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Abstract

In this paper, we introduce a new simple methodology for combining two models, which
are given in the form of two probability distributions. We use convex combinations of quantile
functions, with weights depending on the quantile level. We choose the weights by comparing,
for each quantile level, a given measure of model uncertainty calculated for the two probability
distributions that we want to combine. This methodology is particularly useful in insurance and
reinsurance of natural disasters, for which there are various physical models available, along with
historical data. We apply our procedure to a real portfolio of insurance losses, and show that the
model uncertainty measures have a similar behavior on the set of various insurance losses that we
consider. This article serves also as an introduction to the use of model uncertainty measures in
actuarial practice.

Key words: Model combination, Model uncertainty, Quantiles, Risk management, Catastrophe
models.
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1 Introduction

There are various practical situations in which one is confronted to several models for the same
phenomenon. A natural problem is then to choose among these models, or to combine them to take
decisions. This is true in particular in the domain of insurance and reinsurance of natural catastrophes,
where one has access to several Catastrophe models (Cat models) available in the market, but also
potentially to models which are developed internally by a given insurance or reinsurance company.
These models rely on the physical modelling of natural phenomenons, such as flooding, earthquakes
or wind speeds for example. These tools are also in competition with models that originate only from
historical data, but which can be rather scarce for natural catastrophes. Combining these sources of
information is an important problem, in particular since natural catastrophes represent a major issue
for insurers and reinsurers, causing losses up to 140 billion dollars in 2017 (see [20]).

There is a large literature on models combination: one of the main methodology is the linear pool,
which consists in taking a linear combination of each model’s results. It is a standard assumption
that the output of each model is given in the form of a probability measure. Most of the literature
on linear pooling deals with convex combinations of the densities provided by the models or of the
cumulative distribution functions (CDF'). In the present paper, we combine probability measures by
taking convex combinations of the associated quantile functions. Indeed, quantile functions, just as
densities of CDF, characterize the distribution of a random variable. In the present paper, we provide
a procedure to choose the weights, which is based on model uncertainty measurements.

Taking convex combinations of quantile functions allows to make the weights of the convex combi-
nation depend on the quantile level, which is easily interpretable in practice. Indeed, we have at
our disposal both historical data and a Cat model, and the criteria that we introduce in this paper
to choose the weights, which is based on model uncertainty measures, leads to hight weights for the
historical model quantile for frequent claims and similarly hight weights for the Cat model quantile
for rare and extreme claims. One drawback of this approach is that the curve that we build is not
necessarily a quantile function, for instance it can happen that it is not increasing: note however that
the recent results from [4] allow to deal exactly with this type of situation, using techniques from
optimal transport and rearrangement.

Summary of the approach

Assume that the models that we need to combine are given in the form of two probability measures
vy, and v on (R,B(R)), where B(R) is the Borel o-algebra on R. Let Q5 and Q. be the quantile
functions respectively associated to the measures vy, and v, (see (2.1) for a precise definition), and
consider the function @ given by

Q(u) == Au)Qe(u) + [1 = Au)]Qn(w), (1.1)

where A : [0,1] — [0, 1] is a weight function. To the best of our knowledge, using a model combination
in the form of (1.1) was first suggested by [13] (equation (7)). Additional information available on vy,
and v, may lead to a priori information on the curve u +— A(u): for instance, if we know that v, is
constructed from historical data, while v, comes from a physical Cat model, which is a model based
on the underlying physical natural hasard (for example floods), then it is natural to expect that A(u)
will be hight for small values of u and small for large values of u. Indeed, small values of u correspond
to more frequent claims, for which it is expected to have larger samples of historical data.



To compute the weight function A, we compare model uncertainty measures associated to v, and
Ve, which have been introduced in [2]. Given a set of insurance portfolios and associated data set,
the methodology that we introduce for choosing the weight A(u) appearing in front of Q.(u) in
(1.1), consists in computing the proportion of insurance portfolios for which the model uncertainty
associated to v, is lower than the model uncertainty associated to v, (see (2.5)). This simple approach
is easily interpretable.

