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Abstract

The definition of the the two-dimensional discrete scan statistic with rectangular window shape is
extended to a more general framework. In particular, this approach allows to introduce different shapes
for the scanning window (discretized rectangle, polygon, circle, ellipse or annulus). We provide approxi-
mation for the distribution of the scan statistic and illustrate their accuracy by conducting a numerical
comparison study. The power of test based on the scan statistics is also evaluated by simulation.

1 Introduction

Let T1, T2 ≥ 2 be positive integers, R = [0, T1] × [0, T2] be a rectangular region and Xs1,s2 , 1 ≤ sj ≤
Tj , j ∈ {1, 2}, be an array of independent and identically distributed random variables from a specified
distribution (Bernoulli, binomial, Poisson, normal, etc.) associated to the elementary sub-region r(s1, s2) =
[s1−1, s1]× [s2−1, s2]. The two dimensional scan statistics introduced by [Chen and Glaz, 1996a] is defined
as the largest number of events in any rectangular scanning window of size m1 ×m2, where 1 ≤ m1 ≤ T1
and 1 ≤ m2 ≤ T2 are positive integers, within the rectangular region R, i.e.

Sm1,m2
(T1, T2) = max

1≤i1≤T1−m1+1
1≤i2≤T2−m2+1

i1+m1−1∑
s1=i1

i2+m2−1∑
s2=i2

Xs1,s2 (1)

The two-dimensional scan statistics have been widely used in several fields of application such as cos-
mology ([Darling and Waterman, 1986]), reliability theory ([Barbour et al., 1996]), epidemiology and public
health ([Genin et al., 2013, Castra et al., 2019]). Since there are no exact formulas for the probability dis-
tribution of S, that motivates the researchers to look for accurate approximations. Nowadays, the study
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(a) (b)

Figure 1: Example of discrete line (a) and discrete circle (b) using Bresenham’s algorithms.

of the distribution of the scan statistics is an active research topic in statistics and several approxima-
tions and bounds have been provided in literature ([Chen and Glaz, 1996b, Boutsikas and Koutras, 2003,
Haiman and Preda, 2006]).
From the definition of the discrete scan statistics, the shape of the scanning window is rectangular. That is
the most common and easy to deal with among other possible choices. As far as we know, no other forms
have been considered in literature and, one possible explanation is the discrete feature of data. Notice that
for the two-dimensional continuous scan statistics, there exists works considering different shapes. Actually,
[Naus, 1965, Loader, 1991] used rectangles, [Alm, 1997, Alm, 1998, Anderson and Titterington, 1997] con-
sidered rectangles and circles whereas [Alm, 1997, Alm, 1998] considered triangles, ellipses and other convex
shapes [Assunção et al., 2006, Tango and Takahashi, 2005].
In this article we present a natural extension of the classical definition of the two dimensional discrete scan
statistics by taking in (refeq1), instead of a moving sum, a moving score evaluated with the help of a function
(matrix) applied on blocks of random variables. This score allows the definition of the two-dimensional
discrete scan statistics with arbitrary scanning window shape. The article is organized as follows: Section 2
presents the definition of the two-dimensional discrete scan statistics with arbitrary scanning window shape.
Section 2.2 presents the approximation methodology of the distribution of the scan statistic. In Section 3, we
provide numerical applications for both the approximation of the distribution and power when considering
different discrete shapes of the scanning windows. Lastly, the results are discussed in section 4.

