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Gambling for resurrection and the heat
equation on a triangle

Stefan Ankirchner ∗ Christophette Blanchet-Scalliet†

Nabil Kazi-Tani ‡ Chao Zhou §

December 11, 2019

We consider the problem of controlling the diffusion coefficient of a diffusion with
constant negative drift rate such that the probability of hitting a given lower barrier
up to some finite time horizon is minimized. We assume that the diffusion rate can
be chosen in a progressively measurable way with values in the interval [0, 1]. We
prove that the value function is regular, concave in the space variable, and that
it solves the associated HJB equation. To do so, we show that the heat equation
on a right triangle, with a boundary condition that is discontinuous in the corner,
possesses a smooth solution.
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1. Introduction

Let (Ω,F , (Ft)t>0, P ) be a filtered probability space supporting a standard one-
dimensional Brownian motion W . Let T ∈ (0,∞) be a finite time horizon. We de-
note by A the set of all (Ft)-progressively measurable stochastic processes (αt)t∈[0,T ]
with values in [0, 1]. For every α ∈ A and (t, x) ∈ [0, T ]×R we define the stochastic
process

X t,x,α
s = x− (s− t) +

∫ s

t

γ αr dWr, s ∈ [t, T ], (1.1)

where γ is a positive constant.
For all (t, x) ∈ [0, T ]× [0,∞) and α ∈ A we define the cost functional

J(t, x, α) = P

(
inf

t6s6T
X t,x,α
s < 0

)
. (1.2)
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In this article we consider the control problem that consists in minimizing the prob-
ability (1.2). To this end we introduce the value function

V (t, x) = inf {J(t, x, α) : α ∈ A} , (1.3)

for all (t, x) ∈ [0, T ]× [0,∞).
The control problem is rather generic and allows for various interpretations. For

example one can interpret the state process (1.1) as the value process of a company
that is going through a phase where its obligations exceed its average revenues (e.g.
due to a recession or a market change). The problem of minimizing (1.2) describes
in a stylized form the situation of a manager aiming at minimizing the company’s
bankruptcy probability up to time T . The manager can choose between some riskier
and less risky strategies, and thus determine the volatility of the company value
process. Here, T can be interpreted, e.g., as the end of the phase with a negative
trend or the end of the manager’s employment period. A more specific interpretation
within an insurance application is given below.
Alternatively, one can interpret the state process (1.1) as an animal’s level of

energy reverves during a period with little food, e.g. the winter. The animal can
choose among various food searching strategies. Some strategies increase the prob-
ability of finding food, but also require a higher energy consumption. The problem
of minimizing (1.2) then describes the animal’s aim of minimizing the death prob-
ability until the end of the winter. Let us now briefly indicate our general strategy
and tools to solve the considered stochastic control problem.

Summary of the approach Suppose that x > T at time zero. By choosing the
control α = 0, the state process X is greater than or equal to zero up to time T .
Therefore, V (0, x) = 0 for all x > T . More generally, V (t, x) = 0 for all x > T−t. In
particular, as soon as the state process is greater than or equal to time to maturity,
then it is optimal to choose the control α = 0 until maturity T .

Additionally, we prove in this paper that whenever the state process is smaller
than time to maturity, it is optimal to set the control α equal to one. In other
words, an optimal control can be described in terms of the feedback function a? :
[0, T ]× R→ [0, 1], defined by

a?(t, x) =

{
1, if x < T − t,
0, otherwise. (1.4)

We can link the value function to the heat equation on a right triangle. To explain
this, let Y t,x be the state process controlled with feedback function a?. Then the
value function at a point (t, x) with 0 6 x < T − t is equal to the probability for
Y t,x to attain zero before hitting the line T − s, s > t. Notice that the process Y t,x

is a Brownian motion with drift −1 and with constant volatility γ, until it hits the
line T − s, s > t for the first time. Thus, for t ∈ [0, T ) and x ∈ (0, T − t), we can
prove that the value function coincides with the probability for Y t,x to first exit the
right triangle with vertices (t, 0), (t, T − t) and (T, 0) from the opposite side of the
hypotenuse (called cathetus), as illustrated in Figure 1a (where σt,x := inf{s > t :
Y t,x
s > T − s or Y t,x

s 6 0}).
The exit probability for Y t,x can be reduced to an exit probability for a Brownian

motion, which will provide the link with the heat equation. To give a precise
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(a) Y t,x exits the triangle from the
cathetus.
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(b) First exit time of γW t,x from the tri-
angle ∆.

statement we define, for all t ∈ [0, T ) and x ∈ (t, T )

ρt,xu = inf{s > t : γ W t,x
s > T}, (1.5)

ρt,xl = inf{s > t : γ W t,x
s 6 s}, (1.6)

where (W t,x
s )s>t is a Brownian motion starting in x at time t. Let ∆ be the right

triangle with vertices (t, t), (t, T ) and (T, T ), and define the following quantity

H(t, x) := P (ρt,xl < ρt,xu ), (1.7)

which is the probability that γ W t,x exits ∆ from the hypothenuse (see Figure 1b).
In this article, we derive an explicit formula for the function H, using known exit

probabilities for a Bessel bridge from a wedge [22]. Moreover, we show that H is a
classical solution of the heat equation

∂tH(t, x) +
γ2

2
∂xxH(t, x) = 0, 0 6 t < T, t < x < T,

with the boundary conditions

H(t, T ) = 0, for all t ∈ [0, T ], (1.8)
H(t, t) = 1, for all t ∈ [0, T ). (1.9)

Note the irregularity of the conditions at the triangle vertex (T, T ), which is ex-
cluded. With the smoothness properties of H, we can perform a verification and
show that the value function of the control problem (1.3) satisfies

V (t, x) = H (t, x+ t) , t ∈ [0, T ], x ∈ [0, t],

and conclude that a? is indeed an optimal control.

