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Abstract

The scalability of high-performance, parallel iterative applications is directly

affected by how well they use the available computing resources. These ap-

plications are subject to load imbalance due to the nature and dynamics of

their computations. It is common that high performance systems employ pe-

riodic load balancing to tackle this issue. Dynamic load balancing algorithms

redistribute the application’s workload using heuristics to circumvent the NP-

hard complexity of the problem However, scheduling heuristics must be fast

as to avoid hindering application performance when distributing the workload

on large and distributed environments. In this work, we present a technique

for low overhead, high quality scheduling decisions for parallel iterative ap-

plications. The technique relies on combined application workload information

paired with distributed scheduling algorithms. An initial distributed step among

scheduling agents group application tasks in packs of similar load to minimize

messages among them. This information is used by our scheduling algorithm,

PackStealLB, for its distributed-memory work stealing heuristic. Experimen-

tal results showed that PackStealLB is able to improve the performance of a

molecular dynamics benchmark by up to 41%, outperforming other scheduling

algorithms in most scenarios over almost one thousand cores.
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1. Introduction

Scientific and industrial applications commonly make use of High Perfor-

mance Computing (HPC) resources to meet their needs related to size (e.g., to

treat terabytes or petabytes of research data), performance (e.g., to understand

the spread of an epidemic as soon as possible), or deadlines (e.g., to predict the5

weather before the day comes). Even though HPC applications may have differ-

ent characteristics, they all have to be properly scheduled on the available HPC

resources to achieve their objectives. As these platforms grow in scale, so does

the risk of wasting their costly resources due to load imbalance [1, 2].

Load imbalance emerges when applications’ tasks are waiting for some other10

tasks to complete, making resources go idle. This problem can be caused, among

others, by tasks with different workloads, tasks whose workloads dynamically

evolve during execution, or by having computing resources take on more tasks

to recover from a node failure. A natural solution to load imbalance is to

periodically redistribute the tasks over the computing resources. This Periodic15

Load Balancing (LB) approach is seen in applications such as the Gordon Bell

award-winning application NAMD [3], and it can be applied on applications

based on parallel iterative methods.

The problem to decide an optimal mapping of tasks to computing resources

is considered to be of NP-Hard complexity [4, 5]. Moreover, applications with20

periodic load balancing must employ scheduling heuristics to dynamically redis-

tribute its workload. In this study, we showcase how commonly-used heuristics

can fail to achieve good results when operating in larger scales (i.e., larger num-

bers of tasks or computing resources) due to issues in their scheduling decisions

or due to their overhead (Section 6). Without scalable periodic load balancing25

solutions, the scalability of HPC applications will be compromised, leading to

longer execution times and wasted computing resources.

In this work, we propose a scalable load balancing approach by combining
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distributed load balancing and the discretization of application workload. Our

approach reduces scheduling overhead by applying the following design: (i) exe-30

cute scheduling steps in a distributed fashion; (ii) perform workload discretiza-

tion to simplify decisions; (iii) group local tasks to avoid numerous fine-grained

migrations and (iv) minimize the messages between scheduling actors. The

discretization technique, called packing, extends a previous technique [6] with

notions related to ε-Nash Equilibrium. We also present PackStealLB , a new dis-35

tributed load balancing algorithm that uses packing and inherits ideas related to

constrained [7, 8] and randomized [9] Work Stealing (WS) heuristics. We carried

out an experimental evaluation of PackStealLB with LeanMD, a molecular dy-

namics benchmark based on NAMD [10], on 20 compute nodes (960 cores) of the

supercomputer Joliot-Curie SKL1. Our results show the benefits of PackStealLB40

in terms of total LB overhead, reduced number of task migrations, preservation

of the original locality between tasks, and reduced total application execution

times. Overall, our main contributions are:

1. A method for workload discretization named packing that extends previ-

ous work [6];45

2. A novel distributed, WS-based periodic load balancing algorithm called

PackStealLB ;

3. The implementation of PackStealLB in Charm++, a state-of-the-art run-

time system that supports load balancing in distributed memory scenar-

ios, and an experimental evaluation comparing it to other state-of-the-art50

algorithms [6, 11, 12].

The remainder of this work is divided as follows. Section 2 discusses related

work in periodic LB and WS. Section 3 presents the distributed model consid-

ered in this work and its notations. Section 4 presents our packing model and

load balancing algorithm. Section 5 discusses their implementation details in55

1Joliot-Curie SKL is currently the 52nd world’s most powerful supercomputer according

to November 2019’s list on www.top500.org.
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Charm++. Section 6 presents our performance evaluation and results. Finally,

Section 7 concludes this paper.

2. Related Work

State-of-the-art WS and LB techniques differ in scope when used in novel de-

centralized load balancing solutions. WS heuristics are regarded as distributed60

load balancing mechanisms for task-parallel applications. The simpler WS

scheme is to have an executor to steal some workload from another when the

former is idle. WS schedulers may also be classified as distributed receiver-

initiated (or pull-based) load balancing schemes. In other words, underloaded

processing elements request load from overloaded ones. LBs, on the other hand,65

are periodically invoked to remap the system workload. LBs exist on different

flavors regarding topology (e.g. centralized or distributed) and are commonly

implemented as sender-initiated (or push-based) schemes. Periodic LBs target a

different application set, when compared to WSs, such as Bulk Synchronous Par-

allel (BSP) [13], iterative, and other data-parallel applications. This is especially70

efficient when using persistence-based techniques, which allows the scheduler to

more accurately predict the load of the tasks it is moving [].

Both LB and WS approaches have their advantages. Notably, WS is often

applied in task-parallel Runtime Systems (RTSs) [14], and shared memory sce-

narios [15, 16] (even though it is distributed in nature), although it has been75

used for highly unpredictable applications in distributed memory as well [17].

