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Two dimensional discrete scan statistics with arbitrary window shape

The definition of the the two-dimensional discrete scan statistic with rectangular window shape is extended to a more general framework. In particular, this approach allows to introduce different shapes for the scanning window (discretized rectangle, polygon, circle, ellipse or annulus). We provide approximation for the distribution of the scan statistic and illustrate their accuracy by conducting a numerical comparison study. The power of test based on the scan statistics is also evaluated by simulation.

Introduction

Let T 1 , T 2 ≥ 2 be positive integers, R = [0, T 1 ] × [0, T 2 ] be a rectangular region and X s1,s2 , 1 ≤ s j ≤ T j , j ∈ {1, 2}, be an array of independent and identically distributed random variables from a specified distribution (Bernoulli, binomial, Poisson, normal, etc.) associated to the elementary sub-region r(s 1 , s 2 ) = [s 1 -1, s 1 ] × [s 2 -1, s 2 ]. The two dimensional scan statistics introduced by [Chen and Glaz, 1996a] is defined as the largest number of events in any rectangular scanning window of size m 1 × m 2 , where 1 ≤ m 1 ≤ T 1 and 1 ≤ m 2 ≤ T 2 are positive integers, within the rectangular region R, i.e.

S m1,m2 (T 1 , T 2 ) = max 1≤i1≤T1-m1+1 1≤i2≤T2-m2+1 i1+m1-1 s1=i1 i2+m2-1 s2=i2 X s1,s2 (1) 
The two-dimensional scan statistics have been widely used in several fields of application such as cosmology ([Darling and Waterman, 1986]), reliability theory ([Barbour et al., 1996]), epidemiology and public health ([Genin et al., 2013, Castra et al., 2019]). Since there are no exact formulas for the probability distribution of S, that motivates the researchers to look for accurate approximations. Nowadays, the study of the distribution of the scan statistics is an active research topic in statistics and several approximations and bounds have been provided in literature ([Chen and Glaz, 1996b, Boutsikas and Koutras, 2003, Haiman and Preda, 2006]).

From the definition of the discrete scan statistics, the shape of the scanning window is rectangular. That is the most common and easy to deal with among other possible choices. As far as we know, no other forms have been considered in literature and, one possible explanation is the discrete feature of data. Notice that for the two-dimensional continuous scan statistics, there exists works considering different shapes. Actually, [Naus, 1965[START_REF] Loader | Large-deviation approximations to the distribution of scan statistics[END_REF] used rectangles, [Alm, 1997, Alm, 1998, Anderson and Titterington, 1997] considered rectangles and circles whereas [Alm, 1997, Alm, 1998] considered triangles, ellipses and other convex shapes [Assunção et al., 2006, Tango andTakahashi, 2005].

In this article we present a natural extension of the classical definition of the two dimensional discrete scan statistics by taking in (refeq1), instead of a moving sum, a moving score evaluated with the help of a function (matrix) applied on blocks of random variables. This score allows the definition of the two-dimensional discrete scan statistics with arbitrary scanning window shape. The article is organized as follows: Section 2 presents the definition of the two-dimensional discrete scan statistics with arbitrary scanning window shape. Section 2.2 presents the approximation methodology of the distribution of the scan statistic. In Section 3, we provide numerical applications for both the approximation of the distribution and power when considering different discrete shapes of the scanning windows. Lastly, the results are discussed in section 4.

2 Two dimensional discrete scan statistics with arbitrary window shape

Arbitrary discrete scanning window shape

Let G be a geometrical shape of the scanning window (rectangle, quadrilateral, ellipse, etc.) and G be its corresponding discrete form. The transformation of continuous shape to discrete shape are performed using rasterization algorithms. In the literature, several authors have proposed algorithm to rasterize line [Bresenham, 1965], circle [Bresenham, 1977] or Bezier curves [Foley et al., 1997]. Figure 1 illustrates the discretization of line and circle according the previous algorithm.

To each discrete shape G it corresponds an unique rectangle of smallest size m 1 × m 2 which circumscribes G. 

G = (a ij ) 1 ≤ i ≤ m 1 1 ≤ j ≤ m 2
with entries 0 and 1 (a ij = 1 if there the elementary square [i -1, i] × [j -1, j] belongs to G and 0 otherwise). See Figure 2 for discrete circle (m 1 = m 2 = 13) and discrete annulus (m 1 = m 2 = 17).