Related literature The problem under study here is related to several subjects:
ruin probability in insurance, control of occupation times, volatility uncertainty
in finance, or the heat equation on a triangle. Let us briefly discuss the related
literature on each of these aspects.
A similar version of the control problem considered in this article has been studied

in the literature on reinsurance optimization. To explain this, we remark that one
can interpretX as the diffusion approximation of the surplus process of an insurance
company and αt as the retention rate at time t, i.e. fraction of the instantaneous
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claims rate paid by the insurance company. In this interpretation the fraction (1−αt)
of the claims is transferred to a reinsurance company without any additional costs.
Minimizing (1.2) then corresponds to minimizing, up to time T , the so-called ruin

probability, the central quantity for measuring risk within risk theory (see e.g. [4]).
When ultimate ruin probability is used as a criteria to be minimized, several results
are known: Schmidli [23] studies both cases of diffusion approximations and clas-
sical risk model, and shows in particular that the value function is concave, using
dynamic programming arguments. An extension to a model where investments are
also allowed can be found in [25, 13]. If Excess-of-Loss reinsurance is used instead of
linear contracts, a verification theorem is provided in [16]. An argument of different
nature has been described in [8], which allows to minimize hitting probabilities for
diffusions, while controlling the drift and volatility terms, and which uses stochastic
orders in place of the usual dynamic programming tools. Note that this argument
cannot be used in our model, since we allow zero as a possible value for the volatil-
ity. Criteria which are different from ruin probability have also been considered:
since the ruin probability can be hard to compute, Liang and Guo [17] considered
maximizing the adjustment coefficient, which appears as an upper bound for the
ruin probability in Lundberg’s inequality. Browne [12] has given conditions, in an
optimal investment setting, under which ruin probability minimization is equivalent
to exponential utility maximization. Again, the literature on optimal control in in-
surance mathematics is large, and we refer the reader to the monographs [24, 4, 7]
for more details and references.
In all the papers of the literature mentioned above, only the infinite time ruin

probability has been considered for reinsurance optimization. In that case, the HJB
equation for the value function is an ODE. One consequence of the introduction of
a finite maturity time is that the HJB equation becomes a PDE, whose regularity
is in general much more difficult to verify. In this paper, we are able to prove the
regularity of the value function directly, using an explicit expression, derived using
the distribution of particular Bessel bridges (see Section 3). This is the second
main contribution of this paper: the computation of an explicit solution of the heat
equation on a triangle, with discontinuous boundary conditions.

Minimizing (1.2), the bankruptcy/ruin/death probability up to time T , is related
to the problem of maximizing the time spent positive by a Brownian diffusion. Op-
timizing occupation times of continuous diffusions has received some attention in
the literature. McNamara [19] considers the control of the volatility coefficient of a
Brownian martingale, determines necessary and sufficient conditions on the objec-
tive functional such that the optimal control is bang-bang: the diffusion coefficient
can vary between two positive real values σ1 and σ2 and the optimal control only
takes these two extremal values. In a discrete time and discrete state space set-
ting, Althöfer et al. [2] analyze the case where the controller can choose the step
size of a discrete random walk, in order to maintain it in a given region, and also
obtain bang-bang optimal controls. A related occupation time control problem for
exponential martingales in continuous time is solved in [3]. Volatility control with
bang-bang solutions appears in various fields of applications such as ecology [27],
where the context is the minimization of a starvation probability for animals, or
insurance mathematics [5], in the case of an optimal dividend problem.

Optimization problems over a set of volatility processes taking values in a bounded
interval also arise in mathematical finance within models with volatility uncertainty.
In that particular context, it is assumed that the volatility coefficient is uncertain,
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lying between two deterministic bounds. A model for pricing and hedging of options
under volatility uncertainty is presented in [6], analyzing no arbitrage price bounds,
that arise as solutions of a non linear partial differential equation (PDE), called
the Black-Scholes-Barenblatt equation by the authors, and which is of the form
of the HJB equation (4.2) associated to our control problem. Again, the result is
bang-bang: the volatility selected for pricing only takes the two extreme values.
This model has been extended in [14], where the uncertainty is specified by a family
of martingale measures. The model uncertainty point of view described in these
papers corresponds to a stochastic control problem, since the reasoning adopted is
the selection of the worse case scenario: not knowing the volatility consists then
in selecting the most unfavourable volatility. Peng [20] provides a framework for
volatility uncertainty analysis, where the starting point is not a usual probability
space, but a PDE, which is also analogous to (4.2). The literature around volatility
uncertainty in mathematical finance is abundant, and the very brief overview that
we give here is by no means exhaustive. In particular, several authors deal with
the problem of robust utility maximization, which is usually formulated as a control
problem under model uncertainty. When the volatility is uncertain, several examples
of bang-bang and non bang-bang explicit solutions are analyzed in [18].

As mentioned above, in this paper, we reduce the analysis of the value function
to the study of the heat equation in a right triangle, using Brownian motion on
the real line. If a two dimensional Brownian motion is considered, the formulas are
completely different, and explicit expressions are obtained for exit probabilities from
a right-angled isoceles triangle in [26], using a conformal application, that transforms
the triangle into a strip. In the case of an equilateral triangle and Dirichlet boundary
conditions, a solution is given in [15], that depends on an integral transform of the
boundary condition.

The rest of the paper is organised as follows: In Section 2, we precisely define
the stochastic control problem and provide a solution, together with some economic
interpretation. Section 3 is devoted to the explicit solution of the heat equation on
a triangle and in Section 4, we solve the control problem.

2. The control problem: analytic solution and
economic interpretation

Let us first introduce more precisely the stochastic basis that we will consider. Let
Ω = C([0,∞),R) be the space of all continuous real valued functions and (Wt)t>0

be the coordinate process, i.e. Wt(ω) = ω(t), t > 0, ω ∈ Ω. Let (FWt )t>0 be the
filtration generated by (Wt)t>0 and FW :=

∨
t>0FWt . Processes are identified in

(Ω,FW ) via their probability measures: in particular, Px denotes the probability
under which the coordinate process is a Brownian motion with Px(W0 = x) = 1.
Set Fxt = σ(FWt ,N x), t > 0, where N x denotes the collection of Px-null sets in FW .
We set Ft =

⋂
xFxt and F =

⋂
xFx.