Related literature

As already mentioned above, there is a large literature on models combination, and several survey
papers are available, such as [10], [13], or [5], we also refer the reader to Chapter 14 of the recent book
[8]. The general idea behind model combination is that when faced with multiple models for the same
phenomenon or for the same outcome, averaging is likely to improve accuracy, compared to choosing
a single model. If a model is represented as a probability measure, which is the point of view that
we adopt in this paper, models can be combined using their related density functions, cumulative
distribution functions (CDF), or any functional characterising the distribution. Densities or CDFs
combinations seems to be the most standard approach in the literature, and the most common way
to combine them is the linear pooling which consists in taking linear or convex combinations. We
refer the reader to [17] for a general result on the linear pooling.

Non-linear combination techniques have also been studied, and usually the goal is to maximise a given
score function (see [11], [12] and the references therein). In this paper, we still exploit the properties
of the simple linear combination methodology, but we apply it to quantile functions. Notice that this
methodology, seen as a function of CDFs, which are just the generalized inverses of quantiles, is a
highly non linear operation.

The other important question related to this paper is model uncertainty, which has recently seen a
tremendous rise of popularity among academics and professionals. This question is not new however,
and it can be considered at the heart of robust statistics [15] or stochastic control theory [9]. Recent
papers (|7], [19], or [14]) have focused on volatility uncertainty in utility maximisation models, in
pricing and hedging of financial derivatives or in the study of stochastic differential equations.

In our specific case, we are working in a time static framework, and since we are interested in quantiles,
it is natural to look at model uncertainty related to risk measurement. This paper relies on results of
[2], where the authors introduce numerical measures of model risk, associated to a given risk measure.
The aim of the present paper is to use these measures of model risk to combine quantiles.

Main contributions

The current paper introduces a new way to combine two probability distributions, through the convex
combination of their associated quantiles, with weights computed by comparing model uncertainty
measures. The issue of combining probability distributions is important in insurance and reinsurance
of natural disasters.

As a byproduct, this paper introduces the use of model uncertainty measures in actuarial practice.
Lastly, our tests on a real portfolio show that the difference between model uncertainty measures
corresponding to losses computed on historical data and Cat softwares behave similarly for a relatively
large class of insurance data. We think that this empirical result is interesting on its own and could

be tested on other real data portfolios.



Structure of the paper

In Section 2, after briefly recalling some well known needed definitions and properties of VaR and
TVaR risk measures, we introduce the model uncertainty measure that we use, and how we apply it
to construct a weighting curve for our quantile combination. Then in Section 3, we show how the
computed model uncertainty measures compare, what type of weighting curve it gives in practice,
and the form of combined quantiles that we get.

2 Model and Assumptions

In this Section, we introduce our methodology for choosing the weight function A in (1.1). Let us first
recall the formal definitions and some properties of the Value-at-Risk (VaR) and Tail-Value-at-Risk
that will be needed later.

2.1 VaR and Tail-VaR

Let (Q,F,P) be a fixed probability space. For a given random variable X, Fx denotes its CDF defined
by Fx(z) := P(X < z) and Qx denotes its quantile function, defined as the generalized inverse of
Fx:

Qx(u) :=inf{z € R | Fx(z) > u}. (2.1)

Notice that Qx only depends on the distribution of X. If X has distribution u, we will also write
Q, for the quantile function associated to X. The well known Value-at-Risk is then just defined as
a quantile:

Definition 2.1. The Value-at-Risk (VaR) at level o € (0, 1) associated to X is given by VaRy(X) :=
Q X(a).

This measure is widely spread in insurance and reinsurance practice, as it is easy to interpret and
to implement than most other measures of risk. Another reason lies in its links with European
solvency regulations: indeed, the Solvency II rules retain the VaR as a risk measure for regulatory
capital calculations. The main criticism around the VaR concentrates around its lack of subadditivity.

Nevertheless, there are large classes of distributions within which the VaR is subadditive, we refer
the interested reader to [6] for more details and a discussion.

For a random variable X with a continuous CDF, we have P(X < VaR,(X)) = a. However, the
VaR does not provide any information on the event {X > VaR,(X)}. Another well known measure,
which takes this aspect into account is the Tail Value-at-Risk, defined as follows.

