 where K and L are positive
integers.

Let

Uk = max
(k−1)m1+1≤u≤km1,1≤v≤n2−m2+1

u+m1−1∑
i=u

v+m2−1∑
j=v

Yi,j. (25)

Observe that {Uk}, k = 1, ..., K is a 1-dependent stationary sequence and
for any s ∈ N

P{S ≤ s} = P{ max
k=1,...,K

Uk ≤ s}. (26)

Put

q1 = P (U1 ≤ s) = P{ max
1≤u≤m1,1≤v≤n2−m2+1

u+m1−1∑
i=u

v+m2−1∑
j=v

Yi,j ≤ s} (27)

and

q2 = P (U1 ≤ s, U2 ≤ s) = P{ max
1≤u≤2m1,1≤v≤n2−m2+1

u+m1−1∑
i=u

v+m2−1∑
j=v

Yi,j ≤ s}.

(28)
Then, if 1− q1 ≤ .025, we can apply approximation (8), P (S ≤ s) '

2q1−q2
[1+q1−q2+2(q1−q2)2]K , with an error of less than about 3.3(K + 1)(1− q1(s))2.
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Next, in order to calculate q1 and q2 in the previous approximation, for
l = 1, ..., L let

Vl = max
1≤u≤m1,(l−1)m2+1≤v≤lm2

u+m1−1∑
i=u

v+m2−1∑
j=v

Yi,j (29)

and

Wl = max
1≤u≤2m1,(l−1)m2+1≤v≤lm2

u+m1−1∑
i=u

v+m2−1∑
j=v

Yi,j. (30)

The sequences {Vl}l=1,...,L and {Wl}l=1,...,L are both stationary 1-dependent
and one can again use approximation (8): let q11 = P (V1 ≤ s), q12 = P (V1 ≤
s, V2 ≤ s), q21 = P (W1 ≤ s) and q22 = P (W1 ≤ s,W2 ≤ s). Notice that
q11 = P (S2m1,2m2 ≤ s), q12 = P (S2m1,3m2 ≤ s), q21 = P (S3m1,2m2 ≤ s) and
q22 = P (S3m1,3m2 ≤ s). If 1− q11 ≤ .025 and 1− q21 ≤ .025 we have

q1 ' (2q11 − q12)[1 + q11 − q12 + 2(q11 − q12)2]−L (31)

with an error of less than about 3.3(L+ 1)(1− q11)2 and

q2 ' (2q12 − q22)[1 + q12 − q22 + 2(q12 − q22)2]−L (32)

with an error of 3.3(L + 1)(1 − q21)
2. Assuming that the qij are known,

1 − q11 and 1 − q21 are small and L ≤ K, it can be seen, substituting the
above approximations of q1 and q2 in approximation (9), that the total error
on P (S ≤ s) is bounded by about

Eapp = 3.3(L+ 1)(K + 1)[(1− q11)2 + (1− q21)2 + (L+ 1)(q11 − q21)2]. (33)

However, in general there are no exact formulas for q11, q12 and q22 which can
only be approximated by Monte Carlo simulation . In Haiman and Preda
(2006) we have applied the previous method to binomial and Poisson Yi,j
’s. As for one dimensional scan statistics, we calculate the additional, at
confidence level .95 simulation error Esim . Here Esim is proportional to

(L + 1)(K + 1) × .95
√

1
I

where I is the number of replications used to

estimate the qij. Thus, the total error on P{S ≤ s} is bounded by about
E = Eapp +Esim . We compare numerically our results with results obtained
using the product approximation, the Poisson approximation and Bonferroni
inequality techniques as presented in Glaz et al (2001). For binary Yi,j ’s we
compare our values to bounds obtained in Boutsikas and Koutras (2003).

In Amarioarei and Preda (2014), the previous method was adapted to
some block factor type dependent models of binary Yi,j ’s.

9



3.2 Three dimensional discrete scan statistics

Amarioarei and Preda (2015) have also adapted the above method to he
three dimensional discrete scan statistic. Similarly to the two-dimensional,
the three dimensional discrete scan statistic S = Sn1,n2,n3(m1,m2,m3) is
defined as the maximum of sums of r.v.’s Yi,j,k over all three-dimensional
paralellipipedic windows of side lengths m1,m2,m3 moving inside the paral-
lelepiped of side lengths n1, n2, n3, where m1 ≤ n1,m2 ≤ n2 and m3 ≤ n3. In
this case the application of the method requires the estimation of quantities
q111, q121,q112,q122, q211,q221, q212 and q222 which are the d.f.’s of scan statistics
S2m1,2m2,2m3 , . . . , S3m1,3m2,3m3 . In order to obtain reasonable simulation errors
for these quantities, as in Amarioarei and Preda (2014), the authors use the
importance sampling method introduced in Naiman and Priebe (2001).