We denote by A the set of all (Ft)-progressively measurable stochastic processes
(αt)t∈[0,T ] with values in [0, 1]. For every α ∈ A and (t, x) ∈ [0, T ]×R we define the
stochastic process

X t,x,α
s = x− (s− t) +

∫ s

t

γ αr dWr, s ∈ [t, T ], P − a.s.,
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where γ > 0 and P := P0.
We can introduce now the value function of the control problem that consists in

minimizing a finite time ruin probability:

V (t, x) = inf

{
P

(
inf

t6s6T
X t,x,α
s < 0

)
: α ∈ A

}
,

for all (t, x) ∈ [0, T ]× [0,∞).
The following Theorem is the main result of this paper, and provides an analytic

formula of the value function V (t, x) as well as an optimal control.

Theorem 2.1. The value function satisfies, for all (t, x) ∈ [0, T ] × (0,∞) with
x < T − t,

V (t, x) = 1−
∫ T−t

0

f(
T − t− x

γ
, v)g(

T − t− x
γ

, v,
T − t− v

γ
,

1

γ
)dv, (2.1)

where

f(z, v) =
|z|√

2πv3/2
exp(− z

2

2v
), (z, v) ∈ R× (0,∞), (2.2)

and

g(y, u, a, b) =
∞∑

j=−∞

(1− 2j
a+ ub

y
)e−

2a
u
j2(a+ub)e

2a
u
jy, (2.3)

for all a, b, u ∈ (0,∞) and y ∈ (0, a+ bu). Moreover, for (t, x) ∈ [0, T ]× [0,∞) the
process a?(s, Y t,x

s )s∈[t,T ] is an optimal control for V (t, x), where Y t,x is the solution
of the SDE dYs = −ds+ a?(s, Ys)γdWs on [t, T ] with initial condition x, and where
a? is defined in (1.4).

The proof of Theorem 2.1 is postponed to Section 4. In the remainder of the
current section we give an economic interpretation of the results of Theorem 2.1.
We refer to the region where time to maturity exceeds the state value as the

losing region, and the complement as the winning region. Notice that (t, x) is in
the losing region if and only if EP (X t,x,α

T ) < 0 for all α. Theorem 2.1 states that,
as long as the state process is in the losing region, it is optimal for the controller to
choose α = 1. By choosing α = 1, the volatility of the state process is maximized.
This further increases the probability for the state process to return to the winning
region before T .
The controller only cares about ending up in the winning region at time T . In case

of a ruin (or death) it does not matter for him by how far the state process X dives
into the negative area. In other words, the controller is "gambling for resurrection"
in the losing region.
We now consider a more specific interpretation where the controller is a manager

of a company aiming at minimizing the ruin probability up to time T . The strategy
a∗ is optimal from the manager’s perspective, but may not be so from a principal’s
perspective, e.g. a regulator or a company owner. Indeed, in choosing the strategy
a? the manager only cares about the probability of staying above the ruin level,
but he does not care about the size of the loss, in the event where ruin occurs. A
principal may care about the size of the conditional loss. In this sense, Theorem 2.1
shows that the ruin probability, as a target functional, can give wrong incentives
when determining optimal management strategies.
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3. The probability for a Brownian motion to exit a
right triangle from the hypotenuse

In this section we consider the probability for a one-dimensional Brownian motion
to first exit the right triangle ∆b in R2 with vertices (t, bt), (t, bT ) and (T, bT ) from
its hypotenuse, where b, T > 0. Note that we have to introduce a new parameter b
to properly take into account the parameter γ appearing in (1.5) or (1.6)
Let J = {(t, x) ∈ [0, T )×(0, bT ) : x > t} and J̄ = {(t, x) ∈ [0, T ]×[0, bT ] : x > t}.

Let (t, x) ∈ J̄ and W t,x a Brownian motion starting in x at time t. We define

ρt,xu = inf{s > t : W t,x
s > bT}

ρt,xl = inf{s > t : W t,x
s 6 bs}.

and

H(t, x) := P (ρt,xl < ρt,xu ). (3.1)

The analytic formula that we derive for H takes the following form.

Proposition 3.1. For all (t, x) ∈ J we have

H(t, x) = 1−
∫ T−t

0

f(bT − x, v)g(bT − x, v, b(T − t− v), b)dv (3.2)

where the functions f and g are defined as in (2.2) and (2.3), respectively.

Let us comment on the methodology used to obtain (3.2), which also explains the
origin of the functions f and g. The integral term in the right hand side of (3.2)
is the probability that W t,x exits ∆b from the opposite side of the hypothenuse.
The strategy that we use to compute this probability is to first fix the instant of
time at which W t,x hits the horizontal boundary y = bT . In doing so, the process
distribution obtained by conditionning the Brownian trajectory to first hit the level
bT at a deterministic time, say u ∈ (t, T ), is the bridge of a 3-dimensional Bessel
process (see [10, 9]), which is represented in Figure 2. In [9], this process is called
the Brownian first passage bridge, and other representations and transformations of
this process are given, including in the discrete time random walk case. Now, what
we want is that this process stays above the hypothenuse during its whole lifetime
interval u− t: Lemma 3.2 below says that this probability is given by the function
g. It remains to multiply by the first hitting time density f of level bT of W t,x,
evaluated at u, and to integrate for all values of u in (t, T ). Said otherwise, we will
use that

1−H(t, x) =

∫ T

t

PBES
0,u−t,bT−x (Ws < b(s+ T − u), s ∈ (0, u− t)) f(u)du,

where PBES
x,u,y denotes the law on Ω of the 3-dimensional Bessel bridge between x

and y, with length u > 0 and where f is the density of the first hitting time of the
level bT −x by a standard Brownian motion. After a simple change of variable, this
explains the formula appearing in (3.2).

For the proof of Proposition 3.1 we use the following lemma.