Definition 2.2. The Tail Value-at-Risk (TVaR) at level o € (0,1) associated to X is given by
1 1
TVaRy(X) := / VaR,(X)du.
1—a/,
In the case where X has a continuous CDF, TVaR coincides with the Conditional Tail Expectation
(CTE), which is the average loss conditioned on the event {X > VaR,(X)}:
CTEL(X):=E[X | X > VaR,(X)].

TVaR is also a popular risk measure in reinsurance practice, and satisfies a set of properties, including
subadditivity, that makes it a coherent risk measure in the sense of [1].

In this paper, we use extremal properties of VaR and TVaR to construct a weighting curve in a
quantile mixing framework.



2.2 Model Uncertainty Indexes

The actual calculation of the risk measures described above requires the prior estimation of the
distribution of the underlying risk X. As a result, the choice of the risk distribution is subject to an
uncertainty which weighs on the calculation of the risk measure.

In the present paper, we rely on the results of 2], that provides several different quantitative measures
of model risk. One of the ideas of the authors in [2] is to consider a "worst case" approach in which
oneself is placed in the most unfavorable case: given an acceptable set of probability distributions,
we are interested in the maximal value over the acceptable distributions (or the minimum value, if
we consider gains rather than losses). The knowledge of the first moments of the risk distribution
provides one typical example of acceptable set.

Let p be a given risk measure. We will use the following quantitative model risk measurement proposed
in 2], known as the absolute measure of model risk, and defined by

pL) —p(Xo) _ | p(Xo)
p(L) pL)

where L is a given set of probability distributions, X is a random variable with a reference distribution

AM (X, L) = (2.2)

in £, and where

A(L) = sup p(X).
XeLl

Notice that the definition that we give above is different from the original definition given in [2]|, where

the absolute measure of model risk AM™ defined there is such that AM* = 1‘_“%. Both definitions

make use of a reference distribution Xy. The distribution of Xy being given, AM (Xy, L) measures

the rate of decrease to go from the supremum p(L) to the particular value p(Xp). In particular

AM (Xy, L) is real number lying between 0 and 1. In comparison, AM™* measures the rate of increase

to go from p(Xp) to (L), which is non negative but can be greater than 1.
AM (X, L) is a measure of model uncertainty in the sense that AM (Xy, £) = 0 implies that p(Xo) =

p(L). In that case, the capital to put in reserve cannot exceed the value p(Xp), and we interpret this
as no model uncertainty. When AM (Xo, L) = 1, then p(Xo) = 0 and we interpret this as maximal
model uncertainty. Notice that to obtain a model uncertainty measure between 0 and 1, one can also
use the relative measure of model uncertainty, introduced in [2] and defined by

RM(Xo, L) = w

p(L) —p(L

~—

where

p(L) :=sup p(X) and p(L):= inf p(X).
XeLl XeLl
The definition of RM (Xy, £) makes use of both the supremum and infimum values of p. The definition
(2.2) that we use here is asymmetric and concentrates on extremal high values, i.e. on the supremum.

Let p e R, 0 >0, —o0 < A, B < 400 and let L(A, B, u,0) be the set of probability measures with
support [A, B] and mean and variance respectively given by p and o2. Notice that A and B can take
infinite values. The interesting case for us in the reinsurance applications will be A = 0 and B = +cc.
The paper [16] provides the value of p(L(A, B, it,0)), when p is either the Value-at-Risk or the Tail
Value-at-Risk.



Proposition 2.1. Let p and o be fized and let LT := L(0, 400, u,a). Then the following equality is
correct for both p = VaR, and p=TVaR,

1-— Lo)a if a"<a<l1
AM(Xo, L)) = {  movis (23
1-(1-a)22) i 0<a<ar
where o 1= #202
Proof. This is an immediate application of Theorem 3.1 in [16]. O

Remark 2.1. Observe that the value of AM(Xo, LT) given in (2.3) is a continuous function of a.
X

— w2

of a, wether p is the VaRy or TV aR, risk measure. In particular, the quantity AM above is not a

Indeed for a = o™ both values in (2.3) are equal to 1 Notice also that p(Xo) is a function
linear function of o when o < a*. When no confusion is possible, we will write AM(Xo, L") instead
of AM(Xo, L1) () for simplicity of notations.

Remark 2.2. When the set L contains only random variables with range equal to R, i.e. when
A= —00 and B = 400, then AM(Xo, L) is equal to the first value in (2.3) for every a € [0,1] (i.e.
a*=0).