2 Two dimensional discrete scan statistics with arbitrary window
shape

2.1 Arbitrary discrete scanning window shape

Let G be a geometrical shape of the scanning window (rectangle, quadrilateral, ellipse, etc.) and G̃ be
its corresponding discrete form. The transformation of continuous shape to discrete shape are performed
using rasterization algorithms. In the literature, several authors have proposed algorithm to rasterize line
[Bresenham, 1965], circle [Bresenham, 1977] or Bezier curves [Foley et al., 1997]. Figure 1 illustrates the
discretization of line and circle according the previous algorithm.
To each discrete shape G̃ it corresponds an unique rectangle of smallest size m1×m2 which circumscribes G̃.
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Figure 2: Discrete circle (m1 = m2 = 13) and discrete annulus (m1 = m2 = 17)

Therefore, let define the matrix A
(
G̃
)

= (aij) 1 ≤ i ≤ m1
1 ≤ j ≤ m2

with entries 0 and 1 (aij = 1 if there the elementary

square [i − 1, i] × [j − 1, j] belongs to G̃ and 0 otherwise). See Figure 2 for discrete circle (m1 = m2 = 13)
and discrete annulus (m1 = m2 = 17).

We define the two-dimensional discrete scan statistic with scanning window G̃ as the maximum of the moving
sums

Yi1,i2 =

i1+m1−1∑
s1=i1

i2+m2−1∑
s2=i2

A(s1 − i1 + 1, s2 − i2 + 1)Xs1,s2

over the region R, i.e. (i1, i2) ∈ [1, T1 −m1 + 1]× [1, T2 −m2 + 1],

SG̃(T1, T2) = max
1≤i1≤T1−m1+1
1≤i2≤T2−m2+1

Yi1,i2 . (2)

Remark that if, in particular, the shape G is a rectangle of size m1×m2 then its corresponding {0, 1} matrix
G̃ has all the entries equal to 1. Thus, the definition of the two-dimensional discrete scan statistics (2)
extends the classical one given in (1).
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2.2 Approximation for the distribution of SG̃

As far as we know, there are no available results on the distribution of the two-dimensional discrete scan
statistics SG̃ with general window shape.

For rectangular scanning window G̃ of size m1 ×m2, various methods of approximation and bounds have
been proposed for P(SG̃ ≤ τ), τ ∈ R. An overview of these methods as well as a complete bibliography on
the subject are given in [Glaz et al., 2001] and [Glaz et al., 2009].
The approximation methodology proposed in [Haiman and Preda, 2006] has the advantage to provide sharp
bounds for the associated error with reasonable computing time. The main idea of the method is to consider
the scan statistics as the maximum of a 1-dependent stationary sequence of random variables. Therefore,
one can use the results of [Haiman, 1999] (Theorem 1), improved by [Amărioarei, 2014], that provide ap-
proximations and bounds for the distribution of the maximum of 1-dependent stationary sequences.
In what follows, we describe this methodology for rectangular scanning window and use it to arbitrary
scanning window shape.
Let L1 = b T1

m1−1c and L2 = b T2

m2−1c, where bxc denotes the integer part of x. Denote by Qi,j , 1 ≤ i ≤ L1,
1 ≤ j ≤ L2,

Qi,j = SG̃(i(m1 − 1), j(m2 − 1)),

the scan statistic considered on the rectangular region of size [0, i(m1 − 1)] × [0, j(m2 − 1)] with scanning
window G̃. Notice that SG̃(T1, T2) = QL1,L2 .
The approximation of the distribution of SG̃ developed in [Haiman and Preda, 2006] is based on the distri-
butions of Q2,2, Q2,3, Q3,2 and Q3,3. Unlike the case of SG̃(T1, T2) = QL1,L2

, the estimation of the distri-
butions of Qi,j , i, j ∈ {2, 3}, by Monte Carlo techniques is efficient and computationally feasible because of
the small size of the scanned region and the use of importance sampling techniques in this framework(see
[Amărioarei and Preda, 2014] for more details).
The approximation of the distribution of SG̃(T1, T2) is then obtained as follows ([Haiman and Preda, 2006]),
[Amărioarei and Preda, 2014]).

