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Abstract The main issue addressed in this paper concerns an extension of a result by
Z. Zhang who proved, in the context of the homogeneous Besov space Ḃ−1

∞,∞(R3), that,
if the solution of the Boussinesq equation (1.1) below (starting with an initial data in
H2) is such that (∇u,∇θ) ∈ L2

(
0,T ; Ḃ−1

∞,∞(R3)
)
, then the solution remains smooth

forever after T . In this contribution, we prove the same result for weak solutions just
by assuming the condition on the velocity u and not on the temperature θ .
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1 Introduction

We are interested in the regularity of weak solutions of the Cauchy problem related
to the Boussinesq equations in R3 :

∂tu+(u ·∇)u−∆u+∇π = θe3,
∂tθ +(u ·∇)θ −∆θ = 0,

∇ ·u = 0,
u(x,0) = u0(x), θ(x,0) = θ0(x),

(1.1)

where x ∈R3 and t ≥ 0. Here, u : R3×R+→R3 is the velocity field of the flow, π =
π(x, t)∈R is a scalar function representing the pressure, θ :R3×R+→R3represents
the temperature of the fluid and e3 = (0,0,1)T . Note that u0(x) and θ0(x) are given
initial velocity and initial temperature with ∇ ·u0 = 0 in the sense of distributions.

Owing to the physical importance and the mathematical challenges, the study
of (1.1) which describes the dynamics of a viscous incompressible fluid with heat
exchanges, has a long history and has attracted many contributions from physicists
and mathematicians [17]. Although Boussinesq equations consist in a simplification
of the original 3-D incompressible flow, they share a similar vortex stretching effect.
For this reason they retains most of the mathematical and physical difficulties of
the 3-D incompressible flow, and therefore, these equations have been studied and
applied to various fields. Examples include for instance geophysical applications,
where they serve as a model, see, e.g. [19]. There are several other results on existence
and blowup criteria in different kinds of spaces which have been obtained, (see [1, 3,
7–9]).

The problem of the global-in-time well-posedness of (1.1) in a three-dimensional
space is highly challenging, due to the fact that the system contains the incompress-
ible 3D Navier-Stokes equations as a special case (obtained by setting θ = 0), for
which the issue of global well-posedness has not been proved until now. However,
the question of the regularity of weak solutions is an outstanding open problem in
mathematical fluid mechanics and many interesting results have been obtained (see
e.g. [4,5,10–14,20,21,24–27]). We are interested in the classical problem of finding
sufficient conditions for weak solutions of (1.1) such that they become regular.

Realizing the dominant role played by the velocity field in the regularity issue,
Ishimura and Morimoto [10] were able to derive criteria in terms of the velocity field
u alone. They showed that, if u satisfies

∇u ∈ L1 (0,T ;L∞(R3)
)
, (1.2)

then the solution (u,θ) is regular on [0,T ]. It is worthy to emphasize that there are no
assumptions on the temperature θ . This assumption (1.2) was weakened in [6] with
the L∞−norm replaced by norms in Besov spaces Ḃ0

∞,∞. Quite recently, Z. Zhang [23]
showed that (u,θ) is a strong solution if

(∇u,∇θ) ∈ L2 (0,T ; Ḃ−1
∞,∞(R3)

)
, (1.3)
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where Ḃ−1
∞,∞ denotes the homogenous Besov space. A logarithmically improvement

of Zhang’s result, controlled by its H3−norm, was given by Ye [22].
The main purpose of this work is to establish an improvement of Zhang’s regu-

larity criterion (1.3). Now, the refined regularity criterion in terms of the gradient of
the velocity ∇u can be stated as follows:

Theorem 1.1 (Main result) Assume that (u0,θ0)∈ L2(R3) with ∇ ·u0 = 0. Let (u,θ)
be a weak solution to the Boussinesq equations on some interval (0,T ) with 0 < T ≤
∞. If

∇u ∈ L2 (0,T ; Ḃ−1
∞,∞(R3)

)
, (1.4)

then the weak solution (u,θ) is regular in (0,T ], that is (u,θ) ∈C∞
(
R3× (0,T ]

)
.