We define the two-dimensional discrete scan statistic with scanning window G as the maximum of the moving sums

Y i1,i2 = i1+m1-1 s1=i1 i2+m2-1 s2=i2 A(s 1 -i 1 + 1, s 2 -i 2 + 1)X s1,s2 over the region R, i.e. (i 1 , i 2 ) ∈ [1, T 1 -m 1 + 1] × [1, T 2 -m 2 + 1], S G(T 1 , T 2 ) = max 1≤i1≤T1-m1+1 1≤i2≤T2-m2+1 Y i1,i2 . (2) 
Remark that if, in particular, the shape G is a rectangle of size m 1 × m 2 then its corresponding {0, 1} matrix G has all the entries equal to 1. Thus, the definition of the two-dimensional discrete scan statistics (2) extends the classical one given in (1).

Approximation for the distribution of S G

As far as we know, there are no available results on the distribution of the two-dimensional discrete scan statistics S G with general window shape.

For rectangular scanning window G of size m 1 × m 2 , various methods of approximation and bounds have been proposed for P(S G ≤ τ ), τ ∈ R. An overview of these methods as well as a complete bibliography on the subject are given in [Glaz et al., 2001] and [Glaz et al., 2009].

The approximation methodology proposed in [START_REF] Haiman | Estimation for the distribution of twodimensional discrete scan statistics[END_REF] has the advantage to provide sharp bounds for the associated error with reasonable computing time. The main idea of the method is to consider the scan statistics as the maximum of a 1-dependent stationary sequence of random variables. Therefore, one can use the results of [Haiman, 1999] (Theorem 1), improved by [Amȃrioarei, 2014], that provide approximations and bounds for the distribution of the maximum of 1-dependent stationary sequences.

In what follows, we describe this methodology for rectangular scanning window and use it to arbitrary scanning window shape.

Let

L 1 = T1 m1-1 and L 2 = T2 m2-1 , where x denotes the integer part of x. Denote by Q i,j , 1 ≤ i ≤ L 1 , 1 ≤ j ≤ L 2 , Q i,j = S G(i(m 1 -1), j(m 2 -1)),
the scan statistic considered on the rectangular region of size [0, i(m

1 -1)] × [0, j(m 2 -1)] with scanning window G. Notice that S G(T 1 , T 2 ) = Q L1,L2 .
The approximation of the distribution of S G developed in [START_REF] Haiman | Estimation for the distribution of twodimensional discrete scan statistics[END_REF] 

is based on the distri- butions of Q 2,2 , Q 2,3 , Q 3,2 and Q 3,3 . Unlike the case of S G(T 1 , T 2 ) = Q L1,L2
, the estimation of the distributions of Q i,j , i, j ∈ {2, 3}, by Monte Carlo techniques is efficient and computationally feasible because of the small size of the scanned region and the use of importance sampling techniques in this framework(see [Amȃrioarei and Preda, 2014] for more details).

The approximation of the distribution of S G(T 1 , T 2 ) is then obtained as follows ( [START_REF] Haiman | Estimation for the distribution of twodimensional discrete scan statistics[END_REF]), [Amȃrioarei and Preda, 2014]).

Theorem 1. Let i, j ∈ {2, 3}, τ ∈ R and Q i,j (τ ) = P (Q i,j ≤ τ ). If Qi,j . = Qi,j (τ ) is an estimate of Q i,j (τ ) with Qi,j -Q i,j (τ ) ≤ β i,j and τ is such that 1 -Q 2,2 (τ ) ≤ 0.1 then, P (S G(T 1 , T 2 ) ≤ τ ) -2 Q2 -Q3 1 + Q2 -Q3 + 2( Q2 -Q3 ) 2 1-L1 ≤ E sf + E sapp , (3) 
where, for t ∈ {2, 3}

Qt = 2 Qt,2 -Qt,3 1 + Qt,2 -Qt,3 + 2( Qt,2 -Qt,3 ) 2 1-L2 E sf = (L 1 -1)(L 2 -1) (β 2,2 + β 2,3 + β 3,2 + β 3,3 ) E sapp = (L 1 -1) F 1 1 -Q2 + A 2 + C 2 2 + (L 2 -1)(F 2 C 2 + F 3 C 3 ) A 2 = (L 2 -1) (β 2,2 + β 2,3 ) C t = (L 2 -1)F t 1 -Qt,2 + β t,2 2 .
and F 1 , F 2 and F 3 are constants defined in [Amȃrioarei, 2014].