LBs, on the other hand, have been widely applied to both shared and distributed

memory scenarios, but due to their periodic nature, they are often applied to

applications that follow the principle of persistence [18, 11] (i.e., applications

with dynamic workload that tends to change slowly over time). Although they80

have been traditionally implemented as centralized schedulers, LB performance

points towards distributed approaches [6, 12], and with limited strategies pro-

posed in this field [19], WS emerges as a source of inspiration for novel LB

policies. This is specially interesting considering the convergence properties
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of WS in large-scale scenarios [20]. In this section, we discuss recent work in85

periodic LBs and WS, providing a solid base for our novel approach.

2.1. Periodic Load Balancing

We divide LBs into two categories based on their behavior: global and dif-

fusive [21]. The global approach uses centralized or hierarchical schedulers in

order to balance load. This approach aggregates relevant system information,90

allowing precise understanding of the application state [22] with a potentially

high overhead, especially in large scale overdecomposed applications. Hierarchi-

cal algorithms usually try to divide the underlying system in different locality

levels, and schedule tasks on each level with a different strategy to reduce over-

heads [23].95

Other relevant hierarchical algorithms are those based on graph and hyper-

graph partitioning. Zoltan [22] uses multi-level partitioning to parallelize and

schedule work. This approach can also consider past work to reschedule tasks,

reducing the decision time. Meanwhile, Scotch [24] and Metis [25, 26] use clas-

sical graph partitioning techniques such as Dual Recursive Bipartitioning and100

k-way coarsening to map tasks. In a similar fashion, Weighted-Hop and Max-

Congestion [27] use topology information in order to enhance other classical

graph partitioning algorithms when scheduling tasks.

The diffusive approach, on the other hand, follows the classic greedy algo-

rithms principle: optimize locally to optimize globally. These strategies try to105

solve the imbalance issue from a much narrower scope by using local information

only [28]. The DistributedLB (or Grapevine) [12] scheduler uses probabilistic

transfer of load and high levels of parallelism to achieve a balanced state of the

system, scaling much better than global load balancing strategies. Although

these strategies have shown high scalability, they are still scarce in the state of110

the art [19].

The preservation of locality is a common secondary objective in schedul-

ing as it affects the performance of large-scale applications [29]. In this sense,

strategies that take system topology into account are a promising trend in global
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scheduling to preserve locality [30]. For instance, NuCo [31] is a load balancer115

that considers the different latencies at Non-Uniform Memory Access (NUMA)

and network levels. Likewise, TreeMatch [32] does topology mapping by tak-

ing the different levels in machine topologies into consideration. Our approach

at this moment differs from these works by trying to be platform-agnostic. In

this case, locality is preserved by keeping tasks bundled together when migrat-120

ing. This avoids adding explicit information about the machine topology to the

distributed scheduling agents. Nevertheless, we see the addition of topology-

awareness to our algorithms as future work.

On a different approach, PackDropLB [6] attempts to preserve the affin-

ity among tasks by grouping them in resources prior to migration but com-125

pletely disregards the network topology. This kind of workload grouping has

been used in shared-memory scenarios as well with BinLPT in OpenMP loop

scheduling [33], or in job scheduling with packing-based placement to reduce

fragmentation on 3D-Torus HPC systems [34].

2.2. Work Stealing Schedulers130

WS schedulers are inherently distributed. In WS, independent scheduling

agents manage resources in a parallel system, and may take roles of: (i) thieves,

which attempt to dynamically remap work to underloaded (or idle) resources,

trying to manage workload so tasks are constantly available to be computed; or

(ii) victims, which are targets chosen by thieves to have their tasks stolen. WS135

schedulers are commonly applied to dynamic and imbalanced applications [9, 35]

that cannot afford a stable work decomposition, but may be applied to any

parallel application decomposable as a Direct Acyclic Graph (DAG). This way,

applications decomposed in models like fork/join [36], general task parallelism,

and parallel loops in shared memory [37] have also benefited from WS.140

Following the topology-aware approach, WS strategies have been able to

greatly increase application performance. The Feudal Work Stealing [7] ap-

proach shares system information as tasks are stolen and attempts to select

victims both in local and remote work groups, which increases task locality
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(e.g., a scheduler that manages a subgroup of cores may attempt to migrate145

work within its own subgroup of cores or from remote cores to it). CLAWS [8]

is a contention- and locality-aware work stealing runtime for NUMA architec-

tures, which takes care of task migration, reducing remote memory accesses. In

a similar fashion, ADWS [38] uses localized hierarchical stealing to compensate

imbalance in task-parallel applications.150

On a different approach, DistWS [15] uses application task affinity instead

of topology-awareness by selecting tasks that are more favorable for migra-

tion (i.e., have less data to be copied) on steal attempts in distributed shared-

memory machines. Retentive Work Stealing [11] tries to apply the benefits of

Persistence-based Load Balancing into a WS model in a distributed memory155

MPI environment. This approach uses a persistence model in iterative appli-

cations, in which, instead of rescheduling all of the workload every iteration,

resources keep a list of processed tasks that is used as a seed for the next it-

eration, improving the balance as the application is executed, and performing

work stealing when appropriate.160

2.3. Discussion

As distributed schedulers rise as solutions in the periodic load balancing

domain, the use of WS heuristics is attractive due to their well documented

past and known convergence times [20]. However, distributed strategies must

be adapted to achieve harmony with balancing load, locality, and quickly com-165

puting a new mapping. We aimed to achieve this with our packing scheme with

PackDropLB , and we believe strategies such as Feudal WS [7] and Randomized

WS have much to give in the periodic scheduling scenario (if correctly adapted).

In the next sections, we present how we aim to achieve this harmony by first

explaining our distributed scheduling model, and then explaining the packing170

model, PackDropLB , and the new algorithm PackStealLB .
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3. Scheduling Model and Notation

A parallel application may be described as a set T of n tasks : T =
⋃n
i=1{Ti}.

The load of a task Ti is denoted by ω(Ti). For the sake of simplicity, we extend

the notion of load to sets of tasks. We also assume that the load of an empty set

is equal to 0; both are shown in Equation (1) where S represents an arbitrary

set of tasks.

ω(S) =
∑
T∈S

ω(T ), ω(∅) = 0 (1)

We also consider a set M of m identical machines : M =
⋃m
j=1{Mj}, and

n� m, resembling overdecomposed parallel applications. Each machine in this

notation represents a core in the HPC platform. Additionally, for each machine175

Mj , a subset of tasks Sj ⊂ T is assigned to Mj .