3.3 Two dimensional continuous scan statistics

Let N be a two dimensional Poisson process of intensity λ . For fixed real
numbers 0 < u < n1 and 0 < v < n2, let the two dimensional continuous
scan statistic generated by N be defined as

S = S((u, v), λ, n1, n2) = max
0≤t≤n1−u,0≤z≤n2−v

N([t, t+ u]× [z, z + v]). (34)

Observing that for any integer s ≥ 0

P{S((u, v), λ, n1, n2) ≤ s} = P{S((1, 1), λuv, n1/u, n2/v) ≤ s} (35)

there is no loss of generality to assume that u = v = 1. Let n1 = K + 1 ,
n2 = L+ 1 where L and K are positive integers and let

Uk = max
k−1≤t≤k,0≤z≤L

N([t, t+ 1]× [z, z + 1]), k = 1, ..., K. (36)

Then, {Uk}, k = 1, . . . , K is a 1-dependent stationary sequence and for
any s ∈ N we have also, as previously for the two dimensional discrete scan
statistics, P{S[(1, 1), λ,K+1, L+1] ≤ s} = P{S ≤ s} = P{maxk=1,...,K Uk ≤
s}. Put

q1 = P (U1 ≤ s) = P{ max
0≤t≤1,0≤z≤L

N([t, t+ 1]× [z, z + 1]) ≤ s} (37)
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and

q2 = P (U1 ≤ s, U2 ≤ s) = P{ max
0≤t≤2,0≤z≤L

N([t, t+ 1]× [z, z + 1] ≤ s}. (38)

Then, if 1− q1 ≤ .025, we can again apply approximation (8), P (S ≤ s) '
2q1−q2

[1+q1−q2+2(q1−q2)2]K , with an error of less than about 3.3(K + 1)(1− q1(s))2.
Next , in order to calculate q1 and q2 in the previous approximation, for
l = 1, ..., L let

Vl = max
1≤t≤1,l−1≤z≤l

N([t, t+ 1]× [z, z + 1]) (39)

and
Wl = max

1≤t≤2,l−1≤z≤l
N([t, t+ 1]× [z, z + 1]). (40)

The sequences {Vl}l=1,...,L and {Wl}l=1,...,L are both stationary 1-dependent
and one can again use approximation (8): let q11 = P (V1 ≤ s), q12 =
P (V1 ≤ s, V2 ≤ s), q21 = P (W1 ≤ s) and q22 = P (W1 ≤ s,W2 ≤ s).
Notice that q11 = P{S[(1, 1), λ, 2, 2] ≤ s}, q12 = P{S[(1, 1), λ, 2, 3] ≤ s} =
q21 = P{S[(1, 1), λ, 3, 2] ≤ s} and q22 = P{S[(1, 1), λ, 3, 3] ≤ s}. If 1− q11 ≤
.025 and 1− q21 ≤ .025 we again have

q1 ' (2q11 − q12)[1 + q11 − q12 + 2(q11 − q12)2]−L (41)

with an error of less than about 3.3(L+ 1)(1− q11)2 and

q2 ' (2q12 − q22)[1 + q12 − q22 + 2(q12 − q22)2]−L (42)

with an error of 3.3(L + 1)(1 − q21)
2. Assuming that the qij are known,

1−q11 and 1−q21 are small and L ≤ K, as previously, substituting the above
approximations of q1 and q2 in approximation (9), it can be shown that the
total error on P (S ≤ s) is bounded by about

Eapp = 3.3(L+ 1)(K + 1)[(1− q11)2 + (1− q21)2 + (L+ 1)(q11 − q21)2]. (43)

However, as for the discrete two dimensional scan statistics, there are no
exact formulas for q11, q12 and q22 which can only be approximated by Monte
Carlo simulation . Let Sk,l = S[(1, 1), λ, k+ 1, l+ 1], k, l = 1, 2 and consider
the d.f. of the conditional scan statistic given that a fixed number n of points
fall in [0, k + 1]× [0, l + 1] :
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qnk,l(s) = P{Sk,l ≤ s | N([0, k + 1]× [0, l + 1]) = n}, 1 ≤ s ≤ n . (44)

Observe that qnk,l is the d.f. of r.v. Snk,l = maximum number of points obtained
by scanning the rectangle [0, k+ 1]× [0, l+ 1] in which n independent points
are drawn uniformly. We then have

qk,l(s) = e−λkl(
s∑
j=0

[λ(k + 1)(l + 1)]j

j!
+

s(k+1)(l+1)∑
j=s+1

qjk,l(s)
[λ(k + 1)(l + 1)]j

j!
).

(45)
In Haiman and Preda (2002) we have developed a particular method of simu-
lation independent replications of r.v.’s Snk,l, k, l = 1, 2.We use this method to
obtain empirical estimations of qnk,l(s) from which by formula (45) we deduce
the final approximations q∗k,l of qk,l . The empirical estimations of qnk,l gen-
erate additional errors. These errors are bounded at the .95 confidence level

by εk,l where εk,l ' 1, 96

√
q∗k,l(1−q

∗
k,l)

I
. Here I is the number of replications of

r.v.’s Snk,l, k, l = 1, 2. The total error on P (S ≤ s) is then bounded by about

E = Eapp + (K + 1)(L+ 1)(ε1,1 + ε1,2 + ε2,2). (46)

Naus (1965) and Neff (1978) give exact formulas for qsk,l(s − 1) and qsk,l(s −
2). In Haiman and Preda (2002) these formulas are used to evaluate the
simulation results. Numerical examples for several values of K,L and λ are
given and the results are compared with approximation formulas proposed
in Aldous (1989) and Alm (1997).
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