The result in Theorem 1 shows that the distribution of the scan statistics S G(T 1 , T 2 ) can be efficiently approximated as provided accurate approximations of Q ij (τ ), i, j ∈ {2, 3} are available. The approximation methodology is illustrated in Figure 3.

P (S G(T 1 , T 2 ) ≤ τ ) ≈ 2 Q2 -Q3 1 + Q2 -Q3 + 2( Q2 -Q3 ) 2 1-L1 , ( 4 
) m 1 m 2 T 1 T 2 R 2 Second Step A pproximation m 1 2( m 2 -1) T 1 T 2 Q 2 2( m 1 -1) 2( m 2 -1) T 1 T 2 Q 22 3( m 1 -1) 2( m 2 -1) T 1 T 2 Q 23 m 1 3( m 2 -1) T 1 T 2 Q 3 2( m 1 -1) 3( m 2 -1) T 1 T 2 Q 32 3( m 1 -1) 3( m 2 -1) T 1 T 2 Q 33
Notice that E sapp , given in (3), rapidly tends to zero as P(S G(T 1 , T 2 ) ≤ τ ) is close to 1. Moreover, for large L 1 and L 2 , the contribution of E sapp is almost negligible with respect to E sf . Thus, the accuracy of the approximation essentially depends on the number N of replications used for estimating the distribution of Q 2,2 , Q 2,3 , Q 3,2 and Q 3,3 . For rectangular scanning window we used the importance sampling technique presented in [Amȃrioarei and Preda, 2014] which provides sharper error bounds than the usual Monte Carlo method we used for discrete circle. The approximation error is useful when one has to compare approximations for different shapes. A difference between two approximations can only be highlighted if the error bounds of those approximations are sufficiently small.

3 Numerical applications. Approximation and power of the scan statistic test

In this section, we first present a simulation study aiming to evaluate the change in the distribution of the two-dimensional discrete scan statistics when scanning with different shapes of the window. Secondly, we evaluate the power of the test based on the scan statistics accordingly to the shape of the scanning window and that of the simulated cluster (under the alternative hypothesis). We consider here the case of triangular, rectangular, quadrilateral, circular, ellipsoidal and annular scanning windows of same size (area).

Approximation and scanning window shape

We present approximations of the distribution of scan statistics, P(S G ≤ τ ), when the X ij 's are distributed as binomial (B(ν, p)), Poisson (P(λ)) and Normal (N (µ, σ)). The methodology used for obtaining such approximations is that presented in Section 2.2. For each model, we compare the distributions of the scan statistics when scanning with triangular, rectangular, quadrilateral, circular, ellipsoidal and annular windows. Tables 1 and2 provide the distribution of the two-dimensional discrete scan statistic when scanning a rectangular region of size T 1 × T 2 = 250 × 250 with a scanning window of fixed size A (A ≈ 130) and various shapes. Notice that, since the scanning region is a square, the distribution of the scan statistics with rectangular scanning window of size m 1 × m 2 is the same as scanning with m 2 × m 1 . We consider several models for X ij : B(1, 0.01), B(5, 0.05), P(0.25) and N (0, 1). The results presented in the Tables 1 and 2 are obtained using the approximation (3). We used the importance sampling technique presented in [START_REF] Naiman | Computing scan statistic p values using importance sampling, with applications to genetics and medical image analysis[END_REF] (see also [Amȃrioarei and Preda, 2013]) which provides sharper error bounds than the usual Monte Carlo method.

In Tables 1 and2 we have :

-Sim column denotes the estimation obtained by Monte Carlo (IS is the number of replications with importance sample algorithm and IA otherwise), -AppH denotes the "Haiman approximation" given by (4), -ETotal denotes the total error of approximation given in Theorem 1, ET otal = E sf + E sapp .