Each machine Mj has a unique scheduling agent j that makes load balancing

decisions. Its local view is composed of: (i) a set of tasks Sj assigned to it; and

(ii) an indexed communication table of M, containing all machine identifiers.

The remaining information used in decision making has to be entirely derived180

from this local view. All communication between agents is lossless.

The objective of load balancing is to minimize application makespan. The

best way to do it is to distribute load evenly across machines. Equation (2)

describes the load of a machine Mj and the lower bound of the makespan ω?.

ω(Mj) = ω(Sj) =
∑
T∈Sj

ω(T ), ω? =
ω(T )

m
(2)

Since optimal scheduling of parallel machines is NP-Hard, achieving a pro-185

cess mapping that yields ω? to every core is rather unrealistic. In this situation,

we focus on assigning tasks to machines so that the makespan approximates

ω?. We give this value a relaxation ε, which should be based on the imbalance

characteristics of each application. In other words, given a parameter ε > 0, we

want to find a schedule such that the load ω(Mi) of each machine Mi is less than190

the relaxed makespan lower bound. This objective is reflected in Equation (3).
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ε+ ω? > ω(Mi). (3)

Observe that if ε is large enough (e.g., greater than the load of the largest

task), a schedule can be greedily computed in a centralized fashion. In this

work, we want to assign tasks to machines in a distributed fashion, so that

the makespan approximates ω?.195

We use the game-theoretic idea of achieving an ε-Nash Equilibrium [39], a

concept widely applied to distributed algorithms. Achieving ε-Nash Equilibrium

means that no agent in the system (in this case, our schedulers) profits from

taking actions that modify the state of the system: given any two machines

Mp,Mq, ε ≥ |ω(Mp)− ω(Mq)|.200

In this paper, we target parallel applications with non-uniform and non-

preemptable tasks2 that leverage persistence-based load balancing algorithms

(usually implemented in asynchronous runtime systems) to improve load bal-

ancing. The application is paused during rescheduling time, meaning that LB

time is considered an overhead for the application. Thus, a load balancing205

strategy must run quickly to actually diminish application makespan. We also

consider that each local scheduling agent executes the same LB algorithm from

beginning to end with no interruptions. New messages execute in receiving or-

der as their predecessors are processed. Every communication is asynchronous,

so messages expect no answers.210

4. PackStealLB: A Work Stealing-based Load Balancer

In this section, we present the details of our workload discretization method

and load balancer PackStealLB . First, we discuss the characteristics and limita-

tions of a previous algorithm (PackDropLB). We then present our method for

workload discretization that can be applied to any distributed LB to improve215

2Brucker [40] defines preemptable tasks (or jobs), as tasks that may be divided any number

of times.
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scheduling time and to preserve some of the original task locality. Finally, we de-

tail our new distributed WS-based LB that makes use of the proposed workload

discretization (packing) model and overcomes the aforementioned limitations of

previous approaches.

4.1. Limitations of Previous Efforts220

PackDropLB is a distributed algorithm that migrates packs of tasks from

overloaded to underloaded machines introduced in a previous work [6]. Over-

all, PackDropLB executes the following steps in each LB call. First, agents

exchange messages to compute the average load of the system. Then, agents

are divided into two groups based on the load of their corresponding machines.225

Overloaded agents create packs of tasks based on a fixed threshold. Underloaded

agents, on the other hand, start a Gossip Protocol [41] to propagate machine

load information. After a global barrier synchronization, overloaded agents send

packs of tasks to randomly chosen underloaded targets, which in turn can reject

packs if they become overloaded. Rejected packs can be sent again by over-230

loaded agents to other random targets. This process is repeated up to a fixed

number of times or until a stop criterion is reached.

PackDropLB was our first effort on improving the scalability of state-of-

the-art LBs for iterative overdecomposed parallel applications. Although it has

shown promising results compared to other global and diffusive LBs, it has235

the following limitations: (i) information propagation (Gossip Protocol [41])

and task migrations are carried out in two separate steps, which are in turn

synchronized with a global barrier; (ii) several messages sent by overloaded

agents containing packs of tasks may be discarded by underloaded target agents,

causing the former to waste time to find new possible target agents; (iii) inferior240

performance than other diffusive LBs in some applications and/or platforms [6].

Overall, issues (i) and (ii) may have a significant impact on LB overhead and

scalability, especially in large-scale platforms. The latter limitation is usually

the outcome of issues (i) and (ii).
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4.2. Application Workload Discretization (Packing Model)245

Load balancing scenarios may be described as either discrete or continu-

ous [42]. The discrete case describes uniform non-preemptable tasks, while the

continuous case describes non-uniform preemptable tasks.

Our packing model aims to improve the scheduling process by approximat-

ing our load balancing scenario to the discrete scenario. The main objectives of250

packing are: (i) to reduce the scheduling time by making it simpler to decide

if tasks will be migrated or not (as the groups of tasks have all the same ap-

proximate load), and by reducing the number of messages exchanged between

agents (as multiple tasks are suggested for migration in the same message); (ii)

to preserve some of the original locality of the application (assuming that the255

original mapping already grouped together communicating tasks in the same

machine).

Recall that given a fixed parameter ε > 0, we want to find a schedule such

that the load ω(Mi) of each machine Mi is less than ε + ω? > ω(Mi). Taking

this into account, scheduling agent j takes a subset of tasks Pj in Sj so that260

the condition in Equation (4) can be satisfied.

ω? + ε ≥ ω(Mj)− ω(Pj) ≥ ω?. (4)

This subset Pj corresponds to the set of tasks the agent j intends to mi-

grate. Moreover, Pj is subdivided into disjoint sets of tasks called packs that

have almost the same load ωΓ with ε ≥ ωΓ. Since we want to make all migrat-

ing workload discrete, and our tasks are non-preemptable, each agent j must265

aggregate them into several packs so that each pack Γx respects Equation (5)

according to a fixed parameter γ with ε ≥ ωΓ ≥ γ.

