

Forcing three-dimensional large-scale flow asymmetries in the wake of blunt body: wake equilibrium and drag reduction

Y. Haffner, J. Borée, Andreas Spohn, T. Castelain, M. Michard, Sylvie

Sesmat, Eric Bideaux

▶ To cite this version:

Y. Haffner, J. Borée, Andreas Spohn, T. Castelain, M. Michard, et al.. Forcing three-dimensional large-scale flow asymmetries in the wake of blunt body: wake equilibrium and drag reduction. Third international conference in numerical and experimental aerodynamics of road vehicles and trains (Aerovehicles 3), Jun 2018, Milan, Italy. hal-02405608

HAL Id: hal-02405608 https://hal.science/hal-02405608

Submitted on 11 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Forcing three-dimensional large-scale flow asymmetries in the wake of blunt body : wake equilibrium and drag reduction

Y. Haffner¹, J. Borée¹, A. Spohn¹, T. Castelain², M. Michard³, S. Sesmat⁴, E. Bideaux⁴ Corresponding author: yann.haffners@ensma.fr

¹ Institut Pprime, UPR-3346 CNRS – ISAE-ENSMA – Université de Poitiers, Futuroscope Chasseneuil, France

² Université de Lyon, Université Lyon 1, LMFA UMR CNRS 5509, 69222 Villeurbanne, France

³ Université de Lyon, Ecole Centrale de Lyon, LMFA UMR CNRS 5509, 69134 Ecully, France

⁴ Laboratoire Ampère, Institut National des Sciences Appliquées de Lyon, Université de Lyon, 69621 Villeurbanne, France

Abstract: We experimentally study the effect of high-frequency fluidic forcing on various asymmetric turbulent wakes behind a blunt body at $Re_H = 5 \cdot 10^5$. Different wake asymmetries are obtained by the use of passive perturbations around the body modifying the wake equilibrium. High-frequency forcing of the wake along the rear edges is then applied to increase the base pressure. Depending on the initial unforced wake vertical equilibrium, localized forcing along the top or bottom edges may strongly increase or decrease the base pressure. The efficiency of spatially localized forcing and the fluidic boat-tailing thus created is linked to the global wake equilibrium and its modification.

Keywords: Flow control, turbulent wakes, drag reduction.

Problem statement

The increasing need for energy saving in the land transport sector has brought many challenges for ground vehicles manufacturers to curb gas emissions, to face the depletion of fossil energy sources and to improve the range of green vehicles. As aerodynamic drag represents from one third up to 80% of the vehicle's total energy consumption at highway speeds respectively for lorries and passenger cars, aerodynamics drag reduction is a key lever in the task of energy saving.

A plethora of drag reducing devices and techniques exist [1]. Passive techniques have the major drawback of being hardly applicable on finished car designs, already geometrically optimized. One solution is the design of active flow control solutions using fluidic devices such as pulsed jets in order to modify the flow without changing the vehicle geometry.

Such techniques have been proven efficient for reducing the wake drag of simplified car geometries. Using tangentially pulsed jets near ow separation at moderate free-stream ow velocities [2] managed to significantly reduce the base drag of a square-back Ahmed body. This was achieved through the use of high frequency forcing decoupled from the natural instabilities of the wake allowing to promote a fluidic boat-tailing effect.

The wake of such square-back bodies is very sensitive to different geometrical modifications such as localized passive perturbations around the body [3], in particular underbody-flow changes [4], resulting

in various wake dynamics and topologies. One of the main feature of such wakes is the presence of large-scale asymmetries impacting the base pressure distribution, manifesting either as static asymmetries or bi-modal asymmetries.

The present work aims at investigating the effect of high-frequency fluidic forcing on perturbed wake symmetries and dynamics of a square-back Ahmed body. We study how global forcing along the back edges or localized forcing along only some edges interacts with the unforced wake asymmetries and how it modifies the base pressure distribution and the drag.

Results and discussion

The experimental setup used for this study is presented in figure 1. A blunt body similar to a squareback Ahmed body is placed on a false-floor containing a 6-components aerodynamic balance to measure aerodynamic loads. The back pressure is monitored using a series of pressure taps linked to a pressure scanner (for time-averaged measurements) and to differential pressure sensors (calibrated for timeresolved measurements). Large-scale PIV measurements are performed to investigate the wake flow in the vertical plane of symmetry of the body. Free-stream velocity in the wind-tunnel is fixed at $U_0 = 25$ m/s corresponding to a Reynolds number based on the height of the body of Re_H = 5 .10⁵.

Figure 1: Experimental setup. (a) Side-view of the bluff-body geometry studied : detail of the PIV field-of-view in the wake and of the setup for the aerodynamic loads measurements. (b) Rear-view : pressure taps locations used for wall pressure measurements at the back. (c) Perturbation of the flow equilibrium using spanwise cylinders of diameter d localized in either top or bottom boundary layer. (d) Actuation setup : forcing using pulsed jets localized at the rear edges, and detailed view of the pulsed jets generation with a visualization of small-scale vortical coherent structures exiting the slits as regions with a strong deficit in particles.