Remark 1.1 This result is expected because of the fact that the (refinement of) Beale-
Kato-Majda type criterion is well known in the class Ḃ0

∞,∞ for the 3D Boussinesq
equations and one may replace the vorticity by ∇u since the Riesz transforms are
continuous in Ḃ0

∞,∞. Then, the temperature plays a less dominant role than the ve-
locity field does in the regularity theory of solutions to the Boussinesq equations.
Furthermore, clearly Theorem 1.1 is an improvement of Zhang’s regularity criterion
(1.3).

By a weak solution, we mean that (u,θ ,π) must satisfy (1.1) in the sense of
distributions. In addition, we have the basic regularity for the weak solution

(u,θ) ∈ L∞(0,T ;L2(R3))∩L2(0,T ;H1(R3)),

for any T > 0. If a weak solution (u,θ) satisfies

(u,θ) ∈ L∞(0,T ;H1(R3))∩L2(0,T ;H2(R3)),

then actually (u,θ) is a strong (classical) solution. It is worth to note that for strong
solutions, we can gain more regularity properties.

Throughout this paper, C denotes a generic positive constant which may vary
from one line to another.

2 Preliminaries

In this section we introduce the function spaces that will be used to state and prove
the main result, and we collect and/or derive a number of auxiliary estimates that will
be needed throughout the proof. Before introducing the homogeneous Besov and
Triebel-Lizorkin spaces, we have to fix some notations. By S we denote the class
of rapidly decreasing functions. The dual space of S , i.e., the space of tempered
distributions on R3 is denoted by S ′. For u ∈S (R3), the Fourier transform of u is
defined by

Fu(ω) = û(ω) =
∫
R3

u(x)e−ix·ω dx, ω ∈ R3.
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The homogeneous Littlewood-Paley decomposition relies upon a dyadic partition of
unity. We can use for instance any ϕ ∈S (R3), supported in C ,

{
ω ∈ R3 : 3

4 ≤ |ω| ≤
8
3

}
such that

∑
l∈Z

ϕ(2−l
ω) = 1 if ω 6= 0.

Denoting h = F−1ϕ , we then define dyadic blocks in this way:

∆lu , ϕ(2−lD)u = 23l
∫
R3

h(2ly)u(x− y)dy, for each l ∈ Z,

and
Slu , ∑

k≤l−1
∆ku.

The formal decomposition
u = ∑

l∈Z
∆lu

is called the homogeneous Littlewood-Paley decomposition.

Remark 2.1 The above dyadic decomposition has nice properties of quasi-orthogonality:
with our choice of ϕ , we have,

∆k∆lu≡ 0 if |k− l| ≥ 2 and ∆k(Sk−1u∆lu)≡ 0 if |k− l| ≥ 5.

With the introduction of ∆l , let us recall the definition of homogeneous Besov
and Triebel-Lizorkin spaces (see [23] for more details).

Definition 2.1 The homogeneous Besov space Ḃs
p,q(R3) is defined by

Ḃs
p,q(R3) =

{
u ∈S ′(R3)/P(R3) : ‖u‖Ḃs

p,q
< ∞

}
,

for s ∈ R and 1≤ p,q≤ ∞, where

‖u‖Ḃs
p,q

=


(

∑
j∈Z

2 jsq
∥∥∆ ju

∥∥q
Lp

) 1
q

, if 1≤ q < ∞,

sup
j∈Z

2 js
∥∥∆ ju

∥∥
Lp , if q = ∞,

and P(R3) is the set of all scalar polynomials defined on R3. Similarly, the homoge-

neous Triebel-Lizorkin spaces
·
F

s

p,q(R3) is a quasi-normed space equipped with the
family of semi-norms ‖·‖ ·

F
s

p,q
which are defined by

‖u‖ ·
F

s

p,q
=



∥∥∥∥∥∥
(

∑
j∈Z

2 jsq
∣∣∆ ju

∣∣q) 1
q
∥∥∥∥∥∥

Lp

, if 1≤ q < ∞,∥∥∥∥∥sup
j∈Z

2 js
∣∣∆ ju

∣∣∥∥∥∥∥
Lp

, if q = ∞.
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Notice that there exists a universal constant C such that

C−1 ‖u‖Ḃs
p,q
≤ ‖∇u‖Ḃs−1

p,q
≤C‖u‖Ḃs

p,q
.