Γx ⊂ Pj and ωΓ + γ ≥ ω(Γx) ≥ ωΓ (5)

As our focus lies on the discretization of the overloading tasks (i.e., those

that make a machine overloaded), we use a greedy approximation algorithm to

solve the bin packing problem of assigning tasks to packs for further migration.270
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We slightly adapt the bin packing problem to our context. Unlike bin packing,

agent j also selects a subset of tasks that will insert into the packs. In our

adaptation, we consider that the load of each pack can not be greater than

ωΓ + γ. The tasks are considered in an arbitrary order. If a task fits inside

the currently considered pack Γ (of load ωΓ + γ), then the task is placed inside275

it, and the set Pj is also updated. Otherwise, the current pack is closed: this

means that we can not insert another task. Observe that since Γ is greater than

the largest task, ωΓ + γ ≥ ω(Γ) ≥ ωΓ.

The decision process to the creation of a new pack of tasks is as follows: if

ω(Mj) − ω(Pj) > ω? + ε, then a new pack is opened and the current task is280

placed inside it. The process then repeats the previous steps. At the end of it,

all packs respect the condition in Equation (5) and ω? + ε ≥ ω(Mj) − ω(Pj).

Observe that we also have ω(Mj)−ω(Pj) ≥ ω?. Indeed, it is enough to consider

the last pack generated called Γlast: ω(Mj) − ω(Pj\{Γlast}) > ω? + ε and

ε > ωΓ + γ ≥ ω(Γlast).285

To sum it up, if agent j has a load (strictly) greater than ω? + ε, then

it computes a set Pj of tasks and a set of packs so that the conditions in

Equations (4) and (5) are satisfied. These conditions also imply that the number

of the packs generated by our algorithm in Pj is less than
|ω?−ω(Sj)|

ωΓ .

4.3. Load Balancing (LB)290

PackStealLB is a new distributed LB that is motivated by feudal and ran-

domized WS [7]. The feudal aspect comes in its information propagation, while

the randomized aspect in its victim selection. As in PackDropLB [6], Pack-

StealLB also migrates packs of tasks to reduce the scheduling time and to pre-

serve task locality.295

PackStealLB progressively gathers the state of the system (the load of each

machine Mj ∈ M) at the same time it performs its decisions. This is possible

due to the attachment of the sender local load information to the messages

targeting its peers. Now, we describe how system information is broadcast

during message exchanging.300
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Algorithm 1: PackStealLB , perspective of Mj

Input: A set Sj of local tasks for machine (agent) j and a local knowledge about the

machines (M).

1 when receive INIT() do

2 Rj ← ∅; Pj ← ∅
3 reduce from M:

ω(T )
m → ω?

4 calculate sj according to ωΓ // Equations (6) and (8)

5 if ω(Sj) ≥ ω? + ε then // Victim case

6 generate packs: Pj = {Γ1,Γ2, · · · ,Γ|sj |} // Section 4.2

7 send HINT() to arg min
a∈M

ω(Ma)

8 else if ω? − ωΓ ≥ ω(Sj) then // Thief case

9 for sj do send STEAL(0) to a ∼ topk(M) // Equation (7)

10 end

11 end

12 when receive HINT() from Mb do

13 if ω(Sj) ≥ ω? + ε then send HINT() to arg min
Ma∈M

ω(Ma) // Victim case

14 end

15 when receive STEAL(nb) from Mb do

16 nb ← nb + 1

17 if ω(Sj) ≥ ω? + ε then // Victim case

18 Γ← arg min
Γ∈Pj

ω(Γ); Pj ← Pj \ {Γ}

19 send TASKS(Γ) to Mb

20 Register the migration of T ∈ Γ to Mb

21 else if nb > vsthreshold then forward STEAL(nb) to Ma ∼ M

22 else forward STEAL(nb) to Ma ∼ topk(M)

23 end

24 when receive TASKS(Γ) from Mb do

25 Rj ← Rj ∪ Γ // Adds tasks to the received tasks list

26 end

Consider that when the algorithm begins, the agent j is not aware of the

current load of the other machines. However, each time agent j sends a message,

it also includes its load information ω(Mj) with the message. If agent j has

already attained information on the load of any of its peers, this information

may also be passed with every message it sends in a piggybacking fashion.305

PackStealLB is described in Algorithm 1, following a simple and standard-

ized notation for distributed algorithms [43]. It is split into two main parts.

The first part (INIT on lines 1–11) describes the initial calculations and role de-
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termination (victim or thief ). The initial flow begins by issuing a reduction in

order to assess the average system load (line 3). Then, it calculates the number310

of steals sj for thief agent j using Equation (6).

sj =

⌈
ω? − ω(Sj)

ωΓ

⌉
(6)

Pack load ωΓ is fixed so that ε ≥ ωΓ and is defined for experimentation by

Equation (8) in Section 5.

After that, agents take roles of either victims or thieves depending of their

load (stated as Victim case and Thief case): agent j is a victim if its load315

(ω(Sj)) is greater than ω? + ε. Agent j is a thief if its load is less than ω?−ωΓ.

Observe that thief agents have sj ≥ 1 and victims have sj ≤ −1.

After determining their role, victims will assemble their packs and send HINT

messages in order to warn a potential thief. A potential thief is determined by

choosing one machine in M with the lowest known load (line 7) uniformly at320

random. This choice is performed using only the local information of the victims

(i.e., victim j does not know the load of the machines of M that have not yet

communicated with it, and thus, victim j does not consider these machines).

When an agent j receives a HINT (lines 12–14), it stores relevant information

about its peers (especially their loads). Additionally, if agent j is a victim, it325

will send a new HINT to its known most probable thief. This informs agents of

each others’ states incrementally, which assists future stealing attempts.

Thief j will attempt sj STEALs to target machines a (line 9), where a is a

possible victim for j. First, it sends a STEAL message containing the number of

attempts nb previously done (nb = 0 at the beginning). At each time an agent330

receives this message, nb is increased by 1. If the agent is not a victim, then

the STEAL message is forwarded. The nb information is used to determine if the

victim selection will be constrained or randomized.

