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Abstract :

Submarine power cables (SPC) have been in use since the mid-19th century, but environmental
concerns about them are much more recent. With the development of marine renewable energy
technologies, it is vital to understand their potential impacts. The commissioning of SPC may
temporarily or permanently impact the marine environment through habitat damage or loss, noise,
chemical pollution, heat and electromagnetic field emissions, risk of entanglement, introduction of
artificial substrates, and the creation of reserve effects. While growing numbers of scientific publications
focus on impacts of the marine energy harnessing devices, data on impacts of associated power
connections such as SPC are scarce and knowledge gaps persist. The present study (1) examines the
different categories of potential ecological effects of SPC during installation, operation and
decommissioning phases and hierarchizes these types of interactions according to their ecological
relevance and existing scientific knowledge, (2) identifies the main knowledge gaps and needs for
research, and (3) sets recommendations for better monitoring and mitigation of the most significant
impacts. Overall, ecological impacts associated with SPC can be considered weak or moderate,
although many uncertainties remain, particularly concerning electromagnetic effects.


http://dx.doi.org/10.1016/j.rser.2018.07.026
http://archimer.ifremer.fr/doc/00454/56542/
http://archimer.ifremer.fr/
mailto:bastien.taormina@france-energies-marines.org

Graphical abstract

Highlights

» The use of submarine power cables will increase due to the growth of the marine renewable energy
sector. » Installation increases noise, pollution, turbidity and physical disturbance. » Operation
produces electromagnetic fields, heat, entanglement risk, pollution and reef/reserve effects. » Overall
impacts on ecosystems are considered minor or short-term. » Uncertainties remain, particularly
concerning the impacts of electromagnetic fields.

Abbreviations

HVD CHigh-Voltage Direct Current
SPC Submarine Power Cable

DC Direct Current

AC Alternating Current

MRE Marine Renewable Energy
SPL Sound Pressure Level

HVAC High Voltage Alternating Current
EMF Electromagnetic Field

Keywords : Submarine power cables, Marine renewable energy, Environmental impacts, Ecosystem
functioning, Benthic habitats
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1. Introduction
In 1811, a powered cable was laid down across the Isar River in Germany. This is considered to be the
first underwater power cable in the world. More than a century later, the first commercial High Voltage
Direct Current (HVDC) cable, installed in 1954 in the Baltic Sea, linking Sweden and Gotland Island.
Since then, submarine power cables (SPC), using direct current (DC) or alternating current (AC), have
continued to spread across the globe. Technologies have improved with respect to materials, cable length
and width, and installation techniques. Applications of SPC are numerous: they can be used to connect
autonomous grids, to supply power to islands, marine platforms or subsea observatories, and to convey
power generated by marine renewable energy (MRE) installations to electrical sub-stations. While most
SPC are on top of or buried within the seafloor, some (known as dynamic cables) are deployed through the
water column between the surface and the seafloor. This last category of cables is used for offshore oil
platforms and, recently, to export energy produced by floating MRE devices (like wind turbines), a
technology still under development. In 2015, almost 8000 km of HVDC were present on the seabed
worldwide, 70% of which were in European waters. In comparison, the total length of all submarine cables
deployed (including AC and DC power cables and telecommunication cables) is of the order of 10® km [1].
SPC, like any other man-made installation or human activity at sea, may cause disturbances to
marine life and habitats. When talking about anthropogenic disturbances, it is important to distinguish
‘effects” from ‘impacts’. According to the framework proposed by Boehlert and Gill [2], effects are
modifications of environmental parameters (or “stressors”), such as the substrate type, hydrodynamics,
water temperature, noise, or electromagnetic fields beyond the range of natural variability. Impacts
correspond to changes observed at “receptor” level, i.e., the different ecosystem compartments (biotopes,
biocenosis), or levels (community, populations) or some ecological processes within marine ecosystems
(trophic interactions). Impacts may be positive or negative, although this distinction remains subjective.
Scientific interest in interactions between marine life and submarine cables started with the first
records of cable damage caused by whale entanglements (16 events between 1877 and 1955; [3]) or by fish
and shark bites (at least 39 events from 1907 to 2006; [4]). Although such events have decreased
significantly with technological improvements (cable burial and advances in design or protection; [5]),

ecological concerns remain. Nowadays, ecological issues refer not only to direct physical interactions
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between large animals and cables but also to less obvious impacts of cables on marine communities and
habitats.

Numbers of SPC will increase drastically in coming decades with increasing grid connections of
islands and archipelagos and the development of MRE projects (offshore wind farms, tidal and wave
turbines). Several inter-governmental organisations have set objectives for the next decades. For example,
in 2014, the European Council set 27% as a target for the minimum proportion of total electricity
consumption produced by renewable energies in the EU by 2030 (EUCO 169/14). In 2008, the global
electric energy supply produced by all grid-connected renewable energy installations taken together was
estimated at 12.9%, and several predictions estimate an increase to 17% by 2030 and 27% by 2050 [6].

Despite more than 10 years of scientific work on potential environmental impacts of MRE projects
[7,8], SPC have received much less attention than MRE devices themselves. Indeed, only nine published
papers focusing on in situ effects or impacts of SPC were found during the literature research. These studies
addressed the impacts of SPC on benthic communities, considering both installation or operation phases
[9-13], examined communities colonising unburied structures [12,14], and/or reported species-specific
changes of behaviour [15-17]. Considering the current exponential increase in SPC worldwide, a robust
and accurate assessment of their potential environmental impacts has become a priority.