Theorem 1. Let i, j ∈ {2, 3}, τ ∈ R and Qi,j(τ) = P (Qi,j ≤ τ). If Q̂i,j
.
= Q̂i,j(τ) is an estimate of Qi,j(τ)

with
∣∣∣Q̂i,j −Qi,j(τ)

∣∣∣ ≤ βi,j and τ is such that 1−Q2,2(τ) ≤ 0.1 then,∣∣∣∣P (SG̃(T1, T2) ≤ τ)−
(

2Q̂2 − Q̂3

) [
1 + Q̂2 − Q̂3 + 2(Q̂2 − Q̂3)2

]1−L1

∣∣∣∣ ≤ Esf + Esapp, (3)

where, for t ∈ {2, 3}

Q̂t =
(

2Q̂t,2 − Q̂t,3
) [

1 + Q̂t,2 − Q̂t,3 + 2(Q̂t,2 − Q̂t,3)2
]1−L2

Esf = (L1 − 1)(L2 − 1) (β2,2 + β2,3 + β3,2 + β3,3)

Esapp = (L1 − 1)

[
F1

(
1− Q̂2 +A2 + C2

)2
+ (L2 − 1)(F2C2 + F3C3)

]
A2 = (L2 − 1) (β2,2 + β2,3)

Ct = (L2 − 1)Ft

(
1− Q̂t,2 + βt,2

)2
.

and F1, F2 and F3 are constants defined in [Amărioarei, 2014].

The result in Theorem 1 shows that the distribution of the scan statistics SG̃(T1, T2) can be efficiently
approximated as

P (SG̃(T1, T2) ≤ τ) ≈
(

2Q̂2 − Q̂3

) [
1 + Q̂2 − Q̂3 + 2(Q̂2 − Q̂3)2

]1−L1

, (4)
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Figure 3: Approximation process for P(SG̃ ≤ τ)

provided accurate approximations of Qij(τ), i, j ∈ {2, 3} are available. The approximation methodology is
illustrated in Figure 3.
Notice that Esapp, given in (3), rapidly tends to zero as P(SG̃(T1, T2) ≤ τ) is close to 1. Moreover, for large
L1 and L2, the contribution of Esapp is almost negligible with respect to Esf . Thus, the accuracy of the
approximation essentially depends on the number N of replications used for estimating the distribution of
Q2,2, Q2,3, Q3,2 and Q3,3. For rectangular scanning window we used the importance sampling technique
presented in [Amărioarei and Preda, 2014] which provides sharper error bounds than the usual Monte Carlo
method we used for discrete circle. The approximation error is useful when one has to compare approxi-
mations for different shapes. A difference between two approximations can only be highlighted if the error
bounds of those approximations are sufficiently small.
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3 Numerical applications. Approximation and power of the scan
statistic test

In this section, we first present a simulation study aiming to evaluate the change in the distribution of the
two-dimensional discrete scan statistics when scanning with different shapes of the window. Secondly, we
evaluate the power of the test based on the scan statistics accordingly to the shape of the scanning window
and that of the simulated cluster (under the alternative hypothesis). We consider here the case of triangular,
rectangular, quadrilateral, circular, ellipsoidal and annular scanning windows of same size (area).

3.1 Approximation and scanning window shape

We present approximations of the distribution of scan statistics, P(SG̃ ≤ τ), when the Xij ’s are distributed
as binomial (B(ν, p)), Poisson (P(λ)) and Normal (N (µ, σ)). The methodology used for obtaining such
approximations is that presented in Section 2.2. For each model, we compare the distributions of the
scan statistics when scanning with triangular, rectangular, quadrilateral, circular, ellipsoidal and annular
windows. Tables 1 and 2 provide the distribution of the two-dimensional discrete scan statistic when scanning
a rectangular region of size T1 × T2 = 250 × 250 with a scanning window of fixed size A (A ≈ 130) and
various shapes. Notice that, since the scanning region is a square, the distribution of the scan statistics with
rectangular scanning window of size m1 ×m2 is the same as scanning with m2 ×m1.
We consider several models for Xij : B(1, 0.01), B(5, 0.05), P(0.25) and N (0, 1). The results presented in
the Tables 1 and 2 are obtained using the approximation (3). We used the importance sampling technique
presented in [Naiman and Priebe, 2001] (see also [Amărioarei and Preda, 2013]) which provides sharper error
bounds than the usual Monte Carlo method.
In Tables 1 and 2 we have :

- Sim column denotes the estimation obtained by Monte Carlo (IS is the number of replications with
importance sample algorithm and IA otherwise),

- AppH denotes the ”Haiman approximation” given by (4),

- ETotal denotes the total error of approximation given in Theorem 1, ETotal = Esf + Esapp.