Lemma 3.2. Let a > 0, b > 0, u > 0 and y ∈ (0, a+ bu). Then, by denoting Px,u,y
the law of a Brownian bridge from x to y with length u, we have

P0,u,y(Ws < a+ bs for all s ∈ [0, u]|Ws > 0 for all s ∈ (0, u]) = g(y, u, a, b). (3.3)
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Figure 2: Hitting time conditioning and 3-dimensional Bessel bridge

Proof. For the special case b = 1 the formula appears as formula (38) in [22].
For the reader’s convencience we provide a sketch of the proof. It is known that
Px,u,y(Ws > 0 for all s ∈ (0, u]) = 1 − e−2xy/u (see e.g. page 174 in [11]). We next
recall a formula for the probability that a Brownian bridge crosses a given line (see
Theorem 3.3 and Prop 3.5 in [1] or Theorem 7 in [22]). We have

Px,u,y(0 < Ws < a+ bs for all s ∈ (0, u))

= P0,u,y−x(−x < Ws < a− x+ bs for all s ∈ (0, u))

= 1−
∞∑
k=1

(e−2Ak(x) + e−2Bk(x) − e−2Ck(x) − e−2Dk(x)),

where

Ak(x) =
1

u

(
j2(a− x)(a− y + bu) + (j − 1)2xy + j(j − 1)[(a− y + bu)x+ (a− x)y]

)
,

Bk(x) =
1

u

(
(j − 1)2(a− x)(a− y + bu) + j2xy + j(j − 1)[(a− y + bu)x+ (a− x)y]

)
,

Ck(x) =
1

u

(
j2[(a− x)(a− y + bu) + xy] + j(j − 1)(a− y + bu)x+ j(j + 1)(a− x)y

)
,

Dk(x) =
1

u

(
j2[(a− x)(a− y + bu) + xy] + j(j + 1)(a− y + bu)x+ j(j − 1)(a− x)y

)
.

A straightforward calculation shows

A′k(x) =
1

u
(y − j(a+ bu)),

B′k(x) =
1

u
((j − 1)(a+ bu) + y)),

C ′k(x) = −1

u
j(a+ bu),

D′k(x) =
1

u
j(a+ bu).
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With L’Hopital’s rule we obtain

lim
x↓0

Px,u,y(Ws < a+ bs for all s ∈ [0, u])

Px,u,y(Ws > 0 for all s ∈ (0, u])

= lim
x↓0

∂
∂x

[
1−∑∞k=1(e

−2Ak(x) + e−2Bk(x) − e−2Ck(x) − e−2Dk(x))
]

∂
∂x

[1− e−2xy/u]

=
u

y

∞∑
k=1

(
A′k(0)e−2Ak(0) +B′k(0)e−2Bk(0) − C ′k(0)e−2Ck(0) −D′k(0)e−2Dk(0)

)
=

∞∑
j=−∞

(1− 2j
a+ ub

y
)e−

2a
u
j2(a+ub)e

2a
u
jy.

Proof of Proposition 3.1. To simplify notation we suppose that t = 0. Let x, y ∈ R
and u ∈ (0,∞).
Note that

P (ρu < ρl) =

∫ T

0

Px(Wt > bt for all t ∈ [0, v]|ρu = v)P (ρu ∈ dv) (3.4)

=

∫ T

0

Px,v,bT (Wt > bt,∀t ∈ [0, v]|Wt < bT, ∀t ∈ [0, v))f(bT − x, v)dv.

(3.5)

Since a time-reversed Brownian bridge is again a Brownian bridge (see, e.g., Propo-
sition 1 in [21]) we have

Px,v,bT (Wt > bt,Wt < bT, for all t ∈ [0, v))

= P0,v,x−bT (Wt > bv − bT − bt,Wt < 0, for all t ∈ [0, v))

= P0,v,bT−x(Wt < bT + bt− bv,Wt > 0, for all t ∈ [0, v))

and

Px,v,bT (Wt < bT, for all t ∈ [0, v)) = P0,v,bT−x(Wt > 0, for all t ∈ [0, v)).

This further implies

Px,v,bT (Wt > bt,∀t ∈ [0, v]|Wt < bT, ∀t ∈ [0, v))

= P0,v,bT−x(Wt < bT − bv + bt for all t ∈ [0, v]|Wt > 0,∀t ∈ [0, v)).

By Lemma 3.2 the conditional probability in the last line of the previous equation
is equal to g(bT − x, v, b(T − v), b). Combining this with (3.4) yields the claim.

With the analytic formula (3.2) we can show that H solves the heat equation in
the interior of J . More precisely, we have the following.

Theorem 3.3. We have H ∈ C(J̄ \ {(T, T )}) ∩ C1,2(J). Moreover, H satisfies the
heat equation on J with the boundary conditions

H(t, bt) = 1 and H(t, bT ) = 0,

for all t ∈ [0, T ).
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Proof of Theorem 3.3. With the analytic representation (3.2) at hand one can show,
with some tedious but elementary calculations, that H satisfies the claimed conti-
nuity and smoothness. Since the calculations are rather long, we present them in
the Appendix A.
Now, one can show that H satisfies the heat equation on J by using Ito’s formula.

To do so, choose an arbitrary point (t, x) ∈ J and let Bh be the ball of radius
h > 0 around (t, x). Stop the Brownian motion W t,x when the pair (s,W t,x

s )s≥t
hits the boundary of Bh. Then apply Ito’s formula on H(s,W t,x

s ) between t and
the boundary hitting time. Since H(s,W t,x

s ) is a martingale, the bounded variation
part of the Ito process decomposition vanishes. By using the mean value theorem
and letting h ↓ 0 one can show that the heat equation is satisfied at (t, x). The
boundary conditions follow from the definition of H.

4. Solving the control problem

In this section we prove Theorem 2.1. To simplify notation we assume, throughout
the section, that γ = 1.
We first derive an alternative representation of the value function. For all (t, x) ∈

[0, T ]× [0,∞) and α ∈ A we define

τ t,x,αl = inf{s > t : X t,x,α
s 6 0},

τ t,x,αu = inf{s > t : X t,x,α
s > T − s}.