In this context, the aims of the present study are (1) to review the existing knowledge concerning
potential ecological impacts from SPC during installation, operation and decommissioning phases, (2) to
attempt to hierarchize these impacts according to their significance and (3) to point out knowledge gaps

and recommendations for monitoring and mitigation of these impacts.

2. Methods

A literature search was conducted using online databases and internet search tools (Web of Science,
Science Direct, Google Scholar, ResearchGate) to create a bibliographic database including peer-reviewed
scientific publications, books, theses and non-peer-reviewed consultancy and technical reports. Owing to a
general lack of published studies, a large proportion of current knowledge comes from industrial or
governmental reports and environmental impact assessments that may have associated confidentiality
issues. The literature search first focused on publications about SPC generalities and their global

environmental impacts before targeting specific literature for each of the different identified impacts.
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Documents focussing on anthropogenic disturbances other than SPC, but potentially inducing comparable
impacts (e.g., artificial reefs or sediment reworking for example) were also considered. Based on the main
conclusions of the reviewed literature, the relative importance of the different potential impacts and the

associated scientific uncertainty was compiled.

3. Features of submarine power cables
3.1 Technical characteristics

SPC are specifically designed to relay electric currents either as Alternating Current (AC) or Direct
Current (DC), the transmission type being determined by the capacity and length of the transmission line,
as well as commercial issues. For example, a DC line can transmit more power than an AC line of the same
size, but is more expensive. AC transmission presents some limitations since the reactive power flow due
to the large cable capacitance causes power loss, which then limits the maximum transmission distance
(<100 km). DC is therefore the only viable technical option for long distance cable links. AC is more
frequently used within grids of marine renewable energy devices [8]. Cables in use today include
monopolar, bipolar and three-phase systems. SPC diameters are between 5 and 30cm and weigh between
15 and 120 kg m* (including stabilization devices such as articulated steel shell). Different methods exist
to insulate electric cables in order to contain the emitted electric fields. Specific designs have been
addressed for dynamic cables, with specific armouring layers and internal components. Indeed, their high
position in the water column makes them more susceptible to fatiguing pressure and twist caused by
hydrodynamics (particularly swell). Table 1 describes most types of recently installed SPC.

3.2 Cable installation

Before any deployment, the cable route must be chosen, depending on the bathymetry, seabed
characteristics and economic activities of an area. The route must first be prepared, sometimes with
adjustment of the slope and depth, or removal of obstacles before the passage of the cable-laying device.
An example of an established method is the pre-lay grapnel run, consisting of dragging a hooking device
at low speed along the planned route to remove any material, such as abandoned ropes or fishing nets.

Cable deployment is a complex process requiring highly specialised equipment. Cables are usually
buried within the seafloor by different techniques including trenching with a cutting wheel in rocky

sediments and ploughing or water jetting in soft sediments (Figure 1; [18]). Ploughing generally allows
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trenching, laying the cable and burying it with the extracted sediment in a single operation. Special backfill
materials for burial can be required when burial is technically complicated. In the case of hard or deep
bottoms, the cable can simply be laid on the seafloor and stabilised with suitable cover. The duration of the
cable installation process determines the magnitude of some environmental effects, such as increased
turbidity or anthropogenic noise. The duration of installation can be highly variable according to methods
and seafloor characteristics, as cable laying is much more difficult for a route with obstacles such as
boulders, rocks or outcrops, compared with a featureless seafloor [18]. The rate of cable-laying may vary
from 0.13—0.21 km h'! for a cable buried using water jetting to 1.85 km h! for a cable that is simply laid
down [19]. For cable burial in the upper intertidal zone, the trench is often dug with more common devices
such as mechanical excavators, and directional drilling is sometimes employed.
3.3 Cable protection
Depending on anthropogenic and natural perturbations in the route area, the cables may need to be

protected from damage caused by fishing gear or anchors [19], strong hydrodynamic forces or storms.
When trenching is not possible, other methods exist for unburied cables, such as rock-mattress covering,
cable anchoring, ducting, cast-iron shells, concrete slabs, steel plates or dumped rocks [19]. On uneven
seafloors, the cable may form “free spans” along its route where it will hang without touching the seafloor.
This may promote vibration, chafing, fatigue and, ultimately, cable failure [18]. One solution is to fill the
empty space between the cable and the seafloor with rock dumping or concrete bags. As an example of
protection methods employed, the cable connecting the French tidal turbine test site of Paimpol-Bréhat to
the land was installed on a highly hydrodynamic and hard seafloor (rock and pebbles). The cable is unburied
over a large portion of its route but is protected with cast-iron shells and concrete mattresses (Figure 2); the
free spans are filled with concrete bags. In addition to these different protection methods, authorities
typically create a protected area encompassing the cable route, with prohibition of other human activities
(fishing, anchoring, dredging, etc.) in order to protect the cable from damage.
4. Environmental effects and impacts

Potential environmental effects associated with SPC are summarised in Figure 3. During installation,
maintenance and decommissioning phases, these effects may include physical habitat disturbances,

sediment resuspension, chemical pollution and underwater noise emission. More long-term effects may
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occur during the operational phase, with changes in electromagnetic fields, heat emission, risk of
entanglement, chemical pollution, and creation of artificial reef and reserve effects.
4.1 Habitat reworking

e Physical changes
Substratum alterations are mainly created by equipment used for cable route preparation (grapnels such as
in the aforementioned Pre-Lay Grapnel Run) and installation of the cable (ploughing, jetting and cutting-
wheels). The surface area of disturbance can be enlarged when installation techniques require large ships
with several anchoring stabilizers [18].