Comparing the approximation values and taking into account the error bounds, one observes that the dis-
tributions of the scan statistics associated to different scanning window shapes are close to each other.
However, as expected, there are significant small differences, as for example in the Poisson model when
scanning with a square scanning window (P(SG̃ ≤ 61) < 0.96) and with a quadrilateral scanning window
(P(SG̃ ≤ 61) > 0.96).

3.2 Power of the scan statistic test: window and cluster shapes

We evaluate the power of the test based on the scan statistics accordingly to the shape of the scanning
window and that of the existing cluster under the alternative hypothesis. We consider here for Xij ’s the
binomial model. The test based on scan statistics checks the null hypothesis H0 : Xij ∼ B(ν, p0) against the
alternative H1 supporting the existence of a subregion (cluster) C ∈ {1, . . . , T1} × {1, . . . , T2} such that for
all (i, j) ∈ C, the Xij ’s are distributed according to binomial distribution B(ν, p1), p1 > p0. Otherwise, i.e.
outside C, the Xij ’s are binomial distributed B(ν, p0).
In what follows we consider the shape of the cluster C to be triangular, rectangular, quadrilateral, circular,
ellipsoidal and annular. For a fixed shape of the cluster one evaluates the power of the scan statistic to
detect the cluster when the scanning window is of various shapes, i.e. triangular, rectangular, quadrilateral,
circular, ellipsoidal and annular. We adopt the following procedure:
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• Fix the type 1 error to α = 0.05.

• Generate a random field {Xij}, {i, j} ∈ {1, . . . , T1} × {1, . . . , T2} such that there is a change in the
distribution parameters of Xi,j in the cluster C. The location of C inside {1, . . . , T1} × {1, . . . , T2} is
randomly generated.

• Under H1, we consider p1 in the interval [p0, pmax] taking all values with a discrete step of 0.01. The
value pmax is such that pmax ≥ p0 and the power of the scan statistics does not change (i.e. equals to
1) for all considered scanning window shape.

• For each particular shape of the scanning window,

– Let τ1−α be the smallest integer such that P(SG̃ ≤ τ1−α)) ≥ 1 − α. It is obtained as the 1 − α
quantile of the approximated distribution of SG̃ given by (3).

– Under H1, for each specific shape of cluster and parameter (p1), simulate N = 106 realizations of
random field {Xi,j}. For each realization i, 1 ≤ i ≤ N , the observed value of the scan statistic
SG̃i is compared to τ1−α. The power 1− β is estimated by :

1− β =
1

N

N∑
i=1

1{SG̃i≥τ1−α}
(5)

For T1 × T2 = 250 × 250, the estimation of the power function of the test based on scan statistics is
presented in Figures 4 and 5. For both models and for each of the cluster shapes, we plot the power function
corresponding to scan statistics with different scanning window shapes. With regard to Bernoulli’s model
(Figure 4), we observe that the power curves are very similar whatever the shape of the simulated cluster
and that of the scanning window. However, cluster detection is slightly more effective when the shape of the
scanning window is identical to that of the simulated cluster. This is more marked in the case of an annular
scan window. The same comments are still valid for the binomial model (Figure 5).

4 Discussion

We proposed an extension of the classical definition of the two dimensional discrete scan statistics when
considering an scanning window of arbitrary shape. A simulation study carried out with different discrete
shapes of scanning window showed that the distributions of the associated scan statistics are very close to
each other but significantly different. The power of the scan statistics is linked to the shape of the scanning
window and that of the existing cluster under the alternative hypothesis throughout the simulation study.
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Table 1: Numerical results for P(SG̃ ≤ τ) for triangular, rectangular and quadrilateral shapes of the scanning
window.