The standard choice is the constrained selection, which picks uniformly at

random one of the k most loaded machines inM, as determined in Equation (7).

Since each agent j can perform this selection using its local information, it can

14



not know the load of all machines. For sake of simplicity, it has no estimation

of it, and we assume that we do not consider these machines or we can assume

that their load is equal to 0. We denoted by topkj (M) the set of the k most

loaded machines among M for agent j. Formally,

topkj (M) is a subset of M where its cardinality is equal tok |topkj (M)| = k,

and ∀Mi ∈M \ topkj (M),M` ∈ topkj (M), ω(Mi) ≤ ω(M`) (7)

As shown in line 21, a configurable threshold value (vsthreshold) is used to check

if constrained selection is not working very well. Once nb surpasses vsthreshold,335

agent j will then use randomized victim selection, simply choosing a possible

machine index uniformly at random.

When receiving a STEAL message from machine Mb, a victim j will send

the load contained in the first element of their list of packs, Pj (lines 17–19).

Additionally, agent j must register that the tasks in Γ will migrate to Mb (line340

20), as the runtime system or the scheduler must perform these migrations.

Meanwhile, if the receiving agent is not a victim, it will forward the steal to

another possible victim. Lines 21 and 22 portray the two distinct aforementioned

victim selection behaviors (randomized and informed selection, respectively).

Finally, once agent j receives a TASKS message, meaning agent j is a thief345

and it has received new tasks, j will add the received pack to its received tasks

list (Rj), which is used to update the current load of j (line 25).

Asynchronous distributed algorithms often need synchronization mechanisms

to perform certain operations. Although PackStealLB does not require a barrier

to separate different steps of the algorithm, it needs one to coordinate the end350

of execution and assess global information. The ending is performed via qui-

escence detection [44], meaning that when no agent has messages in its queue,

they have been synchronized.

4.3.1. Convergence and Complexity

Assume that at some step, a machine Mj is a victim: ω(Mj) > ε + ω?. By355

the definition of ω?(=
ω(T )

m
) corresponding to a mean, there exists a machine
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Mi, having its load less than ω?. Thus, machine Mj is a thief and it should be

sending a STEAL message or waiting for an answer to a STEAL message. So, we

can define the following property:

Property 1. When no more messages are sent, each machine Mi has load360

ω(Mi) < ω? + ε.

Now, we compute the complexity in terms of messages. The migration pro-

cess boils down to two parts: (1) the search for a victim initiated by a thief,

and (2) the migration of tasks from the victim to the thief.

First, we count the total number of communications corresponding to task365

migrations. To perform this, we will focus on agent j having ω(Mj) > ω∗+ ε at

the beginning. It implies that agent j is a victim. So, agent j creates a set of

packs so that the conditions in Equations (4) and (5) are satisfied. During that,

only tasks in Pj migrate. Thus during this process, its load is greater than ω∗

(from Equation (4)). So, we have:370

Property 2. Let j be an agent. If ω(Mj) > ω∗+ ε, then its load is greater than

ω∗. Moreover, agent j does not become a thief during the algorithm.

To be precise, a victim j creates at most sj = (bω(Mj)−ω∗
ωΓ c) packs at the

beginning. Thus, there is at most sj migration communication corresponding

to j’s tasks. In total, an upper bound of migration communication is∑
j is victim

sj ≤
∑

j is victim

ω(Mj)− ω∗

ωΓ

Since
∑

j is victim

ω(Mj) < m · ω∗, we obtain the following property:

Property 3. During the entire process, there are at most O( (m−1)·ω∗
ωΓ ) commu-

nications devoted to task migrations.375

Observe that this bound is tight: we can consider the case where only one

machine has all the tasks.

Second, we count the total number of communications corresponding to the

search for a victim initiated by a thief. This number mainly depends on the

knowledge of each machine.380
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At the beginning, a thief j knows only its own load. Thus, it randomly

sends a STEAL message to a machine Mb adding its own knowledge (its load and

its belief of the load of others) and so on, until the message reaches a victim.

When a thief j receives an answer to this message, the message contains the

route of STEAL messages. Thus, thief j can deduce that all machines except385

the sender of the message are victims, but thieves. Property 2 implies that

these machines can not become a victim. Thus, when thief j knows that agent

` is not a victim, then thief j has no incentive to send a STEAL message to

machine `. Moreover, when thief j sends the next STEAL message, this message

also contains the information about the fact that agent ` is a thief. So, if this390

message is forwarded, then it is not forwarded to `.

Property 4. During the entire process, given the fact that agent ` is not a

victim, then agent ` receives only once the STEAL message initiated by agent j.

Since the number of not victim agents is upper bounded by m, we have:

Property 5. During the entire process, there are at most O(m2) STEAL mes-395

sages corresponding to a retransmission of a STEAL message.

Observe that a migration of tasks is triggered by a thief. So the total number

of messages corresponding to an initial STEAL message is equal to the total

number of messages devoted to task migrations. So we can conclude that:

Property 6. During the entire process, there are at most O(m2 + (m−1)·ω∗
ωΓ )400

messages.

5. Implementation

We implemented PackStealLB in Charm++ [45] using its distributed load

balancing framework3,4. Charm++ is one of the most receptive runtime systems

3Charm++ is available at: http://charm.cs.illinois.edu/software.
4Packing schemes and LBs are available at: https://github.com/viniciusmctf/

packing-schemes/tree/packs_2019-v1.
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for new LB strategies, especially in distributed memory systems [46], which405

allows us to pair it up with applications already existing in the environment.

Charm++’s load balancing framework commonly follows a sequence of steps as

it: (1) pauses the application, (2) organizes execution statistics for the sched-

ulers, (3) computes a new schedule, (4) migrates tasks, and then (5) resumes

application execution. This framework is applied to NAMD [3] with success, for410

instance. Nevertheless, periodic load balancing can also be done in parallel to

the application’s execution in general.

