
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 1

Scalable Load Balancing: Distributed
Approaches and the Packing Model

Vinicius Freitas , Laércio L. Pilla , Alexandre de L. Santana , Márcio Castro , and Johanne Cohen

Abstract—Periodical load balancing heuristics are employed in parallel iterative applications to assure the effective use of high
performance computing platforms. Work stealing is one of the most widely used load balancing techniques, but it is not the most
friendly for iterative applications. Optimal mapping of tasks to machines, while minimizing overall makespan, is regarded as an
NP-Hard problem; so suboptimal heuristics are used to schedule these tasks in feasible time. Among the existing approaches,
distributed load balancers are the most scalable for iterative applications and have much to profit from work stealing. In this work, we
propose the discretization of application workload for load balancing, as well as two distributed load balancers: PackDrop, which is
based on constrained work diffusion; and PackSteal, which is based on work stealing. Our algorithms group tasks in batches before
migration, creating packs of homogeneous load to make scheduling decisions in an informed and timely fashion. Our results show that
PackSteal and PackDrop enhanced our molecular dynamics benchmark performance by up to 41% and 29%, respectively, on our
largest evaluated scale. Moreover, PackSteal is consistently the most effective in 8 of 9 evaluated scenarios, compared to PackDrop
and other load balancing algorithms.

Index Terms—C.1.2.e Load balancing and task assignment, C.1.4.d Scheduling and task partitioning, C.2.4 Distributed Systems,
D.2.8.b Performance measures

F

1 INTRODUCTION

H IGH Performance Computing (HPC) applications are
solving some of the most important scientific and

industrial problems of our time. Many of these applications
are based on parallel iterative methods to solve large-scale
problems in different research domains, such as Molecular
Dynamics (MD) [1], Wave Propagation [2], N-Body simu-
lations [3], and Dense Matrix computations [4]. As HPC
platforms grow bigger [5], the workload of these applica-
tions must be precisely scheduled on the available resources,
avoiding the waste of costly large scale platforms [6].

Load imbalance emerges in parallel applications when
resources go idle, waiting for others to complete their
tasks (workload units). This problem is accentuated in
dynamic scenarios, where the workload of an application
evolves during run time. These applications require peri-
odical remapping of their tasks to use resources efficiently.
Since finding the optimal mapping of tasks in parallel ma-
chines is an NP-Hard problem [7], [8], a number of different
techniques to compute solutions in a feasible time have been
proposed.

Many data-parallel and iterative simulations tend to fol-
low the principle of persistence, which states that the behavior
of a parallel application tends to persist over time [9]. Since
the workload is dynamic, but tends to persist, making Pe-
riodical Load Balancing (LB) decisions to remap work from
overloaded to underloaded machines is possible, and cru-
cial to maximize application performance. However, these

• V. Freitas, A. Santana and M. Castro are with PPGCC, Federal University
of Santa Catarina (UFSC), Florianópolis, Brazil.
Contact: marcio.castro@ufsc.br

• V. Freitas, L. L. Pilla and J. Cohen are with LRI, Univ. Paris-Sud – CNRS,
Orsay, France.
Contact: pilla@lri.fr

Manuscript received ***** **, 20XX; revised ***** **, 2020.

periodical scheduling steps incur in undesired overhead,
so employed strategies must be fast and scalable to reduce
application makespan.

Usually, dynamic LBs for iterative parallel applications
are classified as global or diffusive. Global schedulers attempt
to balance the application from a centralized point, or in a
hierarchical fashion [10]. These strategies tackle the problem
with approaches that include list scheduling [11], graph
partitioning algorithms [12], [13], and topology-aware algo-
rithms [14], [15], [16], among others. Diffusive schedulers exe-
cute from multiple decentralized points, taking work away
from overloaded machines [17], [18], [19]. Completely de-
centralized scheduling algorithms are explored in different
scenarios, such as Work Stealing (WS) [20], [21] and selfish
load balancing [22], [23]. Still, even though the diffusive
approach tends to portray better scalability, there are not
many LBs using this approach [24], leaving much to be
explored in order to handle load imbalance on the ever-
growing HPC platforms.

In this work, we propose efficient, decentralized load
balancing algorithms based on the discretization of appli-
cation workload. The technique, called Packing, extends a
technique from a previous work [19] with notions related to
ε-Nash Equilibrium. We present two asynchronous and de-
centralized LB algorithms: a reintroduction of PackDrop [19],
and the new PackSteal based on constrained [25], [26] and
randomized [20] WS heuristics. Our experimental evalua-
tion shows the benefits of packing-based decentralized LB
algorithms, namely faster LB execution time, reduced num-
ber of task migrations, preservation of the original locality
between tasks, and reduced application execution times.
Overall, our main contributions in this work are:

1) A method for workload discretization named Pack-

https://orcid.org/0000-0002-2324-349X
https://orcid.org/0000-0003-0997-586X
https://orcid.org/0000-0002-3203-3662
https://orcid.org/0000-0002-9992-8540
https://orcid.org/0000-0002-9548-5260

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 2

ing that extends previous work [19];
2) A reintroduction of the PackDrop [19] algorithm in

this new context;
3) A novel asynchronous, distributed, WS-based LB

algorithm called PackSteal;
4) The implementation of PackSteal and PackDrop in

Charm++, a state-of-the-art runtime system that
supports load balancing in distributed memory sce-
narios, and an experimental evaluation comparing
them to other state-of-the-art algorithms.

The remainder of this work is divided as follows. Sec-
tion 2 discusses related work in periodical LB and WS.
Section 3 presents the distributed model considered in this
work and its notations. Section 4 presents our packing model
and load balancing algorithms. Section 5 discusses the im-
plementation details of these LB algorithms in Charm++.
Section 6 presents our performance evaluation and results.
Finally, Section 7 concludes this paper.

2 RELATED WORK

State-of-the-art WS and LB techniques differ in both behav-
ior and applicability when used to develop novel decentral-
ized load balancing algorithms. WS heuristics are regarded
as distributed load balancing mechanisms for task-parallel
applications, usually issuing steals when a parallel machine
goes idle or is in the imminence of going idle. WS sched-
ulers may also be classified as distributed receiver-initiated
(or pull-based) load balancing schemes, where underloaded
machines request load from overloaded ones. LBs, on the
other hand, are invoked periodically to remap work in the
system. Usually implemented as centralized or distributed
sender-initiated (or push-based) schemes, periodical LBs have
different applications in mind, such as Bulk Synchronous
Parallel (BSP) [27], iterative, and other data-parallel appli-
cations. This is especially efficient when using persistence-
based techniques, which allows the scheduler to more accu-
rately predict the load of the tasks it is moving [28].

Both LB and WS approaches have their advantages. No-
tably, WS is often applied in task-parallel Runtime Systems
(RTSs) [29], and shared memory scenarios [3], [4] (even
though it is distributed in nature), although it has been used
for highly unpredictable applications in distributed memory
as well [30]. LBs, on the other hand, have been widely
applied to both shared and distributed memory scenarios,
but due to their periodic nature, they are often applied to
applications that follow the principle of persistence [9] (i.e.,
applications with dynamic workload that tends to change
slowly over time). Although they have been traditionally
implemented as centralized schedulers, LB performance
points towards distributed approaches [18], [19], and with
limited strategies proposed in this field [24], WS emerges as
a source of inspiration for novel LB policies. This is specially
interesting considering the convergence properties of WS in
large-scale scenarios [31]. In this section, we discuss recent
work in periodical LBs and WS, providing a solid base for
our novel approach.

2.1 Periodical Load Balancing
We divide LBs into two categories based on their behavior:
Global and Diffusive [10]. The Global approach uses central-

ized or hierarchical schedulers in order to balance load. This
approach aggregates relevant system information, allowing
precise understanding of the application state [12] with a
potentially high overhead, especially in large scale overde-
composed applications. Hierarchical algorithms usually try
to divide the underlying system in different locality levels,
and schedule tasks on each level with a different strategy to
reduce overheads [32].