Window shape Triangle (m1 = 14, m2 = 18, A = 133, IS = 1e5, IA = 1e6)

Xi,j ∼ B(1, 0.01) Xi,j ∼ B(5, 0.05)
τ Sim AppH ETotal τ Sim AppH ETotal

3 0.916397 0.918667 0.004333 59 0.863336 0.897101 0.004902
4 0.997488 0.997483 0.000082 60 0.936684 0.948160 0.002010
5 0.999947 0.999947 0.000002 61 0.971529 0.974938 0.000894
6 0.999999 0.999999 0 62 0.987094 0.988279 0.000412
7 0.999999 0.999999 0 63 0.994372 0.994664 0.000192
8 1.000000 1.000000 0 64 0.997563 0.997643 0.000089
9 1.000000 1.000000 0 65 0.998946 0.998971 0.000041
10 1.000000 1.000000 0 66 0.999564 0.999567 0.000018
11 1.000000 1.000000 0 67 0.999817 0.999820 0.000008

Xi,j ∼ P(0.25) Xi,j ∼ N(0, 1)

τ Sim AppH ETotal τ Sim AppH ETotal

59 0.739866 0.820277 0.011813 50 0.911170 0.934999 0.002737
60 0.871829 0.902957 0.004483 51 0.945219 0.957777 0.001655
61 0.939577 0.950977 0.001911 52 0.966494 0.972997 0.001026
62 0.971673 0.975649 0.000890 53 0.979944 0.982929 0.000644
63 0.987075 0.988206 0.000425 54 0.987840 0.989469 0.000406
64 0.994104 0.994492 0.000204 55 0.992768 0.993477 0.000257
65 0.997384 0.997452 0.000098 56 0.995667 0.996022 0.000162
66 0.998821 0.998855 0.000046 57 0.997412 0.997574 0.000102
67 0.999489 0.999490 0.000022 58 0.998509 0.998563 0.000063

Window shape Rectangle (m1 = 11, m2 = 12, A = 132, IS = 1e5, IA = 1e6)

Xi,j ∼ B(1, 0.01) Xi,j ∼ B(5, 0.05)
τ Sim AppH ETotal τ Sim AppH ETotal

3 0.947896 0.948226 0.002110 59 0.856993 0.857094 0.005485
4 0.997983 0.997986 0.000058 60 0.919416 0.919589 0.002300
5 0.999943 0.999943 0.000001 61 0.956420 0.956569 0.001024
6 0.999999 0.999999 0 62 0.977142 0.977065 0.000471
7 0.999999 0.999999 0 63 0.988228 0.988208 0.000220
8 1.000000 1.000000 0 64 0.994130 0.994095 0.000103
9 1.000000 1.000000 0 65 0.997121 0.997107 0.000048
10 1.000000 1.000000 0 66 0.998610 0.998607 0.000022
11 1.000000 1.000000 0 67 0.999342 0.999342 0.000010

Xi,j ∼ P(0.25) Xi,j ∼ N(0, 1)

τ Sim AppH ETotal τ Sim AppH ETotal

59 0.764372 0.764495 0.013285 50 0.865858 0.865484 0.004572
60 0.857872 0.859289 0.005320 51 0.904555 0.904805 0.002691
61 0.918972 0.918732 0.002307 52 0.933323 0.933206 0.001620
62 0.954682 0.954579 0.001059 53 0.953950 0.953807 0.000993
63 0.975271 0.975391 0.000502 54 0.968340 0.968483 0.000617
64 0.986996 0.986966 0.000242 55 0.978632 0.978687 0.000386
65 0.993240 0.993261 0.000117 56 0.985791 0.985752 0.000242
66 0.996557 0.996551 0.000056 57 0.990621 0.990585 0.000152
67 0.998290 0.998283 0.000027 58 0.993837 0.993815 0.000096