In Charm++, the workload is decomposed in independent and migratable

virtual processors named chares, usually following a geometric decomposition

scheme. Charm++ is a message-driven, asynchronous RTS, meaning that work415

is issued when chares (our tasks) receive messages. Load balancers are also

implemented as chares, meaning that they benefit from Charm++’s native syn-

chronization mechanisms to perform the reduction operation and the quiescence

detection (CkReduction and CkStartQD).

In Section 4, we used some variables whose values must be set beforehand.420

Ideally, ε is the best value for packing load, since it will mitigate more of the

algorithm complexity. However, the larger the packs, the larger is their potential

gap between ω(Γx) and the ideal ωΓ. So, smaller packs tend to be tighter, which

leads to higher quality in load balancing.

We propose to calculate ε as a fraction of ω?, using a ξ factor, such that425

the maximum overall imbalance will be at most ξ%. Additionally, we use a δ

coarsening factor to make the pack size ωΓ smaller, as described in Equation (8).

ε = ω? × ξ, ωΓ = ε× δ, γ = ωΓ × ξ (8)

Also detailed in Equation (8) is the γ relaxation factor, which is used to

define pack size in Section 4.2, Equation (5).

The imbalance tolerance ξ value was determined as 0.05, meaning that we

only consider that a given core is balanced when its load is in an interval of

5% to ω?, which is plausible in this scenario and is used by other schedulers in
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Charm++. Meanwhile, the pack narrowing factor δ is fixed to 0.4 as a middle

ground between optimizing the balance and accelerating the algorithm. ξ and

δ are defined in Equation (9).

ξ ← 0.05, δ ← 0.4 (9)

The seeded neighborhood of PackStealLB (initial knownM in Algorithm 1)430

of a given scheduling agent j was predetermined as being its right-hand neighbor,

which is given by {Mr} for r = (j + 1) mod m. Charm++ attribute indices to

each computational resource. In a nutshell, every core in a processing node

is assigned an integer in ascending order. This process is repeated for every

processing node so that every core has an unique id. Indeed, in homogeneous435

clusters, it is possible to use the indices to determine if a given core is local or

remote. For instance, if each cluster node has c cores, the seed may be {Mr}

for r = c×b jcc+ (j+ 1) mod c, which is an in-node neighbor of j. This way, we

would first attempt local neighbors in {Mr} during the constrained WS phase,

and global machines in the randomized one.440

Finally, we set the victim selection strategy threshold to vsthreshold = m
4 .

The value is based on an empirical study carried out on the platform used to

assess the performance of PackStealLB (Section 6).

6. Performance Evaluation

We performed an experimental evaluation of our workload discretization445

model and PackStealLB to evaluate the scalability of the algorithms when han-

dling a molecular dynamics benchmark on a supercomputer [47]. This evaluation

includes a comparison of PackStealLB to LBs from the state of the art (listed in

Table 1), and with a Baseline execution using the Charm++’s DummyLB , which

captures statistics but performs no actual load balancing. In this section, we450

first provide an overview of the metrics, statistical methods, experimental en-

vironment, and details of the molecular dynamics benchmark. This is followed

by an analysis of the results obtained in our experiments.
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Table 1: Brief description of other LBs used in the experiments.

LB Type Short description

GreedyLB Global Optimizes load distribution, not communication. Assigns tasks to

cores using a Longest Processing Time (LPT) first policy [48].

RefineLB Global Attempts to minimize the number of migrations. Migrates tasks

from overloaded to underloaded resources only [11].

DistributedLB Diffusive Push-based strategy that uses probabilistic transfer of load to

choose task receivers [12]. Gathers system information with a

gossip protocol.

PackDropLB Diffusive Push-based strategy that migrates packs of tasks from overloaded

to underloaded machines [6]. Gathers system information with a

gossip protocol.

6.1. Experimental Methodology and Environment

We first present the metrics and statistical methods used to compare Pack-455

StealLB with other LBs. Then, we describe our experimental environment.

Finally, we give a brief overview of the molecular dynamics benchmark and

we discuss our experimental design. The raw result files and scripts for their

analysis are available in [47].

6.1.1. Metrics and Statistical Methods460

Our methodology involves the evaluation of three factors:

1. Total execution time (makespan): how long an application takes to exe-

cute;

2. Load balancing invocation time: the time between invoking the LB and

resuming the application after migrations;465

3. Useful application time: total execution time, excluding the load balancing

invocation times.

Minimizing the application total execution time is the most important ob-

jective, which is the factor that enables the execution of high-scale scientific
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applications. Nonetheless, a low LB overhead (coming from the load balancing470

time and migrations) is important as it allows LBs to scale with applications as

systems grow larger.

All comparisons of these metrics are based on a confidence interval thresh-

old of 95% (significance of 5%) for the different statistical methods used. We

start our comparisons by organizing the samples (e.g., total execution times for475

different LB and problem sizes), and then checking if they follow normal dis-

tributions (Kolmogorov-Smirnov test). If we do not reject the null hypothesis

in any tests (i.e., all p-values > 0.05), then we use parametric methods for our

comparisons (Welch Two Sample t-test). Otherwise, we move to nonparametric

methods (Mann-Whitney U test, or Wilcoxon signed-rank test for dependent480

samples). For all these methods, a p-value < 0.05 means that we reject the null

hypothesis that the compared versions perform the same, meaning that they

perform differently.

6.1.2. Experimental Environment

We carried out the experiments on the Joliot-Curie SKL supercomputer5.485

It contains NUMA compute nodes interconnected with EDR Infiniband. Each

node features two 24-core Intel Xeon 8168@2.7GHz CPUs and 192GB ECC

RAM DDR4 memory @2666MHz. In our experiments, we employed 20 compute

nodes for a total of 960 cores.

Joliot-Curie SKL runs on Red Hat Enterprise Linux 7.6, loading Open-490

MPI 2.0.4, and C/C++ Intel 17.0.6.256 modules. Charm++ version 6.9.0 was

installed in the machine using the build target mpi-linux-x86 64 and option

--with-production. Both Charm++ and the molecular dynamics benchmark

were compiled with the -O3 flag.