These methods of reworking the seabed may lead to direct destruction of benthic habitats, flora
and fauna. However, such effects are usually restricted to a limited area, the width and intensity of
disturbance, depending on the installation method. For example, the footprint of a trenching plough may
vary from 2 to 8 m depending on device size [5]. According to Vize et al. [20], ploughing methods seem to
cause less seabed disturbance than other methods. These disturbances are usually limited in time, as
installation works only require a few hours or days per km of cable [21]. Ploughing and jetting methods
favour a quicker recovery of bottom topography, as the trench is filled with displaced and re-suspended
material immediately after digging and cable laying. In intertidal areas, physical impacts on the substrate
usually occur over a larger surface area, of the order of tens of metres, due to the utilisation of vehicles such
as mechanical excavators (Figure 4). Alternatively, underground horizontal directional drilling (10 m below
the sediment surface) may be used in intertidal areas up to distances of 700-1000m, and occasionally up to
1800 m [18]. This installation technique only disturbs the substrate and biota locally over a few m? at the
land and sea entrance points.

Unburied cables may also cause habitat loss, but to a lesser extent than buried cables. Disturbance
is limited to the cable width itself, or to the dimensions of the materials used to stabilise and protect [22].
In shallow areas, some sections of unstabilised, unburied cables may act as dragging elements that disturb
the sediments due to their strumming movement induced by the swell during the operation phase [23].
Wave action may shift the cable, and direct interaction with the hard seafloor can result in surface scraping
and incisions in rock outcrops [13]. Maintenance (to a lesser extent) and/or decommissioning phases may
generate similar effects to those of installation, but their magnitude will depend on the duration and scale

(repairs vs. inspections) of the works.
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With respect to other human activities at sea, physical disturbance to the seabed caused by cables
is spatially limited. For example, the footprint of submarine cables in the UK coastal area is about 0.3 km?,
representing less than 0.01% of the coastal seabed [24], whilst in the Basque Country coastal zone (Northern
Spain), the footprint of cables and pipelines is about 2.3 km?, or 0.02% of the area between the coastline
and the exclusive economic zone [25].

e Biological changes

Substratum alterations may affect related benthic communities by direct impacts such as
displacement, damage or crushing of organisms. Andrulewicz et al. [10] examined the environmental
impact of the installation of a buried submarine power cable on soft bottoms of the Baltic Sea. They
concluded that there were no significant changes in benthic diversity, abundance or biomass on the cable
route or in its close proximity one year after the installation.

The magnitude and significance of biological changes depend on several factors linked to the
sensitivity and resilience capability of the species or communities affected. Habitat or community resilience
is characterised by the capacity to return to its initial ecological state after a perturbation (cabling in this
case), and the the duration of this response. The weaker the resilience is, the more sensitive the habitat or
the community. Thus resilience depends on several factors, including: the nature and stability of the
substratum [26-28], habitat depth [24,29] and life cycle of disturbed species (for example, seagrass
meadows, which grow very slowly, may take several years to recolonise a disturbed area [30]).

The magnitude of biological changes is also dependent on the composition of the community itself,
i.e., the relative occurrence of benthic species (abundance and biomass) and assemblages (richness) along
the cable route, compared with their occurrence at the regional scale. Due to the small spatial footprint of
cabling, the overall impact on benthic communities is negligible if its spatial distribution is significantly
homogeneous.

Benthic community resilience after commissioning of submarine cables remains poorly
understood owing to the lack of long-term studies (i.e. occurring several years). Despite the relatively small
spatial footprint affected by SPC operations, future studies should focus on the resilience of habitats and

communities of particular ecological or economic interest (e.g. sea grass, maerl beds and nursery areas).
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4.2 Sediment resuspension

Depending on the nature of the seafloor, sediment reworking by installation, maintenance or
decommissioning can lead to turbid plumes that can reach several tens of hectares, with suspended
particulate matter concentrations that can reach several dozen mg I [31]. Apart from sediment type, the
extent and properties of plumes will depend on factors such as installation technique, hydrodynamic
conditions and the scale of cable-laying. For instance, in the Nysted offshore wind farm (Denmark) where
the substrate is dominated by medium sand sediment, cable installation in water depths between 6 and 9.5m,
generated mean particle concentrations of 14 mg I'* (up to 75 mg I'*) at 200 m from the operation site during
trenching with a backhoe dredger, and 2 mg I* (up to 18 mg I'%) during jetting (Seacon, 2005 in [20]) .
Turbidity can persist for several days depending on the duration of the whole cable-laying process. At the
Nysted offshore wind farm, one month was necessary to excavate 17,000m? of sediment for a 10.3-km
long, 1.3-m wide and 1.3-m deep cable trench [32]. However, at any given location on a cable route,
disturbance will typically persist from a few hours to a few days.

Decrease in water transparency and deposition of the resuspended material may limit light for
primary producers and impact feeding ability of fish that detect their prey visually [33]. The efficiency of
invertebrate filter-feeding could also be temporarily modified [34,35]. Resuspension/deposition processes
through the plume may bury the eggs of bottom laying species. The presence of mineral particles in the
water column may also lead to gill damage in young fish larvae [36,37]. For example, early survival of cod
recruits (whose eggs are pelagic) may be affected by the sediment plume created by cable trenching [38].

Nevertheless, turbidity increases resulting from cable installation and decommissioning constitute
localised and short-term effects. Although no study has focused on the impact of particle resuspension
induced by cable installation and decommissioning on marine communities, it should generally have
negligible impacts on marine ecosystems.

4.3 Chemical pollution

The main chemical risk is the potential release of sediment-buried pollutants (e.g., heavy metals and
hydrocarbons) during sediment re-suspension caused by cable burial, decommissioning or repair works. The
highest contaminant concentrations are generally located in coastal areas due to human activities. A preliminary
analysis to assess the level of sediment toxicity should be performed in potentially polluted areas to select a

cable route which avoids the remobilisation and dispersion of pollutants [39].