In particular,
u ∈ Ḃ0

∞,∞

(
R3)⇐⇒ ∇u ∈ Ḃ−1

∞,∞

(
R3) .

From this observation we derive the following corollary to Theorem 1.1.

Corollary 2.1 Suppose that (u,θ) is a weak solution of the Boussinesq equations on
(0,T ). If

u ∈ L2 (0,T ; Ḃ0
∞,∞

(
R3)) , (2.5)

then the weak solution (u,θ) is regular in (0,T ].

Next, we introduce the following Bernstein lemma due to [6].

Lemma 2.1 (Bernstein) For all k ∈ N, j ∈ Z, and 1 ≤ p ≤ q ≤ ∞, we have for all
f ∈S (R3) :

(i)

sup
|α|=k

∥∥∇
α

∆ j f
∥∥

Lq ≤C12 jk+3 j( 1
p−

1
q )
∥∥∆ j f

∥∥
Lp

(ii) ∥∥∆ j f
∥∥

Lp ≤C22− jk sup
|α|=k

∥∥∇
α

∆ j f
∥∥

Lp ,

where C1, C2 are positive constants independent of f and j.

The proof of the main result needs a logarithmic Sobolev inequality in terms of
Besov space. It will play an important role in the proof of Theorem 1.1. The following
is a well-known embedding result, (cf. [23], pp. 244):

L∞(R3) ↪→ BMO(R3) =
·
F

0

∞,2 ↪→ Ḃ0
∞,∞(R3),

where BMO(R3) stands for the Bounded Mean Oscillations space [23].

We state and prove the following lemma.

Lemma 2.2 Suppose that ∇ f ∈ Ḃ−1
∞,∞(R3) and f ∈ Hs(R3) for all s > 3

2 . Then, there
exists a constant C > 0 such that

‖ f‖L∞ ≤C
[

1+‖∇ f‖Ḃ−1
∞,∞

(
ln+ ‖ f‖Hs

) 1
2

]
, (2.6)

holds, where Hs denotes the standard Sobolev space and

ln+ x =
{

lnx, if x > e,
1, if 0 < x≤ e.
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Proof: The proof is an easy modification of the one in [15]. Owing the Littlewood–
Paley decomposition, we can rewrite

f = ∑
j∈Z

∆ j f =
−N−1

∑
j=−∞

∆ j f +
N

∑
j=−N

∆ j f +
+∞

∑
j=N+1

∆ j f ,

where N is a positive integer to be determined later. Bernstein’s lemma and Young’s
inequality give rise to

‖ f‖L∞ ≤
−N−1

∑
j=−∞

∥∥∆ j f
∥∥

L∞ +
N

∑
j=−N

∥∥∆ j f
∥∥

L∞ +
+∞

∑
j=N+1

∥∥∆ j f
∥∥

L∞

≤ C ∑
j<−N

2
3
2 j ∥∥∆ j f

∥∥
L2 +CN ‖ f‖Ḃ0

∞,∞
+C ∑

j>N
2(−s+ 3

2 ) j ∥∥∆ j f
∥∥

L2 2 js

≤ C

(
2−

3
2 N ‖ f‖L2 +N ‖∇ f‖Ḃ−1

∞,∞
+ ∑

j>N
2(−s+ 3

2 ) j ‖ f‖Ḃs
2,∞

)
≤ C

(
2−

3
2 N ‖ f‖L2 +N ‖∇ f‖Ḃ−1

∞,∞
+2(−s+ 3

2 )N ‖ f‖Hs

)
, (2.7)

where we have used the fact that s > 3
2 and the Besov embedding Hs ↪→ Ḃs

2,∞.
Setting α = min

(
s− 3

2 ,
3
2

)
, we derive

‖ f‖L∞ ≤C
(

2−αN ‖ f‖Hs +N ‖∇ f‖Ḃ−1
∞,∞

)
. (2.8)

Now choose N such that 2−αN ‖ f‖Hs ≤ 1. Thus we get
N ≥ log‖ f‖Hs

α log2 . 2

Next, the following lemma is needed.