5Detailed specifications of Joliot-Curie (SKL Irene) available at: http://www-hpc.cea.fr/

en/complexe/tgcc-JoliotCurie.htm
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6.1.3. Molecular Dynamics Benchmark and Experimental Design495

We selected the molecular dynamics benchmark LeanMD for our experi-

ments. LeanMD is based on (and performs core computations of) the Gordon

Bell award-winning application NAMD [10], providing a realistic scenario to

measure the impact of novel LBs.

The parallel implementation of LeanMD uses a 3D spatial decomposition500

approach, where the 3D space consisting of atoms is divided into cells. Our

experiment used the standard LeanMD configurations available online6, param-

eterized with X×11×5 cells of dimensions 15×15×30. Cells are further divided

into computes, which are the actual chares. These contain multiple particles,

and manage communication among them.505

The parameter X was varied from sizes 80 to 320. Each execution of LeanMD

comprises 301 iterations, executing the first load balancing call at the 40th

iteration and every 100 iterations after that, summing up a total of 3 LB calls.

These parameter combinations generate simulations ranging from 1.15 to 3.08

millions of atoms.510

Our experimental evaluation was carried out with 20 repetitions for each

parameter combination (input size and load balancing algorithm). More specif-

ically, as Joliot-Curie SKL is a supercomputer with a job scheduler and multi-

ple users at the same time, we organized our experiments in four jobs (two for

X = {80, 120, 160} and two for X = {240, 320}). Each job contains 10 repeti-515

tions for all LBs and input sizes involved. For each repetition, all pairs of input

size and LB were executed in a random order with the objective of avoiding

having noise from other users affecting a single LB.

The objective of executing LeanMD with these different input sizes is to

measure the capability of LBs in dealing with varying problem sizes in a large

scale. This benchmark creates n particles per cell following Equation (10).

n = 100 +
cell id× 150

X × Y × Z
, (10)

6LeanMD is available at: http: // charmplusplus. org/ miniApps/
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where cell id ranges from 0 to (X × Y × Z − 1). This way, as we scale any

of the dimension parameters we allow the particles to be more spread in the520

simulation area. This also leads to higher imbalance in the application as the

input size increases.

6.2. Result Analysis and Discussion

The total execution times of LeanMD with different input sizes and load

balancers are illustrated as boxplots7 in Figure 1. Only the Baseline, Pack-525

DropLB and PackStealLB were executed for input sizes 240 and 320 due to the

increasing time it takes to run LeanMD for larger sizes, and to the performance

results seen for the other LBs with smaller input sizes.

At a first glance, the results portrayed in Figure 1 show that PackStealLB is

the only LB to consistently reduce the total execution time of LeanMD compared530

to the baseline. PackDropLB is a close second, failing only to outperform the

baseline for the scenario with X = 80. RefineLB and DistributedLB achieved

performances close to the baseline or worse than it, and GreedyLB always in-

creased the total execution time of LeanMD, proving itself to be a bad fit for

this situation.535

In order to verify if the performance of the algorithms were statistically dif-

ferent, we applied Welch’s t-test to some pairs of samples. This test was chosen

because all samples followed normal distributions. The comparisons of Pack-

StealLB or PackDropLB to the baseline all resulted in p-values < 0.05, so we

can conclude that their execution times are actually different from the baseline540

as first suspected. Using the same test, we also verify that PackStealLB outper-

forms PackDropLB for X = {80, 240, 320}, it is outperformed by PackDropLB

for X = 120, and that no difference can be seen between them for X = 160

(p-value = 0.165). Finally, there is no statistical difference between the perfor-

7Boxes extend from the 1st to 3rd quartiles of the samples. Lines represent the median

values. Whiskers represent the data within 1.5 IQR from the lower or upper quartile. Points

represent outliers.
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(e) X = 320.

Figure 1: Boxplots of the total execution times of LeanMD with different input sizes and load

balancers on Joliot-Curie SKL. Sizes indicate a variation of the application dimension param-

eter X. Each figure has a vertical axis starting at its own value to emphasize performance

differences.

mances measured for RefineLB or DistributedLB to the baseline for X = 120545

(p-values = 0.107 and 0.402, respectively), and for RefineLB to the baseline for

X = 160 (p-value = 0.153).

Figure 1 also indicates that both PackStealLB and PackDropLB have a

greater impact to LeanMD ’s total execution time as its input size increases. We

can observe the speedup achieved over the baseline with load balancing for the550

different input sizes in Figure 2. PackStealLB achieved speedups of 1.09, 1.38,

1.38, 1.47, and 1.41 for increasing input sizes. Starting onX = 120, PackStealLB
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Figure 2: LeanMD speedups with different load balancers.

and PackDropLB lead to significantly better results than competing LBs, which

emphasize their scalability and capability to handle load imbalance.

As mentioned earlier, the total execution time of LeanMD can be decom-555

posed into two parts: (1) the load balancing invocation times, which act as an

overhead during the execution of the application; and (2) the useful applica-

tion time, which represents the actual time computing the molecular dynamics

solution. We first focus on the load balancing invocation times in Figure 3.

The figures display the median load balancing invocation time for each of the560

three calls by LB and problem size. These times are shown in log scale due to

their differences of multiple orders of magnitude. We chose the median for these

samples because some of them did not come from normal distributions (p-values

< 0.05).

The results displayed in Figure 3 highlight multiple aspects of the LBs. Some565

of these aspects are as follows:

1. The first load balancing invocation usually takes longer than the other ones

for all scenarios. The differences between the first and second invocation

are significant for most scenarios (Wilcoxon signed rank tests with p-

values < 0.05) with the exceptions of the baseline for X = 160 (p-value570

= 0.062), PackDropLB for X = 160 (p-value = 0.067), and PackStealLB

for X = 240 and X = 320 (p-value = 0.232 and 0.191, respectively).

As this behavior is seen even for the baseline execution, we can conclude
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(c) LB invocation times (3rd call).

Figure 3: Median load balancing invocation times for the first, second, and third LB calls

during application execution. Data is displayed in log10 scale.

that these times are affected by the behavior of the application or even

by Charm++’s LB framework. In this situation, comparisons between LBs575

must be limited only to invocation times of the same type (first, second,

or third).