Other relevant hierarchical algorithms are those based on
graph and hypergraph partitioning. Zoltan [12] uses multi-
level partitioning to parallelize and schedule work. This
approach can also consider past work to reschedule tasks,
reducing the decision time. Meanwhile, Scotch [33] and
Metis [13], [34] use classical graph partitioning techniques
such as Dual Recursive Bipartitioning and k-way coarsening
to map tasks. In a similar fashion, Weighted-Hop and
Max-Congestion [15] use topology information in order to
enhance other classical graph partitioning algorithms when
scheduling tasks.

The Diffusive approach, on the other hand, follows the
classic greedy algorithms principle: optimize locally to optimize
globally. These strategies try to solve the imbalance issue
from a much narrower scope by using local information
only [17]. The Distributed (or Grapevine) [18] scheduler uses
probabilistic transfer of load and high levels of parallelism
to achieve a balanced state of the system, scaling much
better than global load balancing strategies. Although these
strategies have shown high scalability, they are still scarce
in the state of the art [24].

Locality-awareness is an important factor to achieve
performance in large-scale applications [35]. In this sense,
strategies that take system topology into account are
a promising trend in global scheduling to preserve lo-
cality [36]. However, most of these are still topology-
specific [14], [16]. For instance, NuCo and HwTopo [14],
[37] are load balancers for Non-Uniform Memory Access
(NUMA) machines, which model distance between source
and destination tasks in order to determine whether it is
worth migrating them among NUMA nodes. TreeMatch [16]
has hierarchical and distributed versions, and was originally
designed for fat-tree machine architectures. As it can be ob-
served, none of these algorithms are able to achieve locality-
awareness in a platform-agnostic fashion.

On a different approach, PackDrop [19] attempts to pre-
serve the affinity among tasks by grouping them in re-
sources prior to migration but completely disregards the
network topology. This kind of workload grouping has been
used in shared-memory scenarios as well with BinLPT in
OpenMP loop scheduling [38], or in job scheduling with
packing-based placement to reduce fragmentation on 3D-Torus
HPC systems [39].

2.2 Work Stealing Schedulers

WS schedulers are inherently distributed. In WS, inde-
pendent scheduling agents manage resources in a parallel
system, and may take roles of: (i) thieves, which attempt to
dynamically remap work to underloaded (or idle) resources,
trying to manage workload so tasks are constantly available
to be computed; or (ii) victims, which are targets chosen
by thieves to have their tasks stolen. WS schedulers are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 3

commonly applied to dynamic and imbalanced applica-
tions [20], [21] that cannot afford a stable work decompo-
sition, but may be applied to any parallel application de-
composable as a Direct Acyclic Graph (DAG). This way, ap-
plications decomposed in models like fork/join [40], general
task parallelism, and parallel loops in shared memory [41]
have also benefited from WS.

Following the topology-aware approach, WS strategies
have been able to greatly increase application performance.
The Feudal Work Stealing [25] approach shares system infor-
mation as tasks are stolen and attempts to select victims both
in local and remote work groups, which increases task local-
ity (e.g., a scheduler that manages a subgroup of cores may
attempt to migrate work within its own subgroup of cores
or from remote cores to it). CLAWS [26] is a contention-
and locality-aware work stealing runtime for NUMA ar-
chitectures, which takes care of task migration, reducing
remote memory accesses. In a similar fashion, ADWS [42]
uses localized hierarchical stealing to compensate imbalance
in task-parallel applications.

On a different approach, DistWS [3] uses application task
affinity instead of topology-awareness by selecting tasks
that are more favorable for migration (i.e., have less data to
be copied) on steal attempts in distributed shared-memory
machines. Retentive Work Stealing [28] tries to apply the
benefits of Persistence-based Load Balancing into a WS
model in a distributed memory MPI environment. This
approach uses a persistence model in iterative applications,
in which, instead of rescheduling all of the workload every
iteration, resources keep a list of processed tasks that is used
as a seed for the next iteration, improving the balance as the
application is executed, and performing work stealing when
appropriate.

2.3 Discussion
As distributed schedulers rise as solutions in the periodical
load balancing domain, the use of WS heuristics is attractive
due to their well documented past and known conver-
gence times [31]. However, distributed strategies must be
adapted to achieve harmony with balancing load, local-
ity, and quickly computing a new mapping. We aimed to
achieve this with our packing scheme with PackDrop, and we
believe strategies such as Feudal WS [25] and Randomized
WS have much to give in the periodical scheduling scenario
(if correctly adapted). In the next sections, we present how
we aim to achieve this harmony by first explaining our dis-
tributed scheduling model, and then explaining the packing
model, PackDrop, and the new algorithm PackSteal.

3 SCHEDULING MODEL AND NOTATION

A parallel application may be described as a set T of n
tasks : T =

⋃n
i=1{Ti}. The load of a task Ti is denoted

by ω(Ti). For the sake of simplicity, we extend the notion
of load to sets of tasks. We also assume that the load of an
empty set is equal to 0; both are shown in Equation (1).

Let T be an arbitrary set of tasks,

ω(T) =
∑
Ti∈T

ω(Ti), ω(∅) = 0 (1)

We also consider a set M of m identical machines : M =⋃m
j=1{Mj}, and n� m, resembling overdecomposed paral-

lel applications. Additionally, for each machine Mj , a subset
of tasks Sj ⊂ T is assigned to Mj .

Each machine Mj has a unique scheduling agent j that
makes load balancing decisions. Its local view is composed
of: (i) a set of tasks Sj assigned to it; and (ii) an indexed
communication table of M, containing all machine identi-
fiers. The remaining information used in decision making
has to be entirely derived from this local view.

The objective of load balancing is to minimize applica-
tion makespan. The best way to do this is to distribute load
evenly across machines. Equation (2) describes the load of a
machine Mj and the lower bound of the makespan ω?.

ω(Mj) =
∑
t∈Sj

ω(t), ω? =
ω(T)

|M|
(2)

Since optimal scheduling of parallel machines is NP-
Hard, achieving a process mapping that yields ω? to every
core is rather unrealistic. So, we give this value a relaxation
ε, which should be based on the imbalance characteristics of
each application.

Definition 1. [ε-relaxed order >ε]. Given any two machines
Mp,Mq , their relaxed difference in load is as stated in Equa-
tion (3).

ω(Mp) >
ε ω(Mq) ⇐⇒ ω(Mp) > ω(Mq) + ε (3)

From Equation (3), the definitions of <ε , =ε and ≥ε follow
trivially.

We want to assign tasks to machines in a distributed
fashion, so that the makespan approximates ω?. This follows
the game-theoretic idea of achieving an ε-Nash Equilib-
rium [22], a concept widely applied to distributed algo-
rithms. Achieving ε-Nash Equilibrium means that no agent
in the system (in this case, our schedulers) profit from taking
actions that modify the state of the system. Since opti-
mization turns into an exhaustive process once the answer
approaches an optimal result, we define the ε relaxation
factor, converging faster to an equilibrium.

4 WORKLOAD DISCRETIZATION AND LOAD BAL-
ANCERS

Our algorithms are designed for persistence-based load bal-
ancing in asynchronous runtime systems. The application
is paused during rescheduling time, meaning that LB time
is considered an overhead for the application. Thus, any
load balancing strategy in this situation must run quickly to
actually diminish application makespan.

We split our load balancers into two different algo-
rithms named PackDrop and PackSteal, following sender- and
receiver-initiated protocols, respectively. These algorithms
are executed by each local scheduling agent, following
a simple and standardized notation for distributed algo-
rithms [43]. Each of our algorithms executes from beginning
to end with no interruptions. New messages execute in
receiving order as their predecessors are processed. Every
communication is asynchronous, so messages expect no
answers.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 4

Overall, the algorithms have two main phases: (i) work-
load discretization; and (ii) load balancing decision. The
former is common to both algorithms and is explained in
Section 4.1, whereas the latter will be explained in Sec-
tion 4.2 (PackDrop) and Section 4.3 (PackSteal).

4.1 Application Workload Discretization (Packing)
Load balancing scenarios are often described as either dis-
crete or continuous [23]. The discrete case describes uniform
non-preemptable1 tasks, while the continuous case describes
non-uniform preemptable tasks. Our case of scheduling
in parallel machines presents overdecomposed applications
with non-uniform non-preemptable tasks.