Lemma 2.3 Let g,h ∈ H1(R3) and f ∈ BMO(R3). Then we have∫
R3

f ·∇(gh)dx≤C‖ f‖BMO (‖∇g‖L2 ‖h‖L2 +‖g‖L2 ‖∇h‖L2) . (2.9)

Proof: The proof of the above lemma requires some paradifferential calculus. We
have to recall here that paradifferential calculus enables to define a generalized prod-
uct between distributions. It is continuous in many functional spaces where the usual
product does not make sense (see the pioneering work of J.-M. Bony in [2]). The
paraproduct between f and g is defined by

Tf g , ∑
j∈Z

S j−1 f ∆ jg.

We thus have the following formal decomposition (modulo a polynomial):

f g = Tf g+Tg f +R( f ,g), (2.10)

with
R( f ,g) = ∑

| j−k|≤1
∆ j f ∆kg.
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Coming back to the proof of Lemma 2.3, we split
∫
R3 f ·∇(gh)dx into

∫
R3

f ·∇(gh)dx =
∫
R3

f ·∇(Tgh)dx+
∫
R3

f ·∇(gTh)dx+
∫
R3

f ·∇R(g,h)dx

= I1 + I2 + I3.

Since we know that BMO =
·
F

0

∞,2 (see pp. 243–244 of [23]), the duality between
·
F

0

∞,2

and
·
F

0

1,2 guarantees that

I1 =
∫
R3

f · (T∇gh)dx+
∫
R3

f · (Tg∇h)dx

≤ ‖ f‖BMO (
∥∥T∇gh

∥∥
·
F

0

1,2

+
∥∥Tg∇h

∥∥
·
F

0

1,2

)

= ‖ f‖BMO (I11 + I12).

In view of the boundedness of the Hardy-Littlewood maximal operator M in Lp

spaces (1 < p < ∞) (c.f. Stein [ [22], Chap II, Theorem 1]), we can estimate the term
I11 as follows :

I11 ≈

∥∥∥∥∥∥
(

∑
j∈Z

∣∣S j−1(∇g)
∣∣2 ∣∣∆ jh

∣∣2) 1
2
∥∥∥∥∥∥

L1

≤C

∥∥∥∥∥∥M (∇g)

(
∑
j∈Z

∣∣∆ jh
∣∣2) 1

2
∥∥∥∥∥∥

L1

≤ C‖M (∇g)‖L2

∥∥∥∥∥∥
(

∑
j∈Z

∣∣∆ jh
∣∣2) 1

2
∥∥∥∥∥∥

L2

≤C‖∇g‖L2 ‖h‖L2 .

Repeating the same arguments, we also have for I12

I12 ≈

∥∥∥∥∥∥
(

∑
j∈Z

∣∣S j−1(g)
∣∣2 ∣∣∆ j(∇h)

∣∣2) 1
2
∥∥∥∥∥∥

L1

≤C

∥∥∥∥∥∥M (g)

(
∑
j∈Z

∣∣∆ j(∇h)
∣∣2) 1

2
∥∥∥∥∥∥

L1

≤ C‖g‖L2

∥∥∥∥∥∥
(

∑
j∈Z

∣∣∆ j(∇h)
∣∣2) 1

2
∥∥∥∥∥∥

L2

≤C‖g‖L2 ‖∇h‖L2 .

Collecting these estimates, we obtain

I1 ≤C‖ f‖BMO (‖∇g‖L2 ‖h‖L2 +‖g‖L2 ‖∇h‖L2) .

As a result, estimating I2 following the same arguments, we obtain

I2 ≤C‖ f‖BMO (‖∇g‖L2 ‖h‖L2 +‖g‖L2 ‖∇h‖L2) .
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For the third term I3, using the embedding relation Ḃ0
1,1 ⊂

·
F

0

1,2 and in view of Bern-
stein’s lemma, we can deduce that

I3 ≤ ‖ f‖BMO ‖∇R(g,h)‖ ·
F

0

1,2

≤C‖ f‖BMO ‖R(g,h)‖Ḃ1
1,1

≤ C‖ f‖BMO ∑
j∈Z

2 j
∥∥∥∆ jg · ∆̃ jh

∥∥∥
L1

≤ C‖ f‖BMO ∑
j∈Z

2 j ∥∥∆ jg
∥∥

L2

∥∥∥∆̃ jh
∥∥∥

L2

≤ C‖ f‖BMO ‖∇g‖L2 ‖h‖L2 .

so that the proof of Lemma 2.3 is achieved. 2

We often use the following well-known lemma.