10
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Pollution can also occur during the operation phase, especially for monopolar DC cables using sea
electrodes for the return current path (which represent around 30% of HVDC in service use [40]). Indeed,
the cathode and the anode of sea electrodes release toxic electrolysis products like chlorine and bromine
which can impact the immediate water quality [10,40]. To a lesser extent, some older cables have
hydrocarbon fluid insulation and may leak contaminants into the marine environment when damaged. The
amount of fluid released will vary according to the time needed to detect and repair the leakage, its location and
the extent of the damage, but in worst cases several tens of litres can be released per hour (Schreiber et al. 2004,
in [41]). It should be noted that installation of oil-insulated cables ceased in the 1990s [42]. Furthermore, ships
and hydraulic equipment pose a higher potential risk of accidental oil leakage during operations [23,43].
Cables also include copper, lead and other heavy metals that are potential sources of contamination. For
example, a cable consisting of a 3.5-mm lead sheath contains 12 kg lead m* (Schreiber et al., 2004 in [41]).
Heavy metals can potentially dissolve and spread into the sediment from damaged and abandoned cables, but
the quantities released are considered insufficient to have significant impacts. Furthermore, such pollution
is rare as cables are usually removed when no longer in operation. Although no studies focus specifically on
SPC-related contaminants, this source of disturbance is considered to be rare, spatially localised and unlikely
to have significant impacts on benthic communities.

4.4 Underwater noise

Anthropogenic noise can be produced during route clearance, trenching and backfilling, cable and
cable protection introduction by the vessels and tools used during these operations. Intensity and
propagation of underwater noise will vary according to bathymetry, seafloor characteristics (e.g., sediment
type and topography), vessels and machines used, and water column properties. In-situ data on such noise
is scarce, and modelling approaches have been used to estimate the sound pressure levels (SPL) expected
during installation. Nedwell and Howell [44] examined the noise produced by plough trenching in a sandy
gravel area for the installation of an electric cable within a Welsh offshore wind farm. Results showed a
maximal noise emission of 178 dB re 1uPa (on a frequency range from 0.7 to 50 kHz) at 1 m from the
trenching area. A similar study by Bald et al. [45] focused on noises from trenching and cable installation
of a wind-farm platform in a sandy area in the Bay of Biscay. During the installation phase, average sound
level was 188.5 dB re 1uPa (at 11 kHz) at 1m from the source. Modelling using these in situ data estimated

that the underwater noise would remain above 120 dB re 1uPa in an area of 400 km?2 around the source.

11
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Another, albeit lesser, noise emission caused by submarine cables comes from vibrations during
operation of several kinds of HVAC (High Voltage Alternating Current) cables because of the Coulomb
force occurring between conductors [46]. For example, a 138 kV transmission cable situated in Canada
emits a SPL, for the 120 Hz tonal vibration, of approximately 100 dB re 1 puPa at 1 m [47]. Compared to
cable installation, such SPL is low, but continuous because it occurs during the whole operation phase.

There is no clear evidence that underwater noises emitted during cable installation affect marine
mammals or any other marine animal, although it is accepted that many marine animals (notably mammals
and fishes) detect and emit sounds for different purposes such as communication, orientation or feeding.
Marine mammals have high frequency functional hearing ranges from 10 Hz to 200 kHz [48], while fish
typically hear at much lower frequencies, often from 15 Hz to 1 kHz [49]. Other taxa, organisms including
sea turtles [50,51] and many invertebrates such as decapods [52], cephalopods [53,54] or cnidarians [55]
have also been shown to be sound-sensitive. Many studies highlight the reaction of cetaceans to
anthropogenic sounds of different intensities [56,57]. Sounds generated by ship activity can impact the
behaviour of different fish species [58,59]. Anthropogenic underwater noise can affect marine life in
different ways, by inducing species to avoid areas, disrupting feeding, breeding or migratory behaviour,
masking communication and even causing animal death [60]. So far, characterisation of acoustic thresholds
causing temporary or permanent physical damage are much better described for marine mammals [61,62],
than for fish [63], and remain unknown for marine invertebrates and sea turtles [64].

Compared with other anthropogenic sources of noise, such as sonar, piling or explosions,
underwater noise linked to undersea cables remain low. Cable installation is a spatially localised temporary
event, so the impact of noise on marine communities is expected to be minor and brief. HVAC cable
vibration, although significantly lower than potential SPL during the installation phase, requires special
attention though because its long-term impacts remain unknown.

4.5 Reef effect
Like other immersed objects (e.g. shipwrecks, oil/gas platforms, and MRE devices) unburied
submarine cables and associated protection/stabilisation can create artificial reefs, inducing the so-called
‘reef’ effect [65]. Artificial reefs have been commonly used for centuries to enhance fisheries, and more

recently for habitat rehabilitation or coastal protection [66]. These structures are colonised by hard-substrate

12
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benthic species including epifauna and mobile macrofauna, and may also attract mobile megafauna, such
as decapods or fishes.