Comparing the approximation values and taking into account the error bounds, one observes that the distributions of the scan statistics associated to different scanning window shapes are close to each other. However, as expected, there are significant small differences, as for example in the Poisson model when scanning with a square scanning window (P(S G ≤ 61) < 0.96) and with a quadrilateral scanning window (P(S G ≤ 61) > 0.96).

Power of the scan statistic test: window and cluster shapes

We evaluate the power of the test based on the scan statistics accordingly to the shape of the scanning window and that of the existing cluster under the alternative hypothesis. We consider here for X ij 's the binomial model. The test based on scan statistics checks the null hypothesis H 0 : X ij ∼ B(ν, p 0 ) against the alternative H 1 supporting the existence of a subregion (cluster) C ∈ {1, . . . , T 1 } × {1, . . . , T 2 } such that for all (i, j) ∈ C, the X ij 's are distributed according to binomial distribution B(ν, p 1 ), p 1 > p 0 . Otherwise, i.e. outside C, the X ij 's are binomial distributed B(ν, p 0 ).

In what follows we consider the shape of the cluster C to be triangular, rectangular, quadrilateral, circular, ellipsoidal and annular. For a fixed shape of the cluster one evaluates the power of the scan statistic to detect the cluster when the scanning window is of various shapes, i.e. triangular, rectangular, quadrilateral, circular, ellipsoidal and annular. We adopt the following procedure:

• Fix the type 1 error to α = 0.05.

• Generate a random field {X ij }, {i, j} ∈ {1, . . . , T 1 } × {1, . . . , T 2 } such that there is a change in the distribution parameters of X i,j in the cluster C. The location of C inside {1, . . . , T 1 } × {1, . . . , T 2 } is randomly generated.

• Under H 1 , we consider p 1 in the interval [p 0 , p max ] taking all values with a discrete step of 0.01. The value p max is such that p max ≥ p 0 and the power of the scan statistics does not change (i.e. equals to 1) for all considered scanning window shape.

• For each particular shape of the scanning window,

-Let τ 1-α be the smallest integer such that P(S G ≤ τ 1-α )) ≥ 1 -α. It is obtained as the 1 -α quantile of the approximated distribution of S G given by ( 3).

-Under H 1 , for each specific shape of cluster and parameter (p 1 ), simulate N = 10 6 realizations of random field {X i,j }. For each realization i, 1 ≤ i ≤ N , the observed value of the scan statistic S Gi is compared to τ 1-α . The power 1 -β is estimated by :

1 -β = 1 N N i=1 1 {S Gi ≥τ1-α} (5) 
For T 1 × T 2 = 250 × 250, the estimation of the power function of the test based on scan statistics is presented in Figures 4 and5. For both models and for each of the cluster shapes, we plot the power function corresponding to scan statistics with different scanning window shapes. With regard to Bernoulli's model (Figure 4), we observe that the power curves are very similar whatever the shape of the simulated cluster and that of the scanning window. However, cluster detection is slightly more effective when the shape of the scanning window is identical to that of the simulated cluster. This is more marked in the case of an annular scan window. The same comments are still valid for the binomial model (Figure 5).

Discussion

We proposed an extension of the classical definition of the two dimensional discrete scan statistics when considering an scanning window of arbitrary shape. A simulation study carried out with different discrete shapes of scanning window showed that the distributions of the associated scan statistics are very close to each other but significantly different. The power of the scan statistics is linked to the shape of the scanning window and that of the existing cluster under the alternative hypothesis throughout the simulation study. [ Assunção et al., 2006] Assunção, R., Costa, M., Tavares, A., and Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, 25(5):723-742.
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 1 Figure 1: Example of discrete line (a) and discrete circle (b) using Bresenham's algorithms.
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 2 Figure 2: Discrete circle (m 1 = m 2 = 13) and discrete annulus (m 1 = m 2 = 17)

Figure 3 :

 3 Figure 3: Approximation process for P(S G ≤ τ )
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 4 Figure 4: Power evaluation for B(1, 0.001) model

Figure 5 :

 5 Figure 5: Power evaluation for B(5, 0.05) model

Table 1: Numerical results for P(S G ≤ τ ) for triangular, rectangular and quadrilateral shapes of the scanning window.

Window shape

Triangle (m 1 = 14, m 2 = 18, A = 133, IS = 1e5, IA = 1e6)