Moreover, we set α̂t,xs = αs1{τ t,x,αu >s} for all s ∈ [t, T ]. Notice that

J(t, x, α) > J(t, x, α̂t,x) = P (τ t,x,αl < τ t,x,αu ).

Therefore, the value function satisfies

V (t, x) = inf{P (τ t,x,αl < τ t,x,αu ) : α ∈ A}. (4.1)

We are going to prove that the value function V is a classical solution of the following
HJB equation:

∂tV (t, x)− ∂xV (t, x) + inf
a∈[0,1]

1

2
a2∂xxV (t, x) = 0, (4.2)

with the boundary conditions

V (t, 0) = 1, for all t ∈ [0, T ),

V (t, T − t) = 0, for all t ∈ [0, T ].

To do so, we first construct an explicit solution of the HJB equation (4.2).
Let I = {(t, x) ∈ [0, T ) × (0, T ) : x < T − t}. We denote by Ī the closure of I,

i.e. Ī = {(t, x) ∈ [0, T ] × [0, T ] : x 6 T − t}. Recall the definition of Y t,x given in
Theorem 2.1: Y t,x is the solution of the SDE dYs = −ds + a?(s, Ys)dWs on [t, T ]
with initial condition x, where a?(t, x) = 1 if (t, x) ∈ I and 0 otherwise.
For all (t, x) ∈ Ī let

σt,xu = inf{s > t : Y t,x
s > T − s}

σt,xl = inf{s > t : Y t,x
s 6 0}.

and

G(t, x) := P (σt,xl < σt,xu ).
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Lemma 4.1. We have G ∈ C(Ī \ {(T, 0)}) ∩ C1,2(I). Moreover, for all (t, x) ∈ I

∂tG(t, x)− ∂xG(t, x) +
1

2
∂xxG(t, x) = 0. (4.3)

and ∂xxG(t, x) 6 0.

Proof. Notice that G(t, x) = H(t, x + t) for all (t, x) ∈ Ī, where H is the function
introduced in (3.1) with b = 1. Hence the smoothness of G on I and the conti-
nuity on Ī \ {(T, 0)} follow from the smoothness and continuity of H on J and J̄ ,
respectively.
In addition, observe that for all (t, x) ∈ J we have

∂tH(t, x) = ∂tG(t, x− t)− ∂xG(t, x− t) and ∂xxH(t, x) = ∂xxG(t, x− t).
Since H satisfies the heat equation, this implies that (4.3) is satisfied for all (t, x) ∈
I.
Finally notice that, because of the particular triangular geometry of the problem,

for fixed x, if we consider an initial time t′ > t, then the process starts closer to
the hypothenuse, which implies that ∂tH > 0. Hence, with the heat equation, we
obtain 1

2
∂xxH(t, x) = −∂tH(t, x) 6 0. This entails ∂xxG(t, x) 6 0 on I.

Lemma 4.1 implies that G is concave in x and that G satisfies the HJB equation
(4.2).
Lemma 4.2. G is a solution of the HJB equation (4.2) on I, and satisfies the
boundary conditions

G(t, T − t) = 0 for t ∈ [0, T ], and G(t, 0) = 1 for t ∈ [0, T ). (4.4)

Proof. Lemma 4.1 implies ∂xxG(t, x) = infa∈[0,1] a
2∂xxG(t, x), and hence G satisfies

the HJB equation (4.2) on I.
The boundary properties (4.4) follow directly from the definition of G.

Proof of Theorem 2.1. It is enough to prove that G(t, x) = V (t, x) for all (t, x) ∈ Ī.
First observe that V (t, T−t) = 0 for all t ∈ [0, T ] and V (t, 0) = 1 for all t ∈ [0, T ).

Hence V and G coincide on the boundary of Ī.
Now let (t, x) ∈ I. From the definition of G and formula (4.1) we have G(t, x) >

V (t, x). In order to prove G(t, x) 6 V (t, x), let α be an arbitrary control in A. Let
τn = inf{s > t : d((s,X t,x,α

s ), ∂I) 6 1
n
}, where ∂I = Ī \ I denotes the boundary of I

and d(·, ∂I) the distance to the boundary (here we set inf ∅ = t). The Ito formula
yields

G(τn, X
t,x,α
τn ) =G(t, x) +

∫ τn

t

∂xG(s,X t,x,α
s )dWs

+

∫ τn

t

[∂tG(s,X t,x,α
s )− ∂xG(s,X t,x,α

s ) +
1

2
α2
s∂xxG(s,X t,x,α

s )]ds.

Since G satisfies the HJB equation (4.2) on I we further obtain

G(τn, X
t,x,α
τn ) >G(t, x) +

∫ τn

t

∂xG(s,X t,x,α
s )dWs. (4.5)

Note that the integrand of the stochastic integral in (4.5) is bounded and hence the
expectation of the stochastic integral vanishes. We thus obtain

E[G(τn, X
t,x,α
τn )] >G(t, x).

Since G is bounded and continuous in Ī \ {(T, 0)}, dominated convergence implies
J(t, x, α) > J(t, x, αt,x) = E[G(τ,X t,x,α

τ )] > G(t, x), where τ is the first time at
which X t,x,α hits the boundary ∂I. Therefore, V (t, x) > G(t, x).
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A. Appendix

In this appendix we prove the continuity and smoothness properties of the function
H claimed in Theorem 3.3. To shorten notation, we take b = 1 and we show the
respective properties for

H(t, x) := 1−H(t, x) = P (ρt,xu < ρt,x` ).

Lemma A.1. For every t, x ∈ (t, T ) 7→ H(t, x) is continuous.

Proof. Let t ∈ [0, T ) and δ > 0, we prove that for all x ∈ [t, T − δ], the function is
continuous in x. For t < x < T − δ, using Proposition 3.1, and a simple change of
variables, we get

H(t, x) =

∫ T−t

0

1√
2πu3/2

exp

(
−(T − x)2

2u

) +∞∑
k=−∞

hk(u, x) du, (A.1)

with

hk(u, x) := [T−x− 2k(T − t)]

× exp

(
−2k2

(T − u− t)(T − t)
u

)
exp

(
2k

(T − u− t)(T − x)

u

)
.