Our packing model aims to improve the scheduling pro-
cess by approximating our load balancing scenario to the
discrete scenario. The main objectives of packing are: (i) to
reduce the scheduling time by making it simpler to decide if
tasks will be migrated or not (as the groups of tasks have all
the same approximate load), and by reducing the number
of messages exchanged between agents (as multiple tasks
are suggested for migration in the same message); (ii) to
preserve some of the original locality of the application (as-
suming that the original mapping already grouped together
communicating tasks in the same machine).

In our model, scheduling agent j takes a subset of tasks
Pj in Sj that contains tasks so that ω(Mj) − ω(Pj) =ε ω?.
This subset Pj corresponds to the set of tasks the agent j
intends to migrate. Moreover, Pj is subdivided into disjoint
sets of tasks called packs, Γ, with total load ωΓ each. Since
we want to make all migrating workload discrete, and our
tasks are non-preemptable, agents must aggregate them into
packs that respect a γ-relaxed equality among themselves,
following Equation (4).

∀Γx,Γy ⊂ P | ω(Γx) =γ ω(Γy) =γ ωΓ (4)

Equation (4) also means that the load of all packs, re-
gardless of machine, are similar. We denote this load as ωΓ.
As our focus lies on the discretization of the overloading
tasks (i.e., those that make a machine overloaded), we use
a greedy approximation algorithm to solve the bin packing
problem of assigning tasks to packs for further migration.

4.2 PackDrop: A Sender-initiated Load Balancer
PackDrop is a sender-initiated, informed strategy that at-
tempts to migrate packs from overloaded to underloaded
machines. Algorithm 1 presents PackDrop, which is divided
in two steps: (i) information propagation (lines 2–9 in INIT);
and (ii) pack exchanging (INIT after the synchronization
barrier in line 10, TASKS and ACK).

In the first step (i), the average load in the system ω?

is first reduced. At this point, agents know if they have
to take an overloaded, or underloaded role (line 5). While
overloaded agents will start packing their tasks (Pj), un-
derloaded ones will start a Gossip Protocol [45] (line 8) to
propagate machine load information, ω(Sj). This allows the
overloaded machines to make educated decisions to send
packs later on.

1. Brucker [44] defines preemptable tasks (or jobs), as tasks that may
be divided any number of times.

Algorithm 1: PackDrop, perspective of Mj

Input:
Sj− set of local tasks.
M− set of system machines.

1 when receive INIT()do
2 Rj ← ∅; Pj ← ∅
3 reduce fromM: ω(T)

m → ω?

4 calculate ωΓ // Equation 7 in Section 5
5 if ω(Sj) >

ε ω? then
6 generate packs: Pj // See Section 4.1
7 else
8 gossip information: ω(Sj)
9 end

10 —— Wait Barrier ——
11 bMc ← {bMc ⊆M

∣∣ ∀Mi ∈ bMc,Mi <
ε ω?}

12 while Pj 6= ∅ do
13 Γ← p | p ∈ Pj ; Pj ← Pj \ {Γ}
14 send TASKS(Γ) to Mi ∼ bMc
15 end
16 end
17 when receive TASKS(Γ) from Msdo
18 if ω(Sj) + ωΓ <ε ω? + ε then
19 Rj ← Rj ∪ {Γ}
20 send ACK(true, Γ) to Ms

21 else
22 send ACK(false, Γ) to Ms

23 end
24 end
25 when receive ACK(bool, Γ) from Msdo
26 if bool=true then
27 Register the migration of T ∈ Γ to Ms

28 else
29 send TASKS(Γ) to Mi ∼ bMc
30 end
31 end

In the second step (ii), overloaded machines will create
a list of underloaded machines bMc (line 11), from which
they will pick targets for their packs uniformly at random
(operator ∼, in line 14). Underloaded machines will only
accept packs that will not make them overloaded (line 18).
Rejected packs will be will be sent again by the overloaded
machine to a new random target (line 29).

Sending a rejected pack again is only attempted for a
fixed number of times. Since the algorithm is asynchronous,
we cannot measure convergence during load balance, which
means the ending must be local as well. Hence, a fixed stop
criteria is defined to avoid livelocks.

4.3 PackSteal: A Receiver-initiated Load Balancer

PackSteal is a new receiver-initiated LB that is motivated by
feudal and randomized WS [25]. The feudal aspect comes in
its information propagation, while the randomized aspect in
its victim selection.

PackSteal progressively gathers the state of the system
(the load of each machine Ma ∈ M) at the same time it
performs its decisions. This is possible due to the attachment
of the sender local load information to the messages target-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 5

Algorithm 2: PackSteal, perspective of Mj

Input:
T j− set of local tasks.
M− local knowledge of the state of the machines in
the system.

1 when receive INIT() do
2 Rj ← ∅; Pj ← ∅
3 reduce fromM: ω(T)

m → ω?

4 calculate ωΓ and sj // Equation 7 and 5
5 if ω(Sj) >

ε ω? then // Victim case
6 generate packs: Pj // See Section 4.1
7 send HINT() to arg min

a∈M
ω(Ma)

8 else if ω(Sj) <
ε ω? then // Thief case

9 for sj do // See Equation 6
10 send STEAL(0) to a ∼ topk(M)
11 end
12 end
13 end
14 when receive HINT() from Mbdo
15 if ω(Sj) >

ε ω? then // Victim case
16 send HINT() to arg min

Ma∈M
ω(Ma)

17 end
18 end
19 when receive STEAL(nb) from Mbdo
20 nb ← nb + 1
21 if ω(Sj) >

ε ω? then // Victim case
22 Γ← arg min

Γ∈Pj

ω(Γ); Pj ← Pj \ {Γ}

23 send TASKS(Γ) to Mb

24 Register the migration of T ∈ Γ to Mb

25 else if nb > m
4 then

26 forward STEAL(nb) to Ma ∼ M
27 else
28 forward STEAL(nb) to Ma ∼ topk(M)
29 end
30 end
31 when receive TASKS(Γ) from Mbdo
32 Rj ← Rj ∪ Γ
33 end

ing its peers. Now, we describe how to broadcast system
information during message exchanging.

Consider that when the algorithm begins, the agent j
is not aware of the current load of the other machines.
However, each time j sends a message, it may also include its
load information ω(Mj) with the message. If j has already
attained information on the load of any of its peers, this
information may also be passed with every message it sends
in a piggybacking fashion.

PackSteal is described in Algorithm 2, which is split into
two main parts. The first part (INIT on lines 1–13) describes
the initial calculations and role determination (victim or
thief). The initial flow begins by issuing a reduction in order
to assess the average system load (line 3). Then, it calculates
number of steals sj for thief j using Equation (5).

sj =

⌊
ω? − ω(Sj)

ωΓ

⌋
(5)

Pack load ωΓ is defined by Equation (7) in Section 5. After
that, schedulers take roles of either thieves or victims de-
pending of their load (stated as Thief case and Victim
case). Observe that only thief agents have sj > 1.

After determining their role, victims will assemble their
packs and send HINT messages in order to warn a potential
thief. This thief is determined by choosing one machine in
M with the lowest known load (line 7). Of course, limited
to the local information ofM (i.e., machines ofM that have
not yet communicated with j will not have an ω, and thus,
will not be accounted for). When an agent j receives a HINT
(lines 14–18), it stores relevant information about its peers.
Additionally, if j is a victim, it will send a new HINT to
its known most probable thief. This informs agents of each
others’ states incrementally, which assists future stealing
attempts.

Thief j will attempt sj STEALs to target machines a (line
10), where a is a possible victim for j. At the beginning,
it starts to send a message STEAL containing the number
of attempts nb previously done (starts at 0). At each time
a thief receives this message, nb is increased by 1 and the
STEAL message is forwarded. The nb information is used to
determine if the victim selection will be (i) constrained or (ii)
randomized.

The standard choice is the constrained selection (i),
which picks uniformly at random one of the k most loaded
machines inM, as determined in Equation (6).

topk(M) is a subset ofM where |topk(M)| = k, and

∀Mi ∈M \Mk,Mj ∈Mk, ω(Mi) ≤ ω(Mj)} (6)

Once nb surpasses m
4 , meaning the constrained selection is

not working very well, j will then use randomized victim
selection (ii), simply choosing a possible machine index
uniformly at random (line 25).