Window shape Quadrilateral (m1 = 14, m2 = 18, A = 131, IS = 1e5, IA = 1e6)

Xi,j ∼ B(1, 0.01) Xi,j ∼ B(5, 0.05)
τ Sim AppH ETotal τ Sim AppH ETotal

3 0.926068 0.927398 0.003806 59 0.914546 0.927613 0.002942
4 0.997622 0.997627 0.000075 60 0.959599 0.963873 0.001255
5 0.999946 0.999946 0.000002 61 0.981235 0.982506 0.000571
6 0.999999 0.999999 0 62 0.991423 0.991796 0.000266
7 0.999999 0.999999 0 63 0.996113 0.996233 0.000124
8 1.000000 1.000000 0 64 0.998283 0.998337 0.000057
9 1.000000 1.000000 0 65 0.999266 0.999266 0.000026
10 1.000000 1.000000 0 66 0.999684 0.999684 0.000012
11 1.000000 1.000000 0 67 0.999868 0.999869 0.000005

Xi,j ∼ P(0.25) Xi,j ∼ N(0, 1)

τ Sim AppH ETotal τ Sim AppH ETotal

59 0.835054 0.870351 0.006852 50 0.920004 0.935266 0.002571
60 0.917972 0.931040 0.002768 51 0.950232 0.957711 0.001556
61 0.960397 0.964711 0.001237 52 0.968755 0.972594 0.000964
62 0.981228 0.982451 0.000585 53 0.980695 0.982566 0.000606
63 0.991142 0.991510 0.000281 54 0.988110 0.989060 0.000383
64 0.995855 0.995971 0.000136 55 0.992626 0.993110 0.000242
65 0.998108 0.998124 0.000065 56 0.995569 0.995771 0.000153
66 0.999135 0.999153 0.000031 57 0.997361 0.997394 0.000096
67 0.999620 0.999622 0.000014 58 0.998379 0.998435 0.000060
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Table 2: Numerical results for P(SG̃ ≤ τ) for circular, ellipsoidal and annular shapes of the scanning window.

Window shape Circle (m1 = 13, m2 = 13, A = 129, IS = 1e54, IA = 1e6)

Xi,j ∼ B(1, 0.01) Xi,j ∼ B(5, 0.05)
τ Sim AppH ETotal τ Sim AppH ETotal

3 0.950311 0.950461 0.002195 59 0.920229 0.920388 0.002318
4 0.998118 0.998114 0.000059 60 0.956814 0.957143 0.001016
5 0.999947 0.999947 0.000001 61 0.977460 0.977614 0.000462
6 0.999999 0.999999 0 62 0.988568 0.988567 0.000214
7 0.999999 0.999999 0 63 0.994312 0.994309 0.000099
8 1.000000 1.000000 0 64 0.997229 0.997228 0.000046
9 1.000000 1.000000 0 65 0.998678 0.998679 0.000021
10 1.000000 1.000000 0 66 0.999380 0.999381 0.000009
11 1.000000 1.000000 0 67 0.999715 0.999715 0.000004

Xi,j ∼ P(0.25) Xi,j ∼ N(0, 1)

τ Sim AppH ETotal τ Sim AppH ETotal

59 0.858454 0.859178 0.005391 50 0.888137 0.887891 0.003485
60 0.919182 0.919586 0.002310 51 0.921173 0.921549 0.002058
61 0.955229 0.955388 0.001047 52 0.945761 0.945644 0.001243
62 0.976023 0.975987 0.000491 53 0.962790 0.962825 0.000760
63 0.987414 0.987344 0.000234 54 0.974848 0.974878 0.000470
64 0.993477 0.993502 0.000112 55 0.983235 0.983263 0.000293
65 0.996706 0.996703 0.000054 56 0.988885 0.988907 0.000182
66 0.998372 0.998365 0.000025 57 0.992730 0.992734 0.000114
67 0.999207 0.9992032 0.000012 58 0.995269 0.995287 0.000071