Lemma 2.4 (Gagliardo-Nirenberg) Let 1≤ q,r <∞ and m≤ k. Suppose that θ and
j satisfy m≤ j ≤ k, 0≤ θ ≤ 1 and define p ∈ [1,+∞] by

1
p
=

j
3
+θ(

1
r
− m

3
)+(1−θ)(

1
q
− k

3
).

Then, the inequality∥∥∇
j f
∥∥

Lp ≤C‖∇m f‖1−θ

Lq

∥∥∥∇
k f
∥∥∥θ

Lr
for f ∈W m,q(R3)∩W k,r(R3),

holds with some constant C > 0.

3 Proof of Theorem 1.1

Now we are ready to prove our main result of this section.

Proof: First, note that a weak solution (u,θ) to (1.1) has at least one global weak
solution

(u,θ) ∈ L∞(0,T ;L2(R3))∩L2(0,T ;H1(R3)),

which satisfies the following energy inequality

1
2
(‖u(·, t)‖2

L2 +‖θ(·, t)‖2
L2)+

∫ t

0
(‖∇u(·,τ)‖2

L2 +‖∇θ(·,τ)‖2
L2)dτ

≤ 1
2
(‖u0‖2

L2 +‖θ0‖2
L2),

for almost every t ≥ 0.
In order to prove that (u,θ) ∈C∞

(
R3× (0,T ]

)
, as it is well known, it suffices to

show that the weak solution (u,θ) is also a strong solution on (0,T ], which means
that:

(u,θ) ∈ L∞(0,T ;H1(R3))∩L2(0,T ;H2(R3)).
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Owing to (1.4), we know that for any small constant ε > 0, there exists T0 = T0(ε)< T
such that ∫ T

T0

‖∇u(·,τ)‖2
Ḃ−1

∞,∞
dτ ≤ ε. (3.11)

To do so, we shall work on the local strong solution with the initial datum (u0,θ0) on
its maximal existence time interval (0,T0). Then, we have only to show that

sup
0≤t<T0

(‖∇u(·, t)‖2
L2 +‖∇θ(·, t)‖2

L2)+
∫ T0

0
(‖∇u(·,τ)‖2

L2 +‖∇θ(·,τ)‖2
L2)dτ ≤C < ∞,

here and in what follows C denotes various positive constants which are independent
from T0.

Take the operator ∇ in equations (1.1)1 and (1.1)2, respectively, and the scalar
product of them ∇u and ∇θ , respectively and add them together, to obtain

1
2

d
dt
(‖∇u‖2

L2 +‖∇θ‖2
L2)+‖∆u‖2

L2 +‖∆θ‖2
L2

= −
∫
R3

θe3 ·∆udx−
3

∑
i=1

∫
R3
(∂iu ·∇)u∂iudx−

3

∑
i=1

∫
R3
(∂iu ·∇)θ∂iθdx

: = I1 + I2 + I3. (3.12)

In the following, we estimate each term at the right-hand side of (3.12) separately
below.

To bound I1, we integrate by parts and apply Hölder’s inequality to obtain

|I1| ≤C‖∇u‖L2 ‖∇θ‖L2 ≤C(‖∇u‖2
L2 +‖∇θ‖2

L2).

In order to deal with the terms I2 and I3, we need the following elegant Machihara-
Ozawa inequality [16] (see also Meyer [18])

‖∇u‖2
L4 ≤C‖u‖Ḃ0

∞,∞
‖∆u‖L2 . (3.13)

We now bound I2. By (3.13) and Young’s inequality

|I2| ≤ C‖∇u‖L2 ‖∇u‖2
L4

≤ C‖∇u‖L2 ‖u‖Ḃ0
∞,∞
‖∆u‖L2

≤ C‖∇u‖L2 ‖u‖BMO ‖∆u‖L2

≤ 1
2
‖∆u‖2

L2 +C‖∇u‖2
L2 ‖u‖2

BMO .