Let us now describe how the values AM (X, L") can be used to combine different possible models
for the same underlying phenomenon.

2.3 Constructing a weighting curve

For a given portfolio of risks related to natural disasters, we can estimate the losses distribution using
either available historical data, or using a Cat model that simulates random natural events. The
idea of the methodology that we introduce is to compute a model risk measure for both the reference
model coming from historical data and the reference model coming from a Cat software. As one
would expect, it turns out that the historical model performs better for quantile levels close to 0 and
by opposition, the Cat software performs better for large quantile levels, that is to say for extreme
risks.

More precisely, let v, and v, be the distributions estimated respectively from historical data and
from a Cat software (the subscript e in v, stands for exzposition, which is a standard terminology
to designate Cat models based on the physical modelling of natural hazards). Let o — AMp(«)
and a — AM,(a) be the absolute measure of model risk given in (2.3) when Xy has a distribution
respectively given by v, and ve.

Figure 1 below displays the values of AM}, (red curve) and AM, (green curve), for o varying between
0 and 1, constructed using real natural disaster losses data from a given insurance company up to
2017. The model v, corresponds to the output of the internal Cat model developed by CCR, run on
a given insurance company portfolio. See Section 3 for more details on how we computed the model
risk values. For obvious confidentiality reasons, we will not be more specific about the data we use,
but for the sake of research reproducibility, we indicate in detail the procedure we used to compute
the model uncertainty measures, so that the empirical results in this paper can be tested on other real
data sets. Notice that these two curves cross only once, and that AM,(«) < AMj(a) for a greater
than a value approximately equal to 0.98. Figure 2 is a zoom on large values of «.

From Remark 2.1, we know that these curves are continuous, and the breakpoint a* is clearly visible
on Figure 1. It is equal approximately equal to 0.22 for the historical model v, and to 0.65 in the
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Figure 1: Illustration of the measure of model risk defined in 2.2.

case of V.. One can already see from here that even if v, and v, are two estimated models for the
same phenomenon, their first two moments can be rather different.

Assume that we have at our disposal the historical data and portfolio information of n insurance
companies, so that we are able for each of these companies to construct the associated measures vy,
and v,. Let I/}(li) and l/éi) be respectively the estimated historical and Cat software model for insurer 4,
and let AM ,gi) and AMe(i) be the associated model uncertainty measures. Assume also that for each
i between 1 and n, there exists a value «; € (0, 1) such that AM,(Li)(a) < AM (a) for a < «; and
AM,Si)(a) > AMY (a) for @ > «;. This is the case for instance for the data in Figure 1, and it will

also be the case in our illustrations in Section 3.

Let us now describe our methodology to construct a weighting curve A, as it appears in (1.1). Let
Qp and Q. be the quantile functions respectively associated to vy, and v, and suppose that we want
to combine these two models using a convex combination of their quantile functions as follows:

Qu) := AMw)Qc(u) + [L = A(w)]@n(w), - (2.4)

The main idea is simple: since A(u) is the weight associated to the Cat software model, we want A to
be high where the Cat software model performs better, that is to say where its associated measure of

model risk is lower. Thus we define

1 n
Au) =~ D Liai<uy- (2.5)
=1
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Figure 2: Zoom on « values between 0.9 and 1.

For a fixed u, A(u) gives the proportion of insurance companies for which the Cat software model
performs better in terms of model uncertainty. Notice that this can be rewritten:

1 n
AMu) = n ; 1{AM§“(u) <AM (w)}

Remark 2.3. The map u+— A(u) defined in (2.5) is also the cumulative distribution function of the
probability measure on the finite set {a1,...,an} with uniform weights. This interpretation allows
possible generalizations of (2.5), for example by using non uniform weights for the c«;’s. This can be
done using some significance criteria for each insurance company i, for example its relative size in
the portfolio, or the size of the available data.

3 Numerical illustration

3.1 Model Uncertainty Indexes for the Reference Models

As shown in (2.5), the weighting curve that we construct is based on the comparison between the
model uncertainty indexes computed from both the historical and the Cat software models.