The extent of the reef effect depends on the size and nature of the cable protection structure, but also
the characteristics of the surrounding area and native populations [65]. Such artificial structures are
expected to have limited reef effects when located within a naturally hard substratum environment. For
example, Sherwood et al. [14], looking at the effects of laying and operating the BassLink HVDC cable,
found that, 3.5-years after the cable installation, the benthic sessile community present on the half-shell
cover was similar to the surrounding basalt reef area (Figure 5.A). Similar investigations showed no
significant differences between communities on powered cables and hard bottom control areas [9,12,67].
By contrast, on soft sediments, unburied cables generate a stronger reef effect and host a new community,
as illustrated by the unburied sections of the ATOC/Pioneer cable (Half Moon Bay, California) colonised
by actinarians [13]. In this case, sea anemones became more abundant on the cable than on the surrounding
soft bottom 8 years after cable installation (Figure 5.B) and fish species were more abundant close to the
cable, probably in response to increased habitat complexity compared with the surrounding environment.

‘Reefeffect’ is usually considered to be a positive anthropogenic impact, as artificial reefs generally
have higher densities and biomass of fish and decapod crustaceans than surrounding soft bottoms. Also,
when associated with a fisheries exclusion area (as described in section 4.6), artificial reefs may function
as refuges for these populations, with potential spill-over benefits for adjacent stocks and fisheries [68].
This is particularly true for commercial species, like the European lobster (Homarus gammarus) or edible
crab (Cancer pagurus) observed on offshore wind-farm foundations [69,70]. In some cases, the cable reef
effect is considered a compensatory measure for habitat destroyed during cable installation [65].
Concerning dynamic cables used to connect offshore floating MRE projects, in addition to the processes of
colonisation and concentration, biofouling can significantly increase cable weight and wear at least on the
first tens of metres, creating technical problems [71].

On the other hand, reef effect may potentially result in long-term negative effects if the structures
facilitate the introduction of non-indigenous sessile species. Indeed, the number of non-native species
present on new hard artificial substrate can be 2.5 times higher than on natural substratum [72]. Thus, the
presence of a new hard substratum, such as a cable or its protection structures, on soft sediment can

potentially open a corridor to a new area for some hard-bottom sessile species. Such processes can
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potentially lead to the spread of new introduced species by a stepping stone process across biogeographical
boundaries [73]. Although cable routes are narrow and often buried in areas of soft sediment, and no spread
of invasive species caused by SPC has been documented, this question needs to be considered in light of
the exponential growth of offshore wind farms.

4.6 Reserve effect

The potential reserve effect of SPC is linked to the limitation/interdiction by local authorities of
environmentally damaging human activities (trawl fishing, anchoring, dredging, etc.) around the cable route
during the operation phase and is considered as a positive effect for ecosystems. In some cases, the use of
passive fishing equipment (nets, lines, and traps) is permitted, reducing the protection of targeted species.
The size of the protected zone and the level of restriction depend on the cable installation method (buried
or unburied), the number of cables present in the area, and the size of the electrical connections. For
example, the Cook Strait cables have an extensive protected area to prevent damage to three submarine
HVDC cables and one fibre-optic cable which link the North and South Islands of New Zealand over 40
km. An area seven kilometres wide around these cables, where anchoring and fishing of any type are
prohibited, was created by New Zealand authorities, corresponding to a marine protected area of
approximately 236 km2 (Figure 6; [74]).

With fishing access restricted, economically exploited sedentary species (such as scallops or clams)
will be protected throughout their lives, but protection of mobile species (such as fish) will only be effective
during the time they live in/pass through the cable area. A study focusing on fish found no significant
differences in species richness inside and outside a protection zone [75]. The reserve effect has been clearly
demonstrated for some commercial offshore wind farms, including their associated electric cable grids.
Within the Dutch offshore wind farm Egmond aan Zee, where all nautical activities are prohibited, the
habitat heterogeneity [76], benthic biodiversity and possibly the use of the area by the benthos, fishes,
marine mammals and some bird species have increased (although counterbalanced by a decreasing use of
several other bird species). These changes occurred during the first two years of wind-farm operation, in
response to the establishment of the marine protected area but also other factors, such as the reef effect of
the wind turbine foundations, rockfill and cables. Nenadovic [77] studied a protected area associated with
a fibre-optic cable route on the coast of the Gulf of Maine (USA) and showed a significant difference in

epifaunal community structure between protected and unprotected areas. In particular, engineer species
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were more frequent near the cable route. The maintenance of such species with a complex biological
structure highlights the structuring effect of marine protected areas.
4.7 Electromagnetic fields

The potential ecological impacts of electromagnetic fields (EMF) are of particular concern. EMF
are generated by current flow passing through power cables during operation and can be divided into
electric fields (called E-fields, measured in volts per metre, V m™) and magnetic fields (called B-fields,
measured in uT). Electric fields increase in strength as voltage increases and may reach 1000 pV m for an
electric cable [78], but are generally effectively confined inside cables by armouring. EMF characteristics
depend on the type of cable (distance between conductors, load balance between the three phases in the
cable, etc.), power and type of current (direct vs. alternating current — AC generates an alternating magnetic
field which creates a weak induced electric field of a few uV m, called an iE-field, near the cable), and
whether it is buried or not [8,79]. When the cable is buried, the sediment layer does not entirely eliminate
the EMF, but reduces exposure to the strongest EMF existing in direct contact with the cable [80]. The
strength of both magnetic and induced electric fields increases with current flow and rapidly declines with
distance from the cable [81].