Note that
∑+∞

k=−∞ hk(u, x) 6 1, since it is a probability.

1. For all x ∈ [t, T − δ],
1√

2πu3/2
exp

(
−(T − x)2

2u

)
≤ 1√

2πu3/2
exp

(
−(T − (T − δ))2

2u

)
,

and this function u 7→ 1√
2πu3/2

exp
(
− (T−(T−δ))2

2u

)
is integrable on (0, T − t).

2. x 7→ 1√
2πu3/2

exp
(
− (T−x)2

2u

)
is continuous on [t, T − δ].

3. Let us prove that the series
∑+∞

k=−∞ hk(u, x) is a continuous function of x. Since
each hk is a continuous function of x, it is sufficient to prove that the series
converges uniformly, which is implied by the fact that

+∞∑
k=−∞

sup
t≤x≤T

|hk(u, x)| < +∞, since

|hk(u, x)| ≤ (T − t)|2k − 1| exp

(
−2

(T − u− t)(T − t)
u

k(k − 1)

)
.

The point 1. above and the fact that
∑+∞

k=−∞ hk(u, x) 6 1 show that the integrand
in (A.1) is bounded from above by an integrable function, which is independent of
x. The points 2. and 3. allow to deduce that the integrand in (A.1) is a continuous
function of x. Hence x 7→ H(t, x) is continuous, for t < x < T .

Let us now prove that limx→T− H(t, x) = 1. Recall that

H(t, x) =

∫ T

t

f(u)
+∞∑

k=−∞

(
1− 2k

T − t
T − x

)
× exp

(
T − u
u− t

[
−2k2(T − t) + 2k(T − x)

])
du,
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with

f(u) =

{
T−x√

2π(u−t)3/2 exp
(
− (T−x)2

2(u−t)

)
if x < T

1{u=t} if x = T.

Isolating the term k = 0 in the sum, we get,

H(t, x) =

∫ T

t

{
f(u) +

1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)
×

+∞∑
k=−∞,k 6=0

(T − x− 2k(T − t)) exp

(
T − u
u− t

[
−2k2(T − t) + 2k(T − x)

])}
du.

When x→ T , the second term in the previous integral simplifies to

1√
2π(u− t)3/2

+∞∑
k=−∞,k 6=0

(−2k(T − t)) exp

(
T − u
u− t

[
−2k2(T − t)

])
= 0,

and

lim
x→T

H(t, x) = lim
x→T

∫ T

t

f(u) du = 1.

Finally, for x = t, we have

H(t, t) =

∫ T

t

f(u)
+∞∑

k=−∞

(1− 2k) exp

(
(T − u)(T − t)

u− t 2k(1− k)

)
du = 0,

since
N∑

k=−N

(1− 2k) exp (Ck(1− k)) =
2N + 1

exp(CN(N + 1))

goes to 0 as N goes to +∞, for any C > 0.

The following observations will be useful: we can write H(t, x) in the following
way:

H(t, x) =

∫ T

t

1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)
(A.2)

×
{
T − x− 4(T − t)

+∞∑
k=1

k exp(−2k2Ct,u,T ) sinh

(
2k(T − x)

T − u
u− t

)

+ 2(T − x)
+∞∑
k=1

exp(−2k2Ct,u,T ) cosh

(
2k(T − x)

T − u
u− t

)}
du,

with Ct,uT := (T−t)(T−u)
u−t . This can be written

H(t, x) =

∫ T

t

h(x, u) du,

with

h(x, u) := g(x, u)×
{
T − x− 4(T − t)

+∞∑
k=1

f 1
k (x, u) + 2(T − x)

+∞∑
k=1

f 2
k (x, u)

}
.
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Lemma A.2. Both series
∑
f 1
k and

∑
f 2
k are C2 functions of x and

∂2

∂x2

∑
f ik =

∑ ∂2

∂x2
f ik, i = 1, 2.

Proof. We will prove the claim for
∑
f 1
k , the proof for

∑
f 2
k being very similar. For

any k ≥ 1, the map x 7→ f 1
k (x, u) is C2 and

∂2

∂x2
f 1
k (x, u) = 4k3 exp(−2k2Ct,u,T )

(
T − u
u− t

)2

sinh

(
2k(T − x)

T − u
u− t

)
.

The function sinh being increasing,∣∣∣∣ ∂2∂x2f 1
k (x, u)

∣∣∣∣ ≤ 4k3 exp(−2k2Ct,u,T )

(
T − u
u− t

)2

sinh

(
2k(T − t)T − u

u− t

)
,

which implies that the series
∑

∂2

∂x2
f 1
k (x, u) converges uniformy, and from which we

deduce the claim.

Lemma A.3. For every t, x 7→ H(t, x) is C2.

Proof. As previously, let x ∈ [t, T − δ] where δ > 0. We have

∂g

∂x
(x, u) =

1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)[
T − x
u− t

]
,

∂2g

∂x2
(x, u) =

1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)[
(T − x)2

(u− t)2 −
1

u− t

]
.

Using Lemma A.2, we get

∂2h

∂x2
(x, u) =

1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)
(I1 + I2 + I3),

where

I1 :=

[
(T − x)2

(u− t)2 −
1

u− t

]{
T − x− 4(T − t)

+∞∑
k=1

f 1
k (x, u) + 2(T − x)

+∞∑
k=1

f 2
k (x, u)

}
,

I2 :=− 16(T − t)(T − u)2

(u− t)2
+∞∑
k=1

k3 exp(−2k2Ct,u,T ) sinh

(
2k(T − x)

T − u
u− t

)

+ 8
T − u
u− t

+∞∑
k=1

k exp(−2k2Ct,u,T ) sinh

(
2k(T − x)

T − u
u− t

)

+ 8(T − x)
(T − u)2

(u− t)2
+∞∑
k=1

k2 exp(−2k2Ct,u,T ) cosh

(
2k(T − x)

T − u
u− t

)
,
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and

I3 :=

[
T − x
u− t

]
×

{
− 1 + 8Ct,u,T

+∞∑
k=1

k2 exp(−2k2Ct,u,T ) cosh

(
2k(T − x)

T − u
u− t

)

− 2
+∞∑
k=1

exp(−2k2Ct,u,T ) cosh

(
2k(T − x)

T − u
u− t

)

− 4
(T − u)(T − x)

u− t
+∞∑
k=1

k exp(−2k2Ct,u,T ) sinh

(
2k(T − x)

T − u
u− t

)}
.