In order to perturb the wake asymmetries of the unforced flow, we use cylinders of diameter d = 0.053 and 0.067H, placed spanwisely either on top or under the body, one height H upstream the rear edge. The asymmetry of the wake flow is characterized using 4 pressure taps on the back to estimate the vertical $\delta_{pz} = C_p(T)-C_p(B)$ and lateral $\delta_{py} = C_p(L)-C_p(R)$ pressure gradients. Actuation is performed using pulsed jet generated by an ensemble of solenoid valves supplied with compressed air and linked by semi-rigid tubing to diffusers ending in h = 1 mm-thick slits. The slits from all 4 edges can be driven independently in order to perform actuation on only on desired edges or with different actuation commands depending on the edges. A curved surface of radius r = 9h is placed at the base of the slits in order to promote flow deviation. In the frame of the present study, actuation is performed at a high frequency, decoupled from the natural instabilities in the wake (namely global vortex shedding and shear layers convective instability), with corresponding Strouhal number based on U₀ and the boundary-

layer momentum thickness θ at the top separation St_{θ} = 0.096, with varying momentum coefficient C_{μ}.

We study three different unforced wake configurations by perturbing either the top or bottom of the body. The corresponding wake topologies are highlighted in figure 2 and the corresponding main global aerodynamic characteristics are given in table 1. The natural unperturbed wake is characterized by a vertical equilibrium and horizontal bi-modal behavior. It exhibits the highest mean base pressure coefficient C_{pb} (associated with the lowest drag). Perturbations localized on top and bottom of the body result in vertically statically asymmetric wakes respectively with a negative and positive vertical pressure gradient δ_{pz} . These vertically asymmetric states are characterized by the predominance of either the top or bottom shear layer in the formation process of the wake through fluid entrainment from the external region of the flow.

Figure 2: Unforced wake flow topologies depending on cylinder perturbation localization. (a) Perturbation in the top boundary layer. (b) Natural unperturbed flow. (c) Perturbation in the bottom boundary layer. Top, from left to right are respectively the time-averaged C_p distribution at the back, the C_p fluctuations, and the probability distribution of the back pressure gradient $P(\delta_{pz}, \delta_{pz})$. Bottom is the mean vertical velocity field : arrows sketch the main entrainment motion forming the recirculation region.

Perturbation	C_{pb}	C_{L}	δ_{pz}
-	-0.196	-0.12	-0.009
Top	-0.209	-0.077	-0.052
Bottom	-0.215	-0.126	0.068

Table 2: Aerodynamic characteristics of the three unforced flow configurations: mean base pressure coefficient C_{pb} , lift coefficient δ_{pz} and mean vertical base pressure gradient.

Two major questions arise from these observations : 1 - How these different wakes react to global forcing and to localized forcing and 2 - If starting from a vertically asymmetric wake, a marginal additional drag decrease can be achieved by symmetrizing the wake.

In order to address these questions we perform on these three wakes different spatially localized forcing by selecting all the edges, only the top and lateral edges or only the bottom and lateral edges. Figure 3 presents the effect of these various forcing conditions on the base pressure parameter γ_p representing the ratio of the mean base pressure coefficient C_{pb} in the forced and unforced cases. Global forcing along all the edges results in a robust ~20% base pressure increase ($\gamma_p < 1$) corresponding to a ~9% drag decrease without changing noticeably the wake equilibrium no matter the unforced flow state. An important pressure recovery saturation appears at higher forcing amplitudes.

On another hand, localized forcing leads to very different results depending on the unforced flow asymmetries. Interestingly, vertically static asymmetric states can be forced on the side of the highest pressure region at the back with almost as much efficiency in drag reduction as global forcing. This

drag reduction seems to depend on the degree of vertical asymmetry of the unforced flow when comparing results of localized forcing on both vertically asymmetric wakes. Conversely, forcing on the opposite side leads to more moderate drag reductions up to a given low forcing amplitude C_{μ} above which drag recovery starts to deteriorate and wake asymmetry is further increased.

For the natural vertically symmetric wake, localized forcing leads in all cases to very moderate drag reductions. This observation is concomitant with a modification of the vertical wake equilibrium and an important sensitivity of this equilibrium to localized forcing. Once vertical symmetry is broken, drag deteriorates noticeably as the forcing amplitude is increased. These observations suggest that the effect of fluidic boat-tailing as a base pressure mechanism and the global equilibrium of the wake are intimately linked.

Figure 3: Effect of localized high-frequency forcing on the mean base pressure coefficient depending on the unforced flow symmetry. Sketches on the right indicate which edges are used to force the wake. Red dashed line distinguishes between base pressure recovery ($\gamma_p < 1$) and base pressure decrease ($\gamma_p > 1$).

Further wake flow analysis will present in detail the relation between forcing effect, global wake equilibrium and drag changes. Additionally, investigation of asymmetric forcing effects on restoring the vertical symmetry of perturbed wakes will be discussed.

Acknowledgements

The authors acknowledge the funding of the program Activ_ROAD (ANR-15-CE22-0002) by the French Agence Nationale de la Recherche (ANR). We thank other members of the program for insightful discussions and valuable contributions : J. M. Breux, D. Chacaton, L. Cordier, F. Harambat, B. Noack, F. Paillé and C. Sicot. We also thank the implication of our industrial partners PSA Group and Renault Trucks in the program.

References

- [1] H. Choi, J. Lee, and H. Park. Aerodynamics of heavy vehicles. Ann. Rev. Fluid Mech., 46:441-468, 2014.
- [2] D. Barros, J. Borée, B. R. Noack, A. Spohn and T. Ruiz. Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech., 805:422-459, 2016.
- [3] D. Barros, J. Borée, O. Cadot, A. Spohn and B. R. Noack. Forcing symmetry exchanges and flow reversals in turbulent wakes. *J. Fluid Mech.*, 829:R1, 2016.
- [4] M. Szmigiel. Etude du flux de soubassement sur la dynamique du sillage d'un corps non profilé à culot droit : Application du contrôle actif pour la reduction de trainée de véhicule industriel. PhD thesis, Ecole Centrale de Lyon, 2017.