Electric currents with intensities of 1600 A are common in submarine cables. In response,
magnetic fields of approximately 3200 uT are generated, decreasing to 320 uT at 1 m distance, 110 pT at
4 m and values similar to the terrestrial magnetic field (50 uT) beyond 6 m [82]. By contrast, according to
AWATEA [83], a standard submarine cable carrying 132 kV AC (350 A) generates a magnetic field of 1.6
uT on the “skin” of the cable (i.e., within millimetres), while cables carrying 10-15 kV DC do not generate
a significant magnetic field beyond a few centimetres from the cable surface. The magnetic field varies
greatly as a function of the cable type, and modelling of the magnetic field induced by either DC (Figure
7.A) or AC cables (Figure 7.B) reveals this heterogeneity (1 to 160 uT at the cable surface; [81]). Particular
attention must be paid to monopolar DC cables using sea electrodes for the return current path, the design
of which leads to higher magnetic and electric fields [40,81]. Although modelling presents serious
limitations in the understanding of ecosystem-scale responses to such disturbances, the rare in-situ EMF
studies available for review yielded values of measured EMF comparable to those calculated by modelling

[10,14].
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Many marine species around the world are known to be sensitive to electromagnetic fields,
including elasmobranchs (rays and sharks), fishes, mammals, turtles, molluscs and crustaceans. Indeed, the
majority of these taxa detect and utilize Earth’s geomagnetic field for orientation and migration [84-88].
Some are electrosensitive, like elasmobranchs, which are able to detect E-fields and iE-fields through
specific organs called ampullae of Lorenzini [89,90]. This electrosense can be used to detect electric fields
emitted by prey, conspecifics or potential predators, as well as for orientation [90]. A few incidents of bites
observed on unburied SPC may also be linked to the electric field emitted by cables.

Thus, SPC can possibly interact in a negative way with sensitive marine species, especially benthic
and demersal organisms through:

o effects on predator/prey interactions,

e avoidance/attraction and other behavioural effects,

o effects on species navigation/orientation capabilities,

e and physiological and developmental effects.
Elasmobranchs can detect very low electric fields( starting from 0.005 uV cm [81]), and magnetic (20—75
WT [82,86]). Power cables inducing a strong electric field can repel many elasmobranch species, preventing
some movement between important areas (such as feeding, mating and nursery areas). As part of the
COWRIE (Collaborative Offshore Wind energy Research Into the Environment) project, Gill et al. [91]
reported that elasmobranchs are attracted by electric fields generated by DC between 0.005 and 1 pV cm-?,
and repelled by electric fields of approximately 10 pV cm and higher. Mesocosm studies (COWRIE
project) on impacts of EMF emitted by submarine cables on several elasmobranch species showed that the
response was not predictable and seemed to be species specific, maybe even specific to individuals [92].
Teleosts, especially diadromous fish, also use natural EMF to migrate. Westerberg and Lagenfelt [16]
showed that the swimming velocity of European eel (Anguilla anguilla) slightly decreased when crossing
the electromagnetic field of a non-buried 130 kV cable, but did not report evidence of population-scale
impact. Furthermore, no substantial impacts have been shown on physiology or survival of these taxa
[93,94].

Concerning invertebrates, data are scarce except for a few studies relating to minor or non-
significant impacts of anthropogenic electromagnetic fields on benthic invertebrates [15,17,93,95,96].

However, a recent experimental study performed by Hutchison et al. [97], highlights a subtle change in the
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behavioural activity of the American lobster (Homarus americanus) when exposed to EMF from a HVDC
cable.

Another noteworthy issue is that substantial data gaps exist between the interaction of pelagic
species (like pelagic shark, marine mammals or fishes) and dynamic cables. These gaps remain partly owing
to difficulties in evaluating impacts at population scale around these deployments.

4.8 Heat emission

When electric energy is transported, a certain amount is lost as heat by the Joule effect, leading to
an increase in temperature at the cable surface and a subsequent warming of the immediate surrounding
environment [98]. Constant water flow around a laid-down or a dynamic cable tends to dissipate thermal
energy and confines it to the cable surface [18]. However, for buried cables, thermal radiation can
significantly warm the surrounding sediment in direct contact with the cable, even at several tens of
centimetres away from it, and especially in the case of cohesive sediments [99]. Heat emission is higher in
AC than DC cables at equal transmission rates. Heat emission can be modulated by physical characteristics
and electrical tension of the cable, burial depth, bottom type (thermal conductivity, thermal resistance, etc.)
and physical characteristics of the environment [19,98,99].

Despite the evidence for thermal radiation from subsea cables, very few studies exist on the subject
and most consist of numerical modelling [18,100]. One of the rare field measurement studies concerned the
offshore wind array of Nysted (maximal production capacity of about 166 MW), in the proximity of two
AC cables of 33 and 132 kV buried in a medium sand area, approximately 1m deep. Results showed a
maximal temperature increase of about 2.5 °C at 50 cm directly below the cable [41]. Transposition of these
results to other locations is difficult, considering the large number of factors impacting thermal radiation,
and other field studies are necessary to gain a better understanding of thermal radiation effects.

Temperature increases near the cable can modify chemical and physical properties of the
substratum, such as oxygen concentration profile (redox interface depth) and, indirectly, the development
of microorganism communities and/or bacterial activity. Physiological changes in benthic organisms living
at the water-sediment interface and in the top sediment layers can also potentially occur [19,101].
Temperature radiation can potentially cause small spatial changes in benthic community structure by way
of migratory behaviour modification with cryophilic species being excluded from the cable route in favour

of other, more tolerant species.
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To our knowledge, the impacts of local temperature increase caused by electric cables on benthic
communities (macrofauna diversity or microbial structure and functioning) have rarely been examined, and
in-situ investigations are lacking. Furthermore, studies using controlled temperature increases are often
unrealistic regarding the extent of suspected warming. This considerable knowledge gap prevents drawing
conclusions about ecological impacts of long-lasting thermal radiation on ecosystems, but considering the
narrowness of the corridor and the expected weakness of thermal radiation, impacts are not considered to
be significant. Nevertheless, new field measurements and experiments are required to fully understand this
phenomenon under operational conditions and to assess its impacts on potentially exposed organisms.