We have∣∣∣∣ 1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)
I1

∣∣∣∣ ≤ g(x, u)

(
T − x
u− t

)2

+ g(x, u)
1

u− t .

For any x ∈ [t, T − δ], we have

g(x, u)

(
T − x
u− t

)2

≤ (T − t)2√
2π(u− t)5/2

exp

(
−(T − (T − δ)2

2(u− t)

)
,

and

g(x, u)
1

u− t ≤
1√

2π(u− t)5/2
exp

(
−(T − (T − δ)2

2(u− t)

)
.

The two functions on the RHS are integrable on (0, T − t).
We can show that all the terms appearing in the quantities

∣∣∣ 1√
2π(u−t)3/2 exp

(
− (T−x)2

2(u−t)

)
I2

∣∣∣
and

∣∣∣ 1√
2π(u−t)3/2 exp

(
− (T−x)2

2(u−t)

)
I3

∣∣∣ are bounded from above by ≤ K
(u−t)1/2 , for u ∈

(t, t+ ε), where ε > 0 and where K is a positive constant (independent of u and x).
Let us for example study in detail the term

Ĩ2 :=
1√

2π(u− t)3/2
exp

(
−(T − x)2

2(u− t)

)
16(T − t)(T − u)2

(u− t)2

×
+∞∑
k=1

k3 exp(−2k2Ct,u,T ) sinh

(
2k(T − x)

T − u
u− t

)
,

the arguments for the other terms are very similar.
Using that sinh is increasing and that Ct,u,T = (T−t)2

u−t − (T − t), we get∣∣∣Ĩ2∣∣∣ ≤ 1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)
16

(T − t)3
(u− t)2

×
+∞∑
k=1

k3 exp

(
−k2[2(T − t)2

u− t − 2(T − t)]
)

sinh

(
2k

(T − t)2
u− t

)
.

Define

S(u) :=
+∞∑
k=1

k3 exp
(
−k2[ c

u
− c′]

)
sinh

(
k
c

u

)
, 0 < u ≤ (T − t)
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where c = 2(T − t)2 and c′ = 2(T − t) ( c
u
− c′ ≥ 0 for u ≤ T − t). We are going to

prove that limu→0+ u logS(u) = 0. Assuming momentarily that this limit is indeed
equal to 0, then there exists ū > t such that for any u ≤ ū,

2(u− t) logS(u− t)− 2(u− t) log

(
(2π)1/6(u− t)

24/3(T − t)

)3

≤ T − (T − δ).

This implies for any x ∈ [t, T − δ] and any u ≤ ū,

1√
2π(u− t)3/2

exp

(
−(T − x)2

2(u− t)

)
16

(T − t)3
(u− t)2 S(u− t) ≤ 1

(u− t)1/2 .

This implies, by splitting the interval [t, T ] into [t, t+ε) and [t+ε, T ] with ε small
enough, that

∣∣∣∂2h∂x2
(x, u)

∣∣∣ is bounded from above by an integrable function which is
independent of x, on each of these intervals. Using similar arguments as in the proof
of Lemma A.2, we can show that x 7→ ∂2h

∂x2
(x, u) is a continuous function. From this,

we can conclude that x 7→ H(t, x) is C2.
It remains to prove that limu→0+ u logS(u) = 0, which is the purpose of Lemma

A.4.

Lemma A.4. limu→0+ u logS(u) = 0.

Proof. Define,

ϕ(v, u) :=
1

2
v3 exp

(
−v2[ c

u
− c′]

)(
exp

(
v
c

u

)
− exp

(
−v c

u

))
, v > 1, (A.3)

which is a differentiable function such that

∂ϕ

∂v
(v, u) = exp

(
−v2[ c

u
− c′]

)
v2
[
v
c

u
cosh

(
v
c

u

)
−
(

2v2[
c

u
− c′]− 3

)
sinh

(
v
c

u

)]
.

The sign of this derivative is given by the sign of v c
u

cosh
(
v c
u

)
−
(
2v2[ c

u
− c′]− 3

)
sinh

(
v c
u

)
,

which is going to be negative for u small enough. Indeed, this quantity is negative
if and only if

tanh
(
v
c

u

)(
2v − 2v

c′

c
u− 3

v

u

c

)
> 1.

Since tanh
(
v c
u

) (
2v − 2v c

′

c
u− 3

v
u
c

)
converges to 2v > 1 as u goes to 0, we have that

v 7→ ϕ(v, u) is decreasing for u small enough. We can then apply the standard
technique of comparison between series and integrals: for k ≥ 1,∫ k+1

k

ϕ(v, u)dv ≤ ϕ(k, u) =

∫ k

k−1
ϕ(k, u)dv ≤

∫ k

k−1
ϕ(v, u)dv.

Taking the sum from k = 2 to k = N , and then the limit when N goes to +∞, we
have

ϕ(1, u) +

∫ +∞

2

ϕ(v, u)dv ≤
+∞∑
k=1

ϕ(k, u) ≤ ϕ(1, u) +

∫ +∞

1

ϕ(v, u)dv. (A.4)
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Let us compute the integral on the right hand side, (which is well defined since for
v in the neighbourhood of +∞, ϕ(v, u) = o( 1

vp
) for any p > 1), that we expand as:

K :=

∫ +∞

1

ϕ(v, u)dv =
1

2
(K+ −K−), where

K+ :=

∫ +∞

1

v3 exp
(
−v2[ c

u
− c′] + v

c

u

)
dv and

K− :=

∫ +∞

1

v3 exp
(
−v2[ c

u
− c′]− v c

u

)
dv.