Window shape Ellipse (m1 = 19, m2 = 9, A = 135, IS = 1e5, IA = 1e6)

Xi,j ∼ B(1, 0.01) Xi,j ∼ B(5, 0.05)
τ Sim AppH ETotal τ Sim AppH ETotal

3 0.944001 0.944211 0.002297 59 0.764871 0.763482 0.009128
4 0.997757 0.997758 0.000069 60 0.860903 0.860548 0.004127
5 0.999935 0.999935 0.000002 61 0.921089 0.920882 0.001941
6 0.999998 0.999998 0 62 0.956735 0.956866 0.000934
7 1.000000 1.000000 0 63 0.977118 0.977094 0.000452
8 1.000000 1.000000 0 64 0.988182 0.988152 0.000218
9 1.000000 1.000000 0 65 0.994044 0.994012 0.000104
10 1.000000 1.000000 0 66 0.997037 0.997037 0.000049
11 1.000000 1.000000 0 67 0.998554 0.998558 0.000023

Xi,j ∼ P(0.25) Xi,j ∼ N(0, 1)

τ Sim AppH ETotal τ Sim AppH ETotal

59 0.638962 0.639102 0.019442 50 0.843156 0.844113 0.004369
60 0.768283 0.769666 0.008610 51 0.887477 0.887692 0.002755
61 0.861614 0.860885 0.004012 52 0.920601 0.920385 0.001757
62 0.919144 0.919301 0.001948 53 0.944398 0.944328 0.001127
63 0.954941 0.954864 0.000965 54 0.961682 0.961667 0.000725
64 0.975255 0.975369 0.000481 55 0.973797 0.973864 0.000468
65 0.986869 0.986900 0.000240 56 0.982232 0.982330 0.000301
66 0.993115 0.993127 0.000119 57 0.988183 0.988132 0.000193
67 0.996485 0.996472 0.000058 58 0.992138 0.992134 0.000123

Window’s shape Annulus (m1 = 17, m2 = 17, A = 124, IS = 1e5, IA = 1e6)

Xs1,s2
∼ B(1, 0.01) Xs1,s2

∼ B(5, 0.05)
τ Sim AppH ETotal τ Sim AppH ETotal

3 0.881798 0.882489 0.004812 59 0.951170 0.951245 0.000699
4 0.995434 0.995465 0.000069 60 0.975772 0.975727 0.000255
5 0.999883 0.999883 0.000001 61 0.988275 0.988270 0.000099
6 0.999998 0.999998 0 62 0.994460 0.994466 0.000041
7 0.999999 0.999999 0 63 0.997439 0.997440 0.000017
8 1.000000 1.000000 0 64 0.998839 0.998840 0.000007
9 1.000000 1.000000 0 65 0.999484 0.999484 0.000003
10 1.000000 1.000000 0 66 0.999775 0.999775 0.000001
11 1.000000 1.000000 0 67 0.999903 0.999903 0.000000

Xs1,s2
∼ P(0.25) Xs1,s2

∼ N(0, 1)

τ Sim AppH ETotal τ Sim AppH ETotal

59 0.903956 0.903852 0.002128 50 0.860708 0.860416 0.004097
60 0.949083 0.949059 0.000735 51 0.904651 0.904644 0.001977
61 0.973814 0.973844 0.000277 52 0.936077 0.935938 0.000987
62 0.986909 0.986876 0.000111 53 0.957564 0.957650 0.000508
63 0.993576 0.993570 0.000047 54 0.972378 0.972311 0.000270
64 0.996910 0.996907 0.000020 55 0.982139 0.982136 0.000148
65 0.998539 0.998539 0.000009 56 0.988564 0.988587 0.000082
66 0.999320 0.999320 0.000004 57 0.992769 0.992769 0.000047
67 0.999689 0.999689 0.000002 58 0.995471 0.995466 0.000027
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