4.9 Entanglement risks

Before the 1960s, entanglement of mobile megafauna with cables occurred during the operation phase
leading, in the worst cases, to lacerations, infections, starvations and drowning of the trapped marine
mammals [102]. Technical improvements made since the 1960s for installation of laid-down cables have
reduced this risk [3]. Currently, entanglement risks only concern dynamic SPC. Although this risk is
considered to be non-significant, concerning a single dynamic SPC (such as pilot scale projects still under
development), it may require more attention in the future owing to the growth in commercial farms of
floating devices and associated webs of dynamic SPC and mooring lines hanging in the water column.
According to Kropp [103], arrays of dozens of dynamic cables and mooring lines per km2 can potentially
affect large marine animals, i.e. whales.

According to existing reports, entanglements caused by dynamic SPC will remain a low risk [103,104].
The large diameters of SPC (>5 cm) make them relatively inflexible [105], and mooring lines and dynamic
SPC should be tight enough to reduce entanglement [103]. However, indirect entanglement resulting from
discarded fishing gear wrapped around dynamic SPC [102] may significantly impact a larger set of species,
including marine mammals, sharks or fishes. Quantifying such risks will only be possible when floating
MRE installations are operational. Consequently, entanglement risk remains highly speculative at this
stage, relying on modelling data..

5. Recommendations
51 Mitigation and compensation measures
Potential environmental impacts of cables should be anticipated prior to the installation phase by

applying avoidance and reduction measures. In order to mitigate potential environmental disturbances
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disturbance or are of special ecological interest (with special attention to slow-growing long-lived
species). Particularly important and sensitive habitats in the North Atlantic include biogenic reefs
comprising Modiolus modiolus (Horse mussel beds), Sabellaria spinulosa (honeycomb worm), maerl
beds and Zostera seagrass meadows.

Selecting landing zones and cable routes in order to prevent the re-mobilisation of contaminants present
in sediments and contamination of the trophic food web.

Using cable technology suitable for reducing the emission of magnetic fields, such as three-phase AC
cables and bipolar HVDC transmission systems [39], and minimising the emission of directly
generated electric fields through adequate shielding [44].

Avoiding the use of monopolar DC cables using sea electrodes, which produce toxic compounds,
generate higher EMF and accelerate corrosion of manmade structures, in favour of cable systems with
other return path options causing less disturbance [40].

Deploying dynamic SPC with the lowest risks of entanglement for marine megafauna where relevant.
Appropriate configurations, as for mooring lines [104], and appropriate cable type, with diameters and
colours allowing visual tracking of affected species [103].

Managing installations with respect to life cycles of mobile species (winter dormancy, migration,
mating and/or spawning, etc.), and to avoid disturbance of sensitive species (e.g., fish, crustaceans,
marine mammals, marine turtles or resting/feeding birds).

Prioritizing burial depth appropriate to the substratum type. To reduce exposure of sensitive species to
electromagnetic fields and heat emission, the physical distance between animals and the cable can be
increased. According to models proposed by Normandeau et al. ([81], Figure 7), the EMF level at the
water-sediment interface with a 2m burial depth would be approximately 25% of its initial value-
versus 60% for a 1m burial depth.

Prioritizing the laid-down option rather than burying in the presence of unavoidable fragile benthic soft

bottom habitats (e.g., seagrass beds; [11]).
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« Installing devices with a strategy to reduce electrical connections and limiting the number of export
cables (i.e., when several MRE projects are present in close proximity).

To complement reduction and avoidance strategies, compensation measures should be considered if
residual impacts persist. In this event, and only after having addressed mitigation options, compensation
measures may be applied directly to the implantation site, or in close proximity. Discussions between
stakeholders are recommended to establish parameters for scale and responsibilities for compensation
measures.

A possible form of compensation measures can consist of improving future engineering strategies
through experimental studies of ecosystem functioning and resilience following disturbance. For example,
on the Paimpol-Bréhat French tidal turbine test site, the cable route connecting turbines to the land crosses
important seagrass meadows containing Zostera noltei and Z. marina. In response, the prime contractor
(EDF, Electricité De France) developed an experimental protocol aiming to transplant some seagrass plants
located on the route area to another barren place before cable burial. Such measures aimed to test
transplantation techniques and acquire knowledge about the mechanism of recolonisation by seagrass after
installation of a cable [106]. Similar transplantation experiments are currently being tested in the context
of SPC installation (e.g., ongoing project by Red Eléctrica de Espafia in Majorca and Ibiza).

Environmental monitoring strategies performed in parallel with cable installation should: (i) verify the
impact predictions made in the environmental impact study and detect unforeseen alterations, (ii) ensure
the fulfilment of mitigating measures proposed, and (iii) provide data to improve future environmental
impact assessments and installation plans [107].