When receiving a STEAL message, a victim j will send
the load contained in the first element of their list of packs,
Pj (lines 21–23). Additionally, j must register that the tasks
in Γ will migrate to Mb (line 24), as the runtime system or
the scheduler must perform these migrations. Meanwhile,
if the receiving agent is not a victim, it will forward the
steal to another possible victim. Lines 26 and 28 portray
the two distinct aforementioned victim selection behaviors,
randomized and informed selection, respectively.

Finally, once j receives a TASKS message, meaning j
is a thief and it has received new tasks, j will add the
received pack to its received tasks list (Rj), which is used
to update the current load of j. Although PackSteal does not
require a barrier to separate different steps of the algorithm,
it needs one to coordinate the end of execution and assess
global information. The ending is performed via quiescence
detection [46], meaning that when no scheduler has messages
in its queue, they have been synchronized.

5 IMPLEMENTATION

PackDrop and PackSteal were implemented in Charm++ [47]
using its distributed load balancing framework2,3. Charm++

2. Charm++ is available at: http://charm.cs.illinois.edu/software.
3. Packing schemes and LBs are available at: https://github.com/

viniciusmctf/packing-schemes/tree/packs 2019-v1.

http://charm.cs.illinois.edu/software
https://github.com/viniciusmctf/packing-schemes/tree/packs_2019-v1
https://github.com/viniciusmctf/packing-schemes/tree/packs_2019-v1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 6

is one of the most receptive runtime systems for new LB
strategies, especially in distributed memory systems [48],
which allows us to pair it up with applications already
existing in the environment. The use of Charm++’s load
balancing framework commonly requires pausing the ap-
plication while schedulers compute and remap work.

In Charm++, the workload is decomposed in indepen-
dent and migratable virtual processors named chares, usu-
ally following a geometric decomposition scheme. Charm++
is a message-driven, asynchronous RTS, meaning that work
is issued when chares (our tasks) receive messages. Load
balancers are also implemented as chares, meaning that they
benefit from Charm++’s native synchronization mechanisms
to perform the reduction operation and the quiescence de-
tection (CkReduction and CkStartQD).

In Section 4, we used some variables whose values must
be set beforehand. Ideally, ε is the best value for packing
load, since it will mitigate more of the algorithm complexity.
However, the larger the packs, the larger is their potential
gap between ω(Γx) and the ideal ωΓ. So, smaller packs tend
to be tighter, which leads to higher quality in load balancing.

We propose to calculate ε as a fraction of ω?, using a ξ
factor, such that the maximum overall imbalance will be at
most ξ%. Additionally, we use a δ coarsening factor to make
the pack size ωΓ smaller, as described in Equation (7).

ε = ω? × ξ, ωΓ = ε× δ, γ = ωΓ × ξ (7)

Also detailed in Equation (7) is the γ relaxation factor,
which is used to define pack size in Section 4.1, Equation (4).

The imbalance tolerance ξ value was determined as 0.05,
meaning that we only consider that a given core is balanced
when its load is in an interval of 5% to ω?, which is plausible
in this scenario and is used by other schedulers in Charm++.
Meanwhile, the pack narrowing factor δ is fixed to 0.4 as a
middle ground between optimizing the balance and accel-
erating the algorithm. ξ and δ are defined in Equation (8).

ξ ← 0.05, δ ← 0.4 (8)

The seeded neighborhood of PackSteal (initial knownM
in Algorithm 2) of a given scheduling agent j was prede-
termined as being its right-hand neighbor, which is given by
{Mr} for r = (j+1)mod m. Since Charm++ generally num-
bers its resources in ascending order, all cores in a parallel
machine will be numbered before starting to number the
cores in the next machine, so there is a good chance (higher
if nodes are tightly coupled) this is a nearby resource. In
homogeneous clusters, this value can also be used as a
topology-aware hint. For instance, if each cluster node has c
cores, the seed may be {Mr} for r = c×b jcc+(j+1) mod c,
which is an in-node neighbor of j. This way, we would first
attempt local neighbors in {Mr} during the constrained WS
phase, and global machines in the randomized one.

6 PERFORMANCE EVALUATION

We performed an experimental evaluation of our workload
discretization scheme and its distributed LBs in two differ-
ent moments. At first, we conducted extensive experiments
to understand how the algorithms behave when acting on

TABLE 1
Brief description of other LBs used in the experiments.

LB Type Short description

Distributed Diffusive Push-based strategy that uses
probabilistic transfer of load to
choose task receivers [18]. Gath-
ers system information with a
gossip protocol.

Refine Global Attempts to minimize the num-
ber of migrations. Migrates tasks
from overloaded to underloaded
resources only [28].

Greedy Global Optimizes load distribution, not
communication. Assigns tasks to
cores using a Longest Processing
Time (LPT) first policy [11].

applications with different numbers of tasks, communica-
tion patterns, and different rescheduling frequencies, in a
smaller but more available machine (Section 6.2). Then, we
moved to experiments to evaluate the scalability of the algo-
rithms when handling a molecular dynamics benchmark on
a supercomputer (Section 6.3). In both cases, we compared
PackDrop and PackSteal to LBs from the state of the art (listed
in Table 1), and with a Baseline execution using a Dummy LB
that performs no actual load balancing. For each evaluation,
we provide first an explanation of the experimental design
followed by a discussion on the results.

6.1 Experimental Environment and Methodology
Our methodology involves the evaluation of:

1) Application time (makespan): how long an application
takes to execute;

2) Load balancing time: the time between invoking the
LB and resuming the application after migrations;

3) Total number of migrations: the number of tasks mi-
grated on each LB invocation.

Minimizing the application execution time is the most
important objective, which is the factor that enables the
execution of high scale scientific applications. Nonetheless,
a low LB overhead (coming from the load balancing time
and migrations) is important as it allows LBs to scale with
applications as systems grow larger.

We selected the synthetic benchmark LB Test for the first
set of experiments, and the molecular dynamics benchmark
LeanMD for the second set. LB Test allows the variation
of generic parameters (like communication pattern), while
LeanMD is based on (and performs core computations of)
the Gordon Bell award-winning application NAMD [49],
providing a scenario to measure the impact of novel LBs.
All benchmarks were compiled with the -O3 flag.

We carried out the experiments on two different plat-
forms. The first is Tesla, a NUMA machine with simul-
taneous multi-threading composed of two 10-core Intel
Xeon E5-2640@2.4GHz CPUs. It has a total of 128GB
ECC RAM memory @1333MHz, configured with Ubuntu
16.04, GCC 5.4.0 and Charm++ 6.8.1 multicore-linux64
--with-production. This machine was locally avail-
able for our experiments, allowing us to explore mul-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 7

TABLE 2
LB Test average execution times (in seconds) with 12k tasks and variations on communication pattern and load balancing frequency on Tesla.

Values in bold represent the best average execution time for a given communication pattern.

Communication Ring 2D Mesh 3D Mesh Random Graph

LB Frequency 40 70 100 40 70 100 40 70 100 40 70 100

Baseline 77.879 67.717 59.966 80.585 71.999 63.176 83.196 71.415 63.131 183.054 166.423 156.163
PackDrop 76.822 69.894 65.862 76.541 70.763 69.457 78.244 75.219 69.362 175.227 166.549 161.401
PackSteal 43.711 42.405 44.387 47.773 46.472 45.617 45.406 50.947 45.063 135.081 132.808 135.815

Distributed 72.650 63.646 65.384 69.404 65.596 70.989 60.575 64.581 72.590 171.974 165.192 159.599
Greedy 47.687 47.219 54.662 63.582 50.654 57.758 47.158 38.748 41.400 199.353 184.817 175.331
Refine 74.532 70.508 66.323 77.984 71.378 69.483 78.471 71.297 68.748 176.897 165.850 153.634

TABLE 3
LB Test average execution times (in seconds) with 18k tasks and variations on communication pattern and load balancing frequency on Tesla.