2. We can observe the high overhead of the centralized synchronization and

data organization for the baseline execution. As it invokes Charm++’s

DummyLB , it takes from 0.35 s up to 7.15 s for one LB call.580

3. We can notice that GreedyLB and RefineLB take longer than the baseline,

but RefineLB takes the longest. RefineLB ’s longer times come from its

more demanding decisions and not from a larger number of migrations.

For instance, RefineLB migrates only a few hundred tasks on each LB

invocation, while GreedyLB migrates almost all tasks (hundreds of thou-585

sands) every time.

4. The efficiency of diffusive algorithms is evident when compared to central-

ized approaches for this kind of large-scale application and platform. The
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differences span from two to three orders of magnitude.

5. We can see the difference between packing-based algorithms (such as Pack-590

StealLB) and DistributedLB . For instance, Figure 3a shows that Pack-

StealLB takes from 4.27 to 6.05 ms on its LB calls for problem sizes

from X = 80 to X = 160, while DistributedLB takes from 19.43 to

26.05 ms. Additionally, PackStealLB ’s invocation times are statistically

different from the ones of PackDropLB . The only exceptions happen for595

the second and third LB calls for X = {240, 320} (Mann-Whitney U tests

with p-values > 0.05).

When the LB invocation times are subtracted from the total execution times,

what remains are the useful application times. The useful application times for

the different tested scenarios are presented in Table 2. Each line represents one600

LB, and each column shows the average useful times for a given problem size.

The average time was chosen here because all samples follow normal distribu-

tions.

The results in Table 2 extend the insights from the total execution times

in Figure 1 in a few ways. For instance, besides PackStealLB , RefineLB is605

also able to improve LeanMD ’s performance for all tested problem sizes. This

highlights the importance of keeping a low overhead when using periodic LB

algorithms, as all gains from a better task distribution are erased by the LB

invocation times of RefineLB . Still, PackStealLB achieves useful application

times that are clearly better for X = {120, 160}, which emphasizes the quality610

of its scheduling decisions. On the opposite sense, we see that DistributedLB

achieves worse times than the baseline for X = 120. This shows that just having

a diffusive algorithm does not lead to performance improvements automatically.

Finally, we see that GreedyLB always increases the useful application times,

even though one would expect the application to become well-balanced with it.615

Given that the main difference between GreedyLB and RefineLB is how much of

the original mapping they preserve, reasoning follows that the main performance

issue being generated by GreedyLB comes from its disregard to the original task
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Table 2: Average useful application times in seconds for different LBs and problem sizes.

Problem sizes

LB 80 120 160 240 320

Baseline 29.382 65.287 102.999 201.139 325.936

GreedyLB 36.865 77.158 133.254 — —

RefineLB 28.688 56.395 89.500 — —

DistributedLB 34.014 69.520 120.045 — —

PackDropLB 32.769 49.035 77.174 160.049 266.891

PackStealLB 28.535 51.097 78.936 146.021 238.611

locality. Conversely, the preservation of locality is an important characteristic

of our packing scheme, which helps explain how PackStealLB and PackDropLB620

outperform the other algorithms.

In conclusion, these experimental results show how PackStealLB and our

packing scheme achieve their objectives of improving the scheduling process, as

we see that: (i) they reduces the total and useful execution times, and scale to

large platforms and input sizes; (ii) they achieve smaller load balancing times625

than other diffusive algorithms; and (iii) they also preserve some of the original

locality of the application with their small number of groups of tasks migrating

together.

7. Conclusion

In this paper we have developed the idea of workload discretization (packing)630

for periodic LB, and presented PackStealLB , a new diffusive scheduler that

employs this technique. PackStealLB is a pull-based LB that employs WS

heuristics such as constrained and randomized victim selection [7, 15].

We implemented PackStealLB in the Charm++ RTS and ran experiments with

a molecular dynamics benchmark (LeanMD). We have compared PackStealLB635

with our previous push-based LB (PackDropLB) as well as with multiple LBs
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available in Charm++ [12] in the Joliot-Curie SKL supercomputer.

The results of our experiments have shown PackStealLB as the most effec-

tive LB among the tested algorithms. PackStealLB achieved speedups of up

to 1.49 over the total execution time of the baseline (a dummy LB that only640

collects statistics of the application), and of up to 1.39 when considering only

the useful application time (execution time without any LB overhead). It also

achieved a speedup of up 1.12 over the second best algorithm in the experiments,

PackDropLB .

The success of PackStealLB comes from a combination of factors. Pack-645

StealLB was able to balance the application’s load without disturbing much

of its original locality thanks to its packing scheme, whereas other algorithms

(GreedyLB and DistributedLB) increased the useful application time due to

their disregard for locality. Additionally, its low overhead (a few milliseconds

for every LB invocation) enables the application to benefit from the improved650

task distribution over its whole execution (tens or hundreds of seconds). This is

in sharp contrast to what was seen for RefineLB whose LB invocation times hid

any benefits coming from its scheduling decisions. Finally, when compared to

the also packing-based PackDropLB , PackStealLB ’s WS-based heuristics were

shown to perform similarly or better for large problem sizes. This emphasizes655

that PackStealLB ’s gains were not only due to its diffusive nature or workload

discretization, but also from its own scheduling heuristics.

Our results lead us to believe that the development of new and effective

distributed load balancers is indeed crucial for future applications and paral-

lel systems. In this scenario, we believe that studying established distributed660

scheduling algorithms is a path that has still to be explored to achieve exascale

grade scheduling. Developing distributed schedulers targeting HPC applica-

tions based on concepts such as Deterministic Load Balancing [49] and Selfish

Load Balancing [39] is part of the work we have in mind moving forward. Ad-

ditionally, we intend to develop new packing strategies that leverage the task665

communication pattern and the network topology in order to place tasks that

communicate more often (or exchange more data) in the same pack whenever
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possible. Finally, we plan to evaluate PackStealLB with a broad range of work-

loads and real-world applications to determine its best usage scenarios.
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