Writing Φ̄j(x) := E[Zj1{Z>x}], j ≥ 0 and Φ̄(x) := Φ̄0(x) = P (Z > x), with Z a r.v.
having a standard Gaussian distribution, we have

K+ =
√

2π
exp

(
c2

4u2[ c
u
−c′]

)
4[ c
u
− c′]2 ×[

κ32Φ̄(κ1 − κ2) + 3κ22Φ̄1(κ1 − κ2) + 3κ2Φ̄2(κ1 − κ2) + Φ̄3(κ1 − κ2)
]
,

where κ1(u) :=
√

2( c
u
− c′) and κ2(u) := c

uκ1(u)
(for simplicity, we do not indicate

the dependence on u of κ1 and κ2 when there is no ambiguity). Similarly we have

K− =
√

2π
exp

(
c2

4u2[ c
u
−c′]

)
4[ c
u
− c′]2 ×[

Φ̄3(κ1 + κ2)− 3κ2Φ̄2(κ1 + κ2) + 3κ22Φ̄1(κ1 + κ2)− κ32Φ̄(κ1 + κ2)
]
.

By an integration by parts,

Φ̄3(x) =
1√
2π

exp

(
−x

2

2

)
(x2 + 2)

Φ̄2(x) =
x√
2π

exp

(
−x

2

2

)
+ Φ̄(x)

Φ̄1(x) =
1√
2π

exp

(
−x

2

2

)
, and it is standard that

Φ̄(x) ∼ 1

x

1√
2π

exp

(
−x

2

2

)
.

Using these explicit expressions, the value of ϕ(1, u) given through (A.3) and in-
equality (A.4), it is straightforward to show that u logS(u) converge to 0 as u goes
to 0+.

Lemma A.5. For every x ∈ (0, T ), t ∈ [0, x] 7→ H(t, x) is C1.
Proof. Recall that (do a change of variable u = u−t

T−t)

H(t, x) =

∫ T

0

{
f(u, t, x) +

1√
2π(T − t)1/2(u)3/2

exp

(
− (T − x)2

2(T − t)u

)
×

+∞∑
k=−∞,k 6=0

(T − x− 2k(T − t)) exp

(
1− u
u

[
−2k2(T − t) + 2k(T − x)

])}
du.

=

∫ T

0

{
f(u, t, x) + g(t, x, u)

+∞∑
k=−∞,k 6=0

hk(t, x, u)
}
du,
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where

f(u, t, x) =

{
T−x√

2π(T−t)1/2(u)3/2 exp
(
− (T−x)2

2(T−t)u

)
if x < T

1{u=t} if x = T.

Let x ∈ [0, T ), t0 ≤ 0 and δ > 0 such that t0 + δ ∈ [0, x).

• For all t ∈ [0, t0 + δ]∣∣∣∣∂f∂t
∣∣∣∣ =

T − x
2
√

2π(T − t)3/2(u)3/2
exp

(
− (T − x)2

2(T − t)u

)
+

(T − x)3√
2π(T − t)3/2(u)5/2

exp

(
− (T − x)2

2(T − t)u

)
≤ T − x

2
√

2π(T − t0 − δ)3/2(u)3/2
exp

(
−(T − x)2

2Tu

)
+

(T − x)3√
2π(T − t0 − δ)3/2(u)5/2

exp

(
−(T − x)2

2Tu

)
.

The right side is a integrable function on [0, 1] independent of t ∈ [0, t0 + δ].
The function t 7→ ∂f

∂t
is continuous on [0, t0 + δ]

• Note that g(t, x, u) = f(t, x, u)/(T − x). Hence the functions t 7→ g(t, x, u)
and t 7→ ∂g

∂t
are continuous on [0, t0 + δ] and can be bounded by above by a

function independent of f and integrable w.r.t u.

• Let us prove that the
∑+∞

k=−∞,k 6=0 hk(t, x, u) is a C1 function. Since

sup
t∈[0,t0+δ]

∣∣∣∣∂hk(t, x, u)

∂t

∣∣∣∣
= sup

t∈[0,t0+δ]

∣∣∣∣2k exp

(
1− u
u

[
−2k2(T − t) + 2k(T − x)

])
+ 2k2

1− u
u

(T − x− 2k(T − t)) exp

(
1− u
u

[
−2k2(T − t) + 2k(T − x)

])∣∣∣∣
≤2|k| exp

(
1− u
u

[
−2k2(T − t0 − δ) + 2k(T − x)

])
+ 2k2

1− u
u

(T − x+ 2|k|T ) exp

(
1− u
u

[
−2k2(T − t0 − δ) + 2k(T − x)

])
≤2|k| exp

(
1− u
u

[
−2k2(T − x) + 2k(T − x)

])
+ 2k2

1− u
u

(T − x+ 2|k|T ) exp

(
1− u
u

[
−2k2(T − x) + 2k(T − x)

])
,

which is the term of a convergent series, the result follows.

• |∂g(t,x,u)
∂t

∑+∞
k=−∞,k 6=0 hk(t, x, u)| ≤ |∂g(t,x,u)

∂t
|, which is bounded by above by an

integrable function independent of t ∈ [0, t0 + δ] (see above).

• Define

S̃n(u) :=
+∞∑
k=1

kn exp

(
−k2c[1− u

u
]

)
sinh

(
kc

1− u
u

)
, 0 < u ≤ (T − t),

18



where c = (T −x), n = 1, 2, 3. Similar arguments as the ones used in the proof
of Lemma A.4 imply that limu→0+ u log S̃n(u) = 0. Then there exists ū such
that for any u ≤ ū

∣∣∣∣∣g(t, x, u)
+∞∑

k=−∞,k 6=0

∂hk(t, x, u)

∂t

∣∣∣∣∣ ≤ C
1√
u
,

where C is constant independent of u and t.
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