Values in bold represent the best average execution time for a given communication pattern.

Communication Ring 2D Mesh 3D Mesh Random Graph

LB Frequency 40 70 100 40 70 100 40 70 100 40 70 100

Baseline 117.316 104.095 90.035 125.677 105.825 98.733 127.895 111.600 97.259 362.582 330.883 313.609
PackDrop 113.691 105.736 96.996 110.315 110.551 105.694 118.081 116.345 109.178 332.470 325.321 316.252
PackSteal 63.872 65.569 68.252 71.264 74.540 71.733 72.898 77.679 76.891 272.080 274.124 268.365

Distributed 77.000 93.719 104.811 78.108 96.732 107.007 89.138 99.709 111.270 332.413 326.763 317.951
Greedy 58.805 58.039 57.618 62.670 65.609 60.758 110.191 92.025 91.020 402.275 370.815 352.992
Refine 114.581 108.585 99.792 116.192 113.332 105.088 121.097 114.039 109.467 348.633 327.295 315.318

tiple execution scenarios. The second is the supercom-
puter Joliot-Curie4. It contains NUMA compute nodes in-
terconnected with EDR Infiniband. Each node features two
24-core Intel Xeon 8168@2.7GHz CPUs and 192GB ECC
RAM DDR4 memory @2666MHz. Joliot-Curie runs on Red
Hat Enterprise Linux 7.6, loading OpenMPI 2.0.4, and
C/C++ Intel 17.0.6.256 modules, and using Charm++ 6.9.0
mpi-linux-x86_64 --with-production.

6.2 Evaluation with LB Test on Tesla

6.2.1 Experimental Design

The variables considered in LB Test were total number
of tasks (w ∈ {12k, 18k, 24k}), communication pattern
(c ∈ {Ring, 2D Mesh, 3D Mesh,Random Graph}), and load
balancing frequency (i.e., how many iterations between each
time an LB is called) (r ∈ {40, 70, 100}). All configurations
of LB Test were executed for 300 iterations, with a sample
size of 20 executions per configuration.

The communication patterns express four different ways
in which tasks communicate with each other in LB Test. The
Ring pattern expresses a one dimensional torus network of
size n, so task Ti requests a computation to T(i+1)mod n,
and executes the request of T(i−1)mod n. Two- and three-
dimensional meshes work in a similar fashion, adding a
dimension (and thus, a neighbor), for each. This way, Ring,
2D Mesh and 3D Mesh patterns model tasks with 1, 2,
and 3 outgoing communication edges, respectively. The
Random Graph pattern is more intense in the neighbor cre-
ation process, connecting 1% of all possible communication
edges, generating a much more work- and communication-
intensive scenario.

4. Detailed specifications of SKL Irene available at: http://www-hpc.
cea.fr/en/complexe/tgcc-JoliotCurie.htm

Load Balancer

Fig. 1. Execution time impact of different LB frequencies for LB Test with
24k tasks on Tesla

We discuss experiments in Tesla with the 12k and 18k
tasks configurations for all communication patterns, and
24k for the 3D Mesh pattern only5. For each combination
of workload w and communication pattern c, we tested
each of the load balancing frequencies in order to measure
the impact of synchronization and task migration in the
application total execution time.

We have different objectives for the variation of each
parameter. Workload size w is used to evaluate the LB
capability of dealing with varying input sizes. Meanwhile,
the communication pattern c is used to evaluate the impact
of migrations and how LBs perform with different simulated
workload profiles. Finally, the load balancing frequency r
serves to help us find the best frequency for the different
configurations and LBs, as some scenarios may benefit more
from early and often remapping tasks with a low overhead,
while others may make perform better when less LB calls
are made.

5. Other parameter combinations for LB Test follow similar trends.

http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm
http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 8

TABLE 4
LB Test average cumulative LB times (in milliseconds) with 12k and 18k tasks and variations on communication pattern for a load balancing

frequency r = 100 on Tesla.

Simulation Size 12k tasks 18k tasks

Communication Ring 2D Mesh 3D Mesh R. Graph Ring 2D Mesh 3D Mesh R. Graph

PackDrop 9.789 8.994 9.403 272.400 12.705 12.500 13.516 449.261
PackSteal 11.629 8.903 10.378 273.948 13.894 14.390 14.206 444.419

Distributed 20.189 19.399 22.802 276.462 33.575 26.903 28.367 455.171
Refine 46.0047 50.290 49.374 31.964 93.065 99.473 107.136 66.235
Greedy 386.191 385.690 385.171 383.413 606.654 606.569 604.582 601.671

Fig. 2. Cumulative LB time impact of different LB frequencies for LB Test
with 24k tasks on Tesla

6.2.2 Results Discussion
Results are portrayed in Tables 2 and 3, and in Figs. 1 and 2.
Overall, PackSteal outperformed every other LB, with the
exception of 3D Mesh in the 12k-task scenario, and Ring and
2D Mesh in 18k and 24k ones. In Random Graph, the most
work- and communication-intensive pattern, PackSteal was
the overall best choice for load balancing, signalizing the
efficiency of its pattern-agnostic approach.

Moreover, the second best performing algorithm was
Greedy, a centralized strategy that disregards migration and
communication costs and scales poorly into larger systems.
This can be verified in cumulative load balancing time
(Fig. 2), as well as on the diminishing returns of issuing
multiple LB calls, indicating that Greedy works better when
called less times. Greedy is also known for performing nu-
merous unnecessary migrations. Since tasks in LB Test are
very light, migrating a lot of tasks does not incur in high
overheads. However, Greedy is often not the best LB choice
in scenarios with heavy tasks. This will be further discussed
in Section 6.3.

We also observe that Distributed was able to outperform
PackDrop in this synthetic scenario. Since they are both push-
based strategies, we believe this is due to precision in the
scheduling decisions and to their target choosing process.
Distributed sets higher probabilities of choosing targets that
are less loaded, while PackDrop chooses its targets uniformly
at random.

In Fig. 2, we also observe that diffusive strategies display
much higher performance than centralized ones. PackSteal
is often more efficient when called multiple times (r = 70,
compared to the r = 100 in the other two strategies), which
leads to higher cumulative LB time. However, the improved
workload distribution compensates the higher frequency for

some LBs, which was the case for PackSteal, delivering lower
application times with frequency r = 70.

Additionally, Table 4 shows the accumulated load bal-
ancing time of our evaluated LBs used in this experiment
when executed every 100 iterations. Values show the av-
erage of the cumulative LB time per application execution
with frequency r = 100. These results show the scalability
potential of diffusive strategies, and further justifies the
load discretization as it leads PackDrop and PackSteal to
make their decisions consistently faster than Distributed.
Moreover, the larger input size example, Random Graph,
shows Refine as providing the faster decision time; however,
checking the actual application performance when using
the LB, we see that PackSteal is, truly, the only one able to
improve the LB Test application performance in this case.

We further analyzed the LB frequency (r) variation 3D
Mesh scenario with 24k tasks in Fig. 2. While some strategies
such as Refine or Greedy clearly show diminishing returns
when called more often, PackSteal and Distributed portray
significant benefits in performing this kind of execution tun-
ing, speeding up LB Test by 1.46× and 1.08×, respectively6.
These results also show the high costs of synchronization
in asynchronous applications such as the ones provided by
Charm++. The baseline portrayed 29% performance degra-
dation when called every 40 iterations (7 calls in total)
when compared to every 100 (2 calls in total). Nonetheless,
PackSteal still had the best performing result in this synthetic
scenario.

6.3 Evaluation with LeanMD on Joliot-Curie

6.3.1 Experimental Design
The parallel solution implemented in LeanMD uses a 3D
spatial decomposition approach, where the 3D space con-
sisting of atoms is divided into cells. Our experiment used
the standard LeanMD configurations available online7, pa-
rameterized with X×11×5 cells of dimensions 15×15×30.
Cells are further divided into computes, which are the actual
chares. These contain multiple particles, and manage com-
munication among them.