By integration by parts, we can rewrite and estimate I3 as follows

|I3| =

∣∣∣∣∣ 3

∑
i=1

∫
R3
(∂iu ·∇)θ ·∂iθdx

∣∣∣∣∣=
∣∣∣∣∣ 3

∑
i, j,k=1

∫
R3

∂i(∂iθk∂kθ j)u jdx

∣∣∣∣∣
≤ C‖u‖BMO ‖∇θ‖L2 ‖∆θ‖L2

≤ 1
6
‖∆θ‖2

L2 +C‖u‖2
BMO ‖∇θ‖2

L2 .
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Combining the estimates for I1, I2 and I3, we find

d
dt

(
‖∇u‖2

L2 +‖∇θ‖2
L2

)
+‖∆u‖2

L2 +‖∆θ‖2
L2

≤ C(1+‖u‖2
BMO)(‖∇u‖2

L2 +‖∇θ‖2
L2).

Using the Gronwall inequality on the time interval [T0, t], one has the following in-
equality

‖∇u(·, t)‖2
L2 +‖∇θ(·, t)‖2

L2 +
∫ t

T0

(‖∆u(·,τ)‖2
L2 +‖∆θ(·,τ)‖2

L2)dτ

≤
(
‖∇u(·,T0)‖2

L2 +‖∇θ(·,T0)‖2
L2

)
exp
(

C
∫ t

T0

‖u(·,τ)‖2
BMO dτ

)
.

Let us denote for any t ∈ [T0,T ),

F(t), max
T0≤τ≤t

(
‖u(·,τ)‖2

H2 +‖θ(·,τ)‖2
H2

)
. (3.14)

It should be noted that the function F(t) is nondecreasing. Using (2.6), we obtain

‖∇u(·, t)‖2
L2 +‖∇θ(·, t)‖2

L2 +
∫ t

T0

(‖∆u(·,τ)‖2
L2 +‖∆θ(·,τ)‖2

L2)dτ

≤ C(T0)exp
(

C
∫ t

T0

(1+‖u(·,τ)‖2
Ḃ0

∞,∞
log(‖u(·,τ)‖H2 +‖θ(·,τ)‖H2))dτ

)
≤ C(T0)exp

(
C
∫ t

T0

‖∇u(·,τ)‖2
Ḃ−1

∞,∞
log(‖u(·,τ)‖2

H2 +‖θ(·,τ)‖2
H2)dτ

)
≤ C(T0)exp

(
C
∫ t

T0

‖∇u(·,τ)‖2
.
B
−1
∞,∞

dτ sup
T0≤τ≤t

log(‖u(·,τ)‖2
H2 +‖θ(·,τ)‖2

H2)

)

≤ C(T0)exp

(
C
∫ t

T0

‖∇u(·,τ)‖2
.
B
−1
∞,∞

dτ log sup
T0<τ≤t

(‖u(·,τ)‖2
H2 +‖θ(·,τ)‖2

H2)

)
≤ C(T0)exp(Cε logF(t))

≤ C(T0) [F(t)]Cε ,

where

C(T0) =C
(
‖∇u(·,T0)‖2

L2 +‖∇θ(·,T0)‖2
L2

)
.

Next, applying ∆ to the equations (1.1)1, (1.1)2, taking the L2 inner product of
the obtained equations with −∆u and −∆θ , respectively, adding them up and using
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the incompressible conditions ∇ ·u = 0, we arrive at

1
2

d
dt
(‖∆u‖2

L2 +‖∆θ‖2
L2)+

∥∥∇
3u
∥∥2

L2 +
∥∥∇

3
θ
∥∥2

L2

=
∫
R3

∆(θe3) ·∆udx−
∫
R3

∆(u ·∇u) ·∆udx−
∫
R3

∆(u ·∇θ) ·∆θdx

≤
∣∣∣∣∫R3

∆(θe3) ·∆udx
∣∣∣∣+ ∣∣∣∣∫R3

(∆u ·∇u) ·∆udx
∣∣∣∣+2

3

∑
i=1

∣∣∣∣∫R3
(∂iu ·∇∂iu) ·∆udx

∣∣∣∣
+

∣∣∣∣∫R3
(∆u ·∇θ) ·∆θdx

∣∣∣∣+2
3

∑
i=1

∣∣∣∣∫R3
(∂iu ·∇∂iθ) ·∆θdx

∣∣∣∣
=

5

∑
k=1

Ak. (3.15)

Now we will estimate the terms on the right-hand side of (3.15) one by one as follows.
Let us begin with estimating the term A1.