5.2 Future research priorities

A hierarchical model of potential impacts based on the expected levels of ecological effects and
the associated levels of scientific knowledge (or uncertainty) is presented in table 2. This synthetic output
corresponds to a concerted expert judgement of the authors, and takes into account the main conclusions of
the literature cited in this paper. The main priorities concern benthic habitat disturbance, reef and reserve
effects and potential impacts of EMF. A substantial data gap remains concerning the impacts of EMF
because data on sensitivity thresholds or tolerance are only available for a small number of taxa. Major
uncertainties therefore remain for several large groups (cetaceans, pinnipeds, fishes, crustaceans, and many

pelagic species) [81]. Better knowledge of the different sensitivity thresholds is needed to fill these data
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gaps, especially for several key species at different stages of their development. Additionally,
environmental issues may arise following industrial-scale deployment of MRE devices using multiple
submarine electric cables installed in close proximity and creating a network impacting a large area. The
cumulative effects of more than one activity or perturbation factor, which may act in synergy, must be
considered [108]. For example, recovery of benthic communities after cable installation may be slower and
less efficient if the benthic ecosystem is already threatened by other anthropogenic disturbances such as
chemical pollution, eutrophication, or invasive species (especially in enclosed and shallow areas). The
assessment of impacts due to interactions between different kinds of disturbances remains highly
speculative, partly since environmental impacts of single cables are still poorly understood.
6. Conclusions

Although SPC have been used since the mid-19th century, environmental concerns associated with
their installation and operation are much more recent. This is due to an increased awareness of
anthropogenic impacts, the rapid expansion of SPC deployments, and the growing demand for electric
interconnections between countries that have adopted a common energy strategy.

The main potential environmental impacts associated with SPC during their operational phase are those
related to the production of electromagnetic fields, the creation of artificial reefs and “reserve effects”
caused by the interdiction of certain human activities. Cable installation, maintenance and decommissioning
also impact the environment, causing direct benthic habitat modification, which can be especially
problematic in the case of sensitive bioconstructed habitats. These phases of SPC may also induce
significant particle and pollutant resuspension events in very confined and modified shallow coastal areas.
Mitigation measures are possible before, during or after projects to limit the ecological impacts of SPC and
associated maritime operations.

While potential environmental impacts generated by SPC are recognised, better knowledge of amplitude
and duration is essential. Generally these disturbances occur over short times scales, creating relatively
minor impacts on ecosystem structure and functioning. Nevertheless, the nature and amplitude of certain
impacts remain poorly studied, particularly the EMF impacts on elasmobranchs, diadromous fishes and
invertebrates, and assessment of cumulative impacts. Despite these knowledge gaps, the present review
provides a quantification and ordering of the different impacts of SPC on marine environments and offers

updated practical recommendations for developer mitigation strategies.
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Figure captions

Fig 1. Wheel cutter (left); Plough (centre) and Towed Jetting Vehicle (right) (courtesy:

www.ldtravocean.com).

Fig 2. Photograph of iron shells and concrete mattresses used to protect an unburied cable at the Paimpol-

Bréhat tidal turbine test site, France (courtesy: Olivier Dugornay, 2013).

Fig 3. Diagram of the potential impacts caused by different types of SPC immersion (Dynamic, Laid-Down

and Buried) during their operation and installation/decommissioning phases.

Fig 4. Installation works of the 2000 FLAG Atlantic 1 in the intertidal area, Brittany, France (courtesy:

www.ldtravocean.fr).

Fig 5. Photographs of laid-down cables: A) the ATOC/Pioneer Seamount cable (California, USA) in an
unconsolidated sandy silt area showing three Metridium farcimen settled on the cable (courtesy: [13]); B)
the BassLink cable (Tasmania, Australia), protected by a cast-iron half-shell, showing a heavy encrustation
of algal and invertebrate species on the underlying basalt reef (courtesy: [14]); and C) the rock mattresses
used to stabilize the cable connecting the Paimpol-Bréhat tidal turbine test site, France, to the land, showing
heavy colonisation by megafauna species like the European lobster (Homarus gammarus) (courtesy: Olivier
Dugornay — IFREMER).

Fig 6. Protection zone of three SPC and one fibre-optic cable situated across Cook Strait, New Zealand.
The total protected area covers approximately 236 km? (reproduced from [73]).

Fig 7. Modelled magnetic fields at the sediment-water interface originating from different types of buried
submarine cables in operation; A: Calculated data based on 9 DC cables. B: Calculated data based on 10

AC cables (courtesy: [80]).
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Type 1 2 3 4 5
Rated 33 kV AC 150 kV AC 420 kv AC 320 kv DC 450 kv DC
voltage
Insulation XLPE, EPR XLPE Oil/paper or Extruded Mass-
XLPE impregnated
Typical Supplying small Connecting Crossing Long distance  Long distance
application islands, islands with  rivers/straights ~ connections of  connection of
connection of large with large offshore autonomous
offshore wind populations, transmission platforms or power grids
turbines offshore capacity wind farms
wind parks
export cables
Maximum 20—30 km 70—150 km <50 km >500 km >500 km
length
Typical 30 MW 180 MW 700 MW/three 1000 MW/cable 600
rating cables pair MW/cable

Table 1. Description of five generic submarine power cable types (Photos: 1 = General Cable; 2, 3, 4 =
Ningbo Orient Wires and Cables Co. Ltd; 5 = ABB Sweden), XLPE: Cross-Linked Polyethylene; EPR:

Ethylene Propylene Rubber (reproduced from [17]).
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Physical habitat Invertebrates Fish Ela!smobranch ?nd Marine mammals
Diadromous Fish

Installation / Decomissioning / Maintenance

Bur | LD | Dyn

Seabed disturbance

Sediment resuspension

Chemical pollution

Underwater noise

Reef effect

Reserve effect

Chemical pollution

Electromagnetic fields

Heat emission

Entanglement

Extent of impact | Negligible
Uncertainty @ Low @ Medium (3 High

Table 2. Synthesis of the importance of potential impacts caused by Submarine Power Cables (SPC) on
different marine compartments during installation, operation, maintenance and decommissioning, based on
the author’s interpretation of the reviewed literature. For each interaction, the extent of the impact and
associated uncertainty are quantified as ‘Negligible’, ‘Low’, ‘Medium’ or ‘High’. Bur = Buried SPC; LD

= Laid-Down SPC; Dyn = Dynamic SPC. Black fill = no impact.
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