The parameter X was varied from sizes 80 to 320. Each
execution of LeanMD comprises 301 iterations, executing the
first load balancing call at the 40th iteration and every 100
iterations after that, summing up a total of 3 LB calls. These
parameter combinations generate simulations ranging from

6. Comparing the best and the worst performing averages of LB Test
with the same LB strategy.

7. LeanMD is available at: http://charmplusplus.org/miniApps/

http://charmplusplus.org/miniApps/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 9

(a) X = 80. (b) X = 120. (c) X = 160. (d) X = 240. (e) X = 320.

Fig. 3. Boxplots of the execution times of LeanMD with different input sizes and load balancers on Joliot-Curie. Sizes indicate a variation of the
application dimension parameter X. Each figure has its own vertical axis starting at its own value to emphasize performance differences.

X

Fig. 4. LeanMD Speedups with different load balancers.

1.15 to 3.08 millions of atoms. These experiments were
executed on 20 compute nodes of Joliot-Curie for a total of
960 cores.

Our experimental evaluation was carried out with 20
repetitions for each parameter combination (input size and
load balancing algorithm). More specifically, as Joliot-Curie
is a supercomputer with a job scheduler and multiple users
at the same time, we organized our experiments in four jobs
(two for X = {80, 120, 160} and two for X = {240, 320}).
Each job contains 10 repetitions for all LBs and input sizes
involved. For each repetition, all pairs of input size and
LB were executed in a random order with the objective of
avoiding having noise from other users affecting a single
LB.

The objective of executing LeanMD with these different
input sizes follows the same line as LB Test, measuring the
capabilities of LBs in dealing with varying input sizes but in
a much larger scale. This benchmark creates n particles per
cell following Equation (9).

n = 100 +
cell id× 150

X × Y × Z
, (9)

where cell id ranges from 0 to (X × Y × Z − 1). This way,
as we scale any of the dimension parameters we allow the
particles to be more spread in the simulation area. This
leads to higher imbalance in the application as the input
size increases.

6.3.2 Results Discussion

Fig. 3 show boxplots8 representing the execution times
of LeanMD with different input sizes and LBs. Only the
Baseline, PackDrop and PackSteal were executed for input
sizes 240 and 320 due to the increasing time it takes to run
LeanMD for larger sizes and due to the performance results
seen for the other LBs with smaller input sizes.

At a first glance, the results portrayed in Fig. 3 seem to
indicate that PackSteal and PackDrop outperform the Baseline
and other LBs, with the exception of the scenario with
PackDrop and X = 80. Using a confidence threshold of
95%, we checked if their execution times were statistically
different from the baseline. As all samples followed normal
distributions (all Kolgomorov-Smirnov tests with p-values
¿ 0.05), we used parametric methods to compare PackDrop
and PackSteal to the baseline. As all p-values < 0.05 using
Welch’s t-test, we can conclude that their execution times
are actually different as first suspected. Using the same
test, we also verify that no difference can be seen between
PackDrop and PackSteal for X = 160 (p-value = 0.165),
while PackDrop outperforms PackSteal for X = 120 and the
opposite happens to other input sizes (all p-values ¡ 0.05).
Finally, PackDrop also outperforms Distributed for X = 80
(p-value = 0.018), even though their execution times look
similar.

Fig. 3 also indicates that our packing-based algorithms
have a greater impact on LeanMD’s performance as its input
size increases. We can observe the speedup achieved over
the baseline with load balancing for the different input sizes
in Fig. 4. PackSteal achieved speedups of 1.09, 1.38, 1.38,
1.47, and 1.41 for increasing input sizes, while PackDrop
achieved speedups of 0.95, 1.44, 1.41, 1.32, and 1.29. Start-
ing on X = 120, PackSteal and PackDrop lead to significantly
better results than competing LBs, which emphasize their
scalability and capability to handle load imbalance.

LB time in LeanMD was measured individually for
each LB step. Results displayed in Fig. 5 show: (i) a great
overhead on centralized synchronization, observed in the

8. Boxes extend from the 1st to 3rd quartiles of the samples. Lines
represent the median values. Whiskers represent the data within 1.5
IQR from the lower or upper quartile. Points represent outliers.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 10

X

(a) LB times (1st LB call).
X

(b) LB times (2nd LB call).
X

(c) LB times (3rd LB call).

Fig. 5. Average LB time in its multiple invocations. Data is displayed in log10 scale, otherwise the times of PackDrop, PackSteal , and Distributed
cannot be seen in comparison to the others.

TABLE 5
Task migrations observed for each LB invocation in LeanMD, with

problem size X = 160.

Load Balancer Average # of Migrations
1st 2nd 3rd

PackDrop 8,942.9 9,405.1 9,516.6
PackSteal 2,704.2 827.5 618.3

Distributed 66,304.5 16,145.9 11,555.7
Greedy 35,163.5 35,162.8 35,162.5
Refine 713.9 535.7 698.4

baseline (which invokes Charm++’s Dummy LB); (ii) how
efficient distributed LBs are when compared to centralized
approaches for large scale applications and platforms; and
(iii) the difference in LB time between our packing-based
distributed algorithms when compared to Distributed. This
last point can be specially observed in Fig. 5a, where,
Distributed displays considerably higher LB times in its first
call, averaging 20.2ms to 26.3ms, while PackSteal averages
4.3ms to 8.7ms, and PackDrop averages 8.0ms to 16.2ms for
sizes 80 to 160.

When further analyzing the total number of migrations
of each LB, we have observed that Distributed performs
much more migrations than Refine, PackDrop, or PackSteal.
For instance, Table 5 presents the average number of mi-
grations for each load balancer and each LB call in LeanMD
for input size X = 160. This suggests that the number of
migrations is affecting the costs of communication in these
scenarios, thus affecting the application’s performance. In
this scenario, we see that strategies that migrate less tasks
become more effective, as they will distort less the predicted
cost of tasks in the system.

Overall, Table 5 also shows that Refine is the LB that
performs the least migrations, which is its purpose. Nev-
ertheless, just performing a small number of migrations
is not enough to improve the performance of LeanMD in
these scenario, indicating that migrating more tasks together
can be more beneficial that just avoiding migrations. For
instance, we see in Fig. 3 that Refine performs equal to
the baseline for input sizes 120 and 160 (Welch’s t-test, p-
values > 0.05).

These experimental results show how our packing
scheme achieves its objectives of improving the scheduling
process, as we see that: (i) it reduces the application’s total
execution time and scales to bigger platforms and input

sizes; (ii) it achieves smaller load balancing times than other
diffusive algorithms; and (iii) it also preserves some of the
original locality of the application with its small number of
groups of tasks migrating together.

7 CONCLUSION

In this paper we have developed the idea of workload dis-
cretization for periodical load balancing. We have also pre-
sented two diffusive schedulers that employ this technique,
PackDrop and PackSteal. While PackDrop is push-based and
uses randomized workload diffusion [19], PackSteal is pull-
based, and employs WS heuristics such as constrained and
randomized victim selection [3], [25].

In order to evaluate the benefits of packing-based diffu-
sive schedulers, we implemented both LBs in the Charm++
RTS and ran experiments with a synthetic and a molecular
dynamics benchmark. We have compared PackDrop and
PackSteal with multiple LBs available in Charm++ [18] in
a shared memory machine and a supercomputer.

Results showed that for highly irregular applications,
PackSteal is one of the best approaches currently available
for Charm++. Using a synthetic benchmark (Section 6.2), we
have shown results with a total of 9 experimental profiles.
PackSteal achieved the higher application time speedups
in multiple scenarios, and was the only one to enhance
application performance in the Randomized Graph com-
munication scenario, which led to the most unpredictable
system states. For this communication pattern, PackSteal
made the application 1.13× and 1.12× faster in 12k and
18k tasks scenarios, respectively.

Moreover, PackSteal outperformed all other scheduling
strategies on our two largest synthetic scenarios (18k and
24k tasks). On a smaller scale (12k tasks), Greedy was the
only strategy able to outperform PackSteal. This is un-
derstandable since it is able to deliver a 4

3−approximate
solution, however it has been shown to scale poorly over
larger systems [18], [19], as we have observed in Section 6.3.
Finally, we showed the difference in performance of LBs
with different LB periods, a technique we used on our
previous experiment to compare the available strategies
fairly.