Using Lemma 2.4 with p = q = r = j = 2, k = 3 and m = 1, A1 can be bounded
above as follows:

A1 ≤ C‖∆u‖L2 ‖∆θ‖L2

≤ C‖∇u‖
1
2
L2

∥∥∇
3u
∥∥ 1

2
L2 ‖∇θ‖

1
2
L2

∥∥∇
3
θ
∥∥ 1

2
L2

=
(∥∥∇

3u
∥∥2

L2

) 1
4
(∥∥∇

3
θ
∥∥2

L2

) 1
4
(C‖∇u‖L2 ‖∇θ‖L2)

1
2

≤ 1
16

∥∥∇
3u
∥∥2

L2 +
1
16

∥∥∇
3
θ
∥∥2

L2 +C‖∇u‖L2 ‖∇θ‖L2

≤ 1
16

∥∥∇
3u
∥∥2

L2 +
1
16

∥∥∇
3
θ
∥∥2

L2 +C
(
‖∇u‖2

L2 +‖∇θ‖2
L2

)
.

Let us now recall Gagliardo–Nirenberg’s inequality

‖∆ f‖L4 ≤C‖∇ f‖
1
8
L2

∥∥∇
3 f
∥∥ 7

8
L2 .

Thus, we obtain

A2,A3 ≤ C‖∇u‖L2 ‖∆u‖2
L4

≤ C‖∇u‖L2 ‖∇u‖
1
4
L2

∥∥∇
3u
∥∥ 7

4
L2

= C‖∇u‖
5
4
L2

∥∥∇
3u
∥∥ 7

4
L2 =

(
C‖∇u‖10

L2

) 1
8
(∥∥∇

3u
∥∥2

L2

) 7
8

≤ 1
16

∥∥∇
3u
∥∥2

L2 +C‖∇u‖10
L2 .
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Similarly to the estimate of A1, the terms A4 and A5 can be bounded above as

A4,A5 ≤ C‖∇θ‖L2 ‖∆θ‖L4 ‖∆u‖L4

≤ C‖∇θ‖L2

(
‖∆u‖2

L4 +‖∆θ‖2
L4

)
≤ C‖∇θ‖L2 ‖∇u‖

1
4
L2

∥∥∇
3u
∥∥ 7

4
L2 +C‖∇θ‖

5
4
L2

∥∥∇
3
θ
∥∥ 7

4
L2

≤ 1
4

∥∥∇
3u
∥∥2

L2 +C‖∇θ‖8
L2 ‖∇u‖2

L2 +
1
2

∥∥∇
3
θ
∥∥2

L2 +C‖∇θ‖10
L2

≤ 1
16

∥∥∇
3u
∥∥2

L2 +
1
4

∥∥∇
3
θ
∥∥2

L2 +C‖∇θ‖8
L2

(
‖∇u‖2

L2 +‖∇θ‖2
L2

)
.

Summarizing all the estimates and absorbing the dissipative term, we can derive

d
dt
(‖∆u‖2

L2 +‖∆θ‖2
L2) ≤ C‖∇u‖10

L2 +C‖∇θ‖8
L2

(
‖∇u‖2

L2 +‖∇θ‖2
L2

)
≤ C

(
‖∇u‖8

L2 +‖∇θ‖8
L2

)(
‖∇u‖2

L2 +‖∇θ‖2
L2

)
≤ C

(
‖∇u‖2

L2 +‖∇θ‖2
L2

)4(
‖∇u‖2

L2 +‖∇θ‖2
L2

)
≤ C

(
‖∇u‖2

L2 +‖∇θ‖2
L2

)5

≤ C(T0) [F(t)]5Cε .

Integrating the above estimate over interval (T0, t) and observing that F(t) is a mono-
tonically increasing function, we thus have

‖∆u(·, t)‖2
L2 +‖∆θ(·, t)‖2

L2

≤ ‖∆u(·,T0)‖2
L2 +‖∆θ(·,T0)‖2

L2 +C