To construct the historical model, we apply standard parametric inference procedures on the available
data sets. We end up with the estimated distribution vy. To compute AM), we need to estimate
p(Xo), when Xy has distribution v,. When p is the Value-at-Risk, this is done either by explicitly



inverting the CDF (in the case of the Pareto or Lognormal distributions for instance) or by numerically
inverting the CDF.

On the other hand, the measure v, is obtained as the output of a Cat software: in the Appendix
below, we provide a quick summary on the way the software generates simulation years. For the
illustrations below, we used a set of 50000 simulated years for each given insurance portfolio i. We
took the corresponding empirical measure as our estimate for v.. In particular, to compute AM,, we
need the value of p(Xy) when Xy has distribution v, and when p is the Value-at-Risk, we estimated
it using the standard order statistics estimator.

3.2 The Weighting Curve

Suppose that p is the Value-at-Risk at level a. We analyzed a set of 93 real insurance portfolios,
among which n = 77 (83%) have a model uncertainty profile as described in Figures 1 and 2, i.e. the
corresponding curves AMj, and AM, only cross once, with the Cat software model performing better
than the historical model for large values of the quantile level a. We kept thus a set aq, ..., ar7 of
crossing points. Figure 3 below shows the obtained curve u + A(u) as defined in 2.5.

0.6 0.8 1.0
1 1

Weighting Function

0.4

0.2

T T T T T T
0.75 0.80 0.85 0.90 0.95 1.00

Quantile Level

Figure 3: Zoom on « values between 0.9 and 1.

One can see that the values are rather concentrated around u = 0.98, corresponding to a return

period equal to R = ﬁ = 50 years. Indeed the empirical average of the vector ay, ..., a7 is equal

to 0.9794 and the empirical standard deviation is 0.0408.



To add robustness to this weighting curve, it is possible to make it more regular. Indeed, a more regular
curve avoids abrupt changes from one year of data to the other. To proceed with this regularization,
we chose to apply a given kernel K to the weighting curve. More precisely, recall from Remark 2.3 that
the map u +— A(u) can be interpreted as the CDF of a probability measure. It is possible to estimate
this CDF using a standard kernel estimator as defined in [18]. Let K be a given kernel function, i.e.
a non-negative real valued integrable symmetric function, whose integral over R is normalized to 1.
Then, using a CDF kernel estimator, formula (2.5) for the weighting curve becomes:

(1) = %ZKH(U—OQ), (3.1)
=1

where Kp(u) := K(HY?u) is the scaled integrated kernel, with K(u) := [* . K(w)dw, and H
represents the bandwidth size.

In figure 4, we show the obtained regularized weighting curve, with the choice H = 0.02 and where
K is the standard Gaussian density. H = 0.02 corresponds to half the standard deviation value. We
tested the different curves obtained with H between 0.01 and 0.05 and this does not have a significant
impact on the use we make of the obtained quantiles (for pricing purposes for instance). This means,
at least for the particular application we make with the quantiles we obtain, that the overall shape
of the weighting curve matters, rather than the particular choice of the bandwidth H.

1.0

Weighting Function

0.4

0.2

0.0
|

T T T T T
0.6 0.7 0.8 0.9 1.0

Quantile Level

Figure 4: Regularized weighting curve A defined in (3.1).
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3.3 Obtained quantiles

Now that we have at our disposal a mixing curve A, or its regularized version Ag, we can use it
to combine probability measures via equation (2.4). Figure 5 below shows the quantile functions
that we get for the data associated to a given insurance company, using the Cat software model, the
historical data, and the combined model. We only plotted the values for quantile levels u > 0.8,
since for u < 0.9, the combined model is almost equal to the one constructed from historical data.
Said otherwise, for events with a return period lower than 10 years, the historical model only is used.
Then, the weight associated to the Cat model increases until the combined model is almost equal to
the Cat software model.

Recall that we have at our disposal losses data from a portfolio of different insurance companies.
Recall also that the definition (2.5) of the mixing curve A makes use of the data from a large majority
of these insurance companies. Thus the curve A is constructed at a macro level, but we use this mixing
curve to combine the quantile functions at a micro level, i.e. for individual insurance companies, as
well as at a macro level, i.e. for the whole portfolio quantile.

Remark 3.1. There is no reason guaranteeing that the function Q defined in (2.4) in non-decreasing.
So (2.4) does not define a quantile function, even if in all our numerical computations, the function
Q that we obtain is increasing. If the monotonicity property of the quantile is violated, one can use
the methodology described in [4], based on optimal transport arguments, consisting in rearranging the
obtained function Q) into a non-decreasing function.

3.4 The case of the Tail Value-at-Risk

Let us now give more details on the procedure we employed when p = TVaR,, for a € (0,1).

First of all, notice that to compute TVaR,, we need to numerically evaluate the integral appearing
in Definition 2.2. To this end we used Simpson’s rule, which consists in approximating the value of
the integrand by a quadratic polynomial on each point of the interval subdivision. This method is
known to have good numerical precision (see for instance [3]). More precisely, we used the following
approximation:

-1 n—1
1 s Ui + Ujt1
TVaRy(X) =~ o (Qx(a) +Qx(1) +2 ; Qx (ui) + 4; Qx(f) :
where (ug, . .., uy) is a uniform subdivision of the interval [« 1] with step 2 = 107°. Now to compute
the model uncertainty indexes, we need to compute TVaR,(Xp), when the distribution of Xy is
computed both from historical data and from the Cat software model. To do so, in the TVaR,
approximation above, we used the same quantile estimators as those described in subsection 3.2.

Now that we are able to compute T'VaR,, values, we can use this to evaluate the model uncertainty
indexes when the reference risk measure is the Tail VaR, and then construct an associated smoothed
weighting curve Ag, and use the weighting curve to produce quantile values, as we did in the previous
subsection.

In figure 6 below, we plotted the obtained weighting curves A and Ag for H = 0.02. Compared to
Figure 4, the crossing points between model uncertainty measures are more dispersed. As a result,
this curve gives more weight to the Cat software model.

Remark 3.2. Obviously, when TV aR,(X) is computed, all the quantile values Qx (u) are used, for u
between v and 1. So when we compute the model uncertainty measure given in (2.3) with p = TV aR,,

11
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Figure 5: Quantile functions obtained with the Cat software model, the historical data, and the

combined model defined in (2.4).

with o« small, we are using almost all the distribution function associated to X. This is in contrast to

the calculation of the quantity in (2.3) when p = VaR,, which mainly explains he differences that we

obtain for the weighting curves computed with TV aR, or VaR, as the reference risk measure.

Figure 7 below shows the obtained quantile values, for the same real data set used to produce Figure

5. The blue and red curves on these two graphs are the same, one can observe however that the green

curve corresponding to the combined model, has slightly higher values, since it gives more weight to

the Cat software model.

12



1.0

0.6 0.8
|

Weighting Function

0.4
|

0.2

0.0
|

0.6 0.7 0.8 0.9 1.0
Quantile Level

Figure 6: Smoothed weighting curve Ag defined in (3.1), with H = 0.02 and p = TVaR.

Appendix

We made reference in this paper to Cat software models. The main output of these softwares is
given in the form of an Event Loss Table (ELT), which can be used to produce losses simulations.
Since AM, is calculated using these simulations, let us briefly explain in this Appendix how they are
constructed. We start with the following simplified ELT:

Events | Frequency | Claim distribution
1 gl G
2 V2 H2
M YM MM

The first column contains the numbers of M natural events whose physical parameters are fixed.
These events are considered by the software as the exhaustive list of events that can occur in the
geographical zone within which lie the risks of the input portfolio (M is typically of the order of
several thousands).

The third column can be read as follows: if natural event number ¢ occurs, then the cost for the input

insurance portfolio is distributed according to p;.

We can then draw simulations in the following way: we first simulate a Poisson variable N with
parameter v, where v := y; 4+ .-+ + vp7. Once we have a value N(w), we draw N (w) independent
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Figure 7: Quantile functions obtained with the combined model defined in (2.4) and with TVaR as
the reference risk measure.

integers in {1,..., M} with distribution {p1,...,py} with
Vi

i

Zj:l i

Let I(w) C {1,..., M}N®) be the set of simulated integers. Then we can simulate the total loss for
the considered period as

pi =

X(w) =Y Xiw),

iel(w)

where the random variables (X;) are independent and where for each i, X; has distribution ;.
Said otherwise, we first simulate the number of claims, then we draw the events, and then the
corresponding losses.
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