For the molecular dynamics benchmark, PackSteal was
the most effective LB in our larger experimental platform,
especially when evaluating load balancing time. PackSteal
was the best overall performing load balancer, being up
to 5.2× faster than Distributed [18]. When compared to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 11

centralized schedulers, decentralized approaches tend to
show faster convergence, which was observed here as well.
This advocates for the development of new and effective
distributed load balancers. Additionally, PackDrop was the
second best performer LB in the MD benchmark, which
indicates that packing is a good load balancing approach for
this application class.

Our results lead us to believe that the study of estab-
lished distributed scheduling algorithms is a path that has
still to be more explored to achieve exascale grade schedul-
ing. Developing distributed schedulers targeting HPC ap-
plications based on concepts such as Deterministic Load
Balancing [50] and Selfish Load Balancing [22] is part of the
work we have in mind moving forward. Additionally, we
intend to further develop packing schemes with the use of
local communication and topology awareness in order to
create the migration packs, since in this work, as in [19], our
packs are uninformed. Evaluating this scheduling strategy
with different load profiles and real-world applications, in
order to determine its best usage scenarios, is also a future
research we intend to perform.

ACKNOWLEDGMENTS

This work was partially supported by the Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico – Brasil (CNPq)
under the Universal Program (grant number 401266/2016-8)
and by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior – Brasil (CAPES) under the Capes-PrInt Program
(grant number 88881.310783/2018-01).

REFERENCES

[1] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kalé, J. C. Phillips,
and C. Harrison, “Enabling and scaling biomolecular simulations
of 100 million atoms on petascale machines with a multicore-
optimized message-driven runtime,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC). Seattle, USA: IEEE/ACM, 2011, pp.
61:1–61:11.

[2] C. R. Noble, A. T. Anderson, N. R. Barton, J. A. Bramwell,
A. Capps, M. H. Chang, J. J. Chou, D. M. Dawson, E. R. Diana,
T. A. Dunn, D. R. Faux, A. C. Fisher, P. T. Greene, I. Heinz,
Y. Kanarska, S. A. Khairallah, B. T. Liu, J. D. Margraf, A. L.
Nichols, R. N. Nourgaliev, M. A. Puso, J. F. Reus, P. B. Robinson,
A. I. Shestakov, J. M. Solberg, D. Taller, P. H. Tsuji, C. A. White,
and J. L. White, “Ale3d: An arbitrary lagrangian-eulerian multi-
physics code,” Lawrence Livermore National Lab. (LLNL), Tech.
Rep. LLNL-TR-732040, 5 2017.

[3] J. Paudel, O. Tardieu, and J. N. Amaral, “On the merits of
distributed work-stealing on selective locality-aware tasks,” in
Proceedings of International Conference on Parallel Processing (ICPP).
Lyon, France: IACC, 2013, pp. 100–109.

[4] R. Al-Omairy, G. Miranda, H. Ltaief, R. Badia, X. Martorell,
J. Labarta, and D. Keyes, “Dense matrix computations on numa
architectures with distance-aware work stealing,” J. Supercomput-
ing Frontiers and Innovations (JSFI), vol. 2, no. 1, 2015.

[5] J. Mair, Z. Huang, D. Eyers, and Y. Chen, “Quantifying the
energy efficiency challenges of achieving exascale computing,” in
Proceedings of International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). Shenzhen, China: IEEE/ACM, 2015.

[6] H. Menon, B. Acun, S. G. De Gonzalo, O. Sarood, and L. Kalé,
“Thermal aware automated load balancing for hpc applications,”
in 2013 IEEE International Conference on Cluster Computing (CLUS-
TER), Sep. 2013, pp. 1–8.

[7] M. R. Garey and D. S. Johnson, ““ strong ” np-completeness
results: Motivation, examples, and implications,” J. ACM, vol. 25,
no. 3, pp. 499–508, Jul. 1978.

[8] J. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine
scheduling problems,” in Studies in Integer Programming, ser. An-
nals of Discrete Mathematics, P. Hammer, E. Johnson, B. Korte,
and G. Nemhauser, Eds. Elsevier, 1977, vol. 1, pp. 343 – 362.

[9] H. Menon, N. Jain, G. Zheng, and L. Kalé, “Automated load
balancing invocation based on application characteristics,” in In-
ternational Conference on Cluster Computing (CLUSTER), 2012, pp.
373–381.

[10] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz, and N. M. Am-
ato, “Quantifying the effectiveness of load balance algorithms,”
in International Conference on Supercomputing (ICS). Venice, Italy:
ACM, 2012, pp. 185–194.

[11] R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization
and approximation in deterministic sequencing and scheduling:
a survey,” in Discrete Optimization II, ser. Annals of Discrete
Mathematics, P. Hammer, E. Johnson, and B. Korte, Eds. Elsevier,
1979, vol. 5, pp. 287 – 326.

[12] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. T.
Heaphy, and L. A. Riesen, “Hypergraph-based dynamic load
balancing for adaptive scientific computations,” in Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS).
Long Beach, USA: IEEE, 2007.

[13] A. Bhatele, S. Fourestier, H. Menon, L. V. Kalé, and F. Pellegrini,
“Applying graph partitioning methods in measurement-based dy-
namic load balancing,” Lawrence Livermore National Laboratory
(LLNL), Livermore, US, Techinical, 2012, technical Report.

[14] L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A. Bhatele, P. O.
Navaux, F. Broquedis, J.-F. Méhaut, and L. V. Kalé, “A hierarchical
approach for load balancing on parallel multi-core systems,” in
Proceedings of International Conference on Parallel Processing (ICPP).
Pittsburgh, USA: IEEE, 2012, pp. 118–127.

[15] M. Deveci, K. Kaya, B. Uçar, and U. V. Catalyurek, “Fast and
high quality topology-aware task mapping,” in Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS).
Hyderabad, India: IEEE, 2015.

[16] E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and G. Zheng,
“Communication and topology-aware load balancing in charm++
with treematch,” in International Conference on Cluster Computing
(CLUSTER), 2013, pp. 1–8.

[17] M. H. Willebeek-LeMair and A. P. Reeves, “Strategies for dynamic
load balancing on highly parallel computers,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 4, no. 9, 1993.

[18] H. Menon and L. Kalé, “A distributed dynamic load balancer for
iterative applications,” in Proceedings of International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).
Denver, USA: ACM, 2013, pp. 15:1–15:11.

[19] V. Freitas, A. Santana, M. Castro, and L. L. Pilla, “A batch task
migration approach for decentralized global rescheduling,” in
Proceedings of International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). Lyon, France: IEEE,
2018, pp. 49–56.

[20] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–
748, 1999.

[21] J. Yang and Q. He, “Scheduling parallel computations by work
stealing: A survey,” International Journal of Parallel Programming
(IJPP), vol. 46, no. 2, pp. 173–197, 2018.

[22] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. W. Goldberg, Z. Hu,
and R. Martin, “Distributed selfish load balancing,” SIAM Journal
on Computing, vol. 37, no. 4, p. 1163–1181, Jan 2007.

[23] P. Berenbrink, T. Friedetzky, D. Kaaser, and P. Kling, “Tight &
simple load balancing,” in Proceedings of International Conference
on Parallel and Distributed Computing (IPDPS), Rio de Janeiro, BR,
05 2019, pp. 718–726.

[24] M. Lieber, K. Gössner, and W. E. Nagel, “The potential of diffusive
load balancing at large scale,” in Proceedings of European MPI Users’
Group Meeting (EuroMPI). New York, NY, USA: ACM, 2016, pp.
154–157.

[25] V. Janjic and K. Hammond, “How to be a successful thief,” in
Proceedings of European Conference on Parallel Processing (EuroPar).
Berlin, Germany: Springer, 2013.

[26] Q. Chen and M. Guo, “Contention and locality-aware work-
stealing for iterative applications in multi-socket computers,” IEEE
Transactions on Computers, vol. 67, no. 6, pp. 784–798, 2018.

[27] R. da Rosa Righi, R. de Quadros Gomes, V. F. Rodrigues, C. A.
da Costa, A. M. Alberti, L. L. Pilla, and P. O. A. Navaux,
“Migpf: Towards on self-organizing process rescheduling of bulk-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX YYYY 12

synchronous parallel applications,” Future Generation Computer
Systems, vol. 78, pp. 272 – 286, 2018.

[28] J. Lifflander, S. Krishnamoorthy, and L. V. Kalé, “Work Stealing
and Persistence-based Load Balancers for Iterative Overdecom-
posed Applications,” in Proceedings of International Symposium on
High-Performance Parallel and Distributed Computing (HPDC). Delft,
NL: ACM, 2012, pp. 137–148.

[29] W. Lee, E. Slaughter, M. Bauer, S. Treichler, T. Warszawski,
M. Garland, and A. Aiken, “Dynamic tracing: Memoization of
task graphs for dynamic task-based runtimes,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC. Piscataway, NJ, USA: IEEE Press,
2018, pp. 34:1–34:13.

[30] C. F. Joerg and B. C. Kuszmaul, “Massively parallel chess,” in
Proceedings of the DIMACS Parallel Implementation Challenge, 1994.

[31] N. Gast and G. Bruno, “A mean field model of work stealing
in large-scale systems,” ACM SIGMETRICS Performance Evaluation
Review (PER), vol. 38, no. 1, pp. 13–24, Jun. 2010.

[32] G. Zheng, A. Bhatelé, E. Meneses, and L. V. Kalé, “Periodic
hierarchical load balancing for large supercomputers,” Interna-
tional Journal of High Performance Computing Applications (IJHPCA),
vol. 25, no. 4, pp. 371–385, 2011.

[33] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient
parallel graph ordering,” Parallel computing, vol. 34, no. 6-8, pp.
318–331, 2008.

[34] D. Lasalle and G. Karypis, “Multi-threaded graph partitioning,”
in Proceedings of International Symposium on Parallel and Distributed
Processing (IPDPS). Boston, USA: IEEE, 2013, pp. 225–236.

[35] M. Diener, S. White, L. V. Kalé, M. Campbell, D. J. Bodony, and
J. B. Freund, “Improving the memory access locality of hybrid MPI
applications,” in Proceedings of European MPI Users’ Group Meeting
(EuroMPI). New York, USA: ACM, 2017, pp. 11:1–11:10.

[36] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco,
B. L. Chamberlain, R. Cledat, H. C. Edwards et al., “Trends in
data locality abstractions for HPC systems,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 28, no. 10, 2017.

[37] L. L. Pilla, C. P. Ribeiro, P. Coucheney, F. Broquedis, B. Gaujal,
P. O. Navaux, and J.-F. Méhaut, “A topology-aware load balancing
algorithm for clustered hierarchical multi-core machines,” Future
Generation Computer Systems (FGCS), vol. 30, pp. 191 – 201, 2014.

[38] P. H. Penna, A. T. A. Gomes, M. Castro, P. D.M. Plentz, H. C. Fre-
itas, F. Broquedis, and J.-F. Méhaut, “A comprehensive perfor-
mance evaluation of the BinLPT workload-aware loop scheduler,”
Concurrency and Computation: Practice and Experience (CCPE), p.
e5170, 2019, early view.

[39] K. Li, M. Malawski, and J. Nabrzyski, “Reducing fragmentation on
3d torus-based hpc systems using packing-based job scheduling
and job placement reconfiguration,” in Proceedings of International
Symposium on Parallel and Distributed Computing (ISPDC), 2017, pp.
34–43.

[40] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data
locality for fork/join programs using constrained work stealing,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). Piscataway, NJ,
USA: IEEE, 2014, pp. 857–868.

[41] M. Tchiboukdjian, V. Danjean, T. Gautier, F. Le Mentec, and
B. Raffin, “A work stealing scheduler for parallel loops on shared
cache multicores,” in Proceedings of European Conference on Parallel
Processing Workshops (EuroParW). Berlin, Heidelberg: Springer,
2010, pp. 99–107.

[42] S. Shiina and K. Taura, “Almost deterministic work stealing,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC). Denver, CO,
US: ACM/IEEE CS, 2019.

[43] A. D. Kshemkalyani and M. Singhal, Distributed computing: princi-
ples, algorithms, and systems. Cambridge University Press, 2011.

[44] P. Brucker, Scheduling Algorithms, 3rd ed. Berlin, Heidelberg:
Springer-Verlag, 2001.

[45] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of Symposium on
Principles of Distributed Computing (PODC). Vancouver, Canada:
ACM, 1987.

[46] M. P. Wellman and W. E. Walsh, “Distributed quiescence detection
in multiagent negotiation,” in Proceedings International Conference
on MultiAgent Systems, July 2000, pp. 317–324.

[47] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
Programming with Migratable Objects: Charm++ in Practice,” in
Proceedings of International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC). New Orleans, USA:
IEEE/ACM, 2014.

[48] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar,
K. Hasanov, P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jor-
dan, T. Fahringer, K. Katrinis, E. Laure, and D. S. Nikolopoulos,
“A taxonomy of task-based parallel programming technologies for
high-performance computing,” Springer Journal of Supercomputing,
vol. 74, no. 4, pp. 1422–1434, 2018.

[49] J. C. Phillips, Gengbin Zheng, S. Kumar, and L. V. Kale, “Namd:
Biomolecular simulation on thousands of processors,” in SC ’02:
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing,
Nov 2002, pp. 36–36, Gordon Bell Award winning work for special
accomplishment.

[50] P. Berenbrink, R. Klasing, A. Kosowski, F. Mallmann-Trenn, and
P. Uznański, “Improved analysis of deterministic load-balancing
schemes,” ACM Trans. Algorithms (TALG), vol. 15, no. 1, pp. 10:1–
10:22, Nov. 2018.

Vinicius Freitas is a student undertaking a mas-
ter’s degree in computer science at the Federal
University of Santa Catarina (UFSC) in coopera-
tion with LRI at Univ. Paris-Sud. He obtained his
B.Sc. in computer science from UFSC in 2018.
His research topics are load balancing, graph
partitioning, and distributed algorithms.

Laércio L. Pilla is a CNRS Research Scientist
at LRI, and member of the ParSys team. He
obtained his Ph.D. from the Federal University of
Rio Grande do Sul (UFRGS) and from the Univ.
Grenoble Alpes in 2014. His research topics are
load balancing, performance analysis and porta-
bility, and hierarchical architectures.

Alexandre de L. Santana is a Research En-
gineer at the Barcelona Supercomputing Cen-
ter. He obtained his master’s degree from the
Federal University of Santa Catarina (UFSC) in
2019. His research topics are load balancing,
performance portability, and runtime system de-
coupling.

Márcio Castro is an Adjunct Professor at the
Federal University of Santa Catarina (UFSC),
and head of the Distributed Systems Research
Lab (LaPeSD). He obtained his Ph.D. from the
Univ. Grenoble Alpes in 2012. His research top-
ics are parallel programming models, load bal-
ancing, multicore and manycore architectures.

Johanne Cohen is a CNRS Research Director,
and head of the graphs, algorithms and combi-
natorial research team at LRI. She obtained her
Ph.D. from the University of Paris XI in 1998, and
her research habilitation in 2009. Her research
topics are game theory, graph theory, and dis-
tributed algorithms.

	1 Introduction
	2 Related Work
	2.1 Periodical Load Balancing
	2.2 Work Stealing Schedulers
	2.3 Discussion

	3 Scheduling Model and Notation
	4 Workload Discretization and Load Balancers
	4.1 Application Workload Discretization (Packing)
	4.2 PackDrop: A Sender-initiated Load Balancer
	4.3 PackSteal: A Receiver-initiated Load Balancer

	5 Implementation
	6 Performance Evaluation
	6.1 Experimental Environment and Methodology
	6.2 Evaluation with LB Test on Tesla
	6.2.1 Experimental Design
	6.2.2 Results Discussion

	6.3 Evaluation with LeanMD on Joliot-Curie
	6.3.1 Experimental Design
	6.3.2 Results Discussion

	7 Conclusion
	References
	Biographies
	Vinicius Freitas
	Laércio L. Pilla
	Alexandre de L. Santana
	Márcio Castro
	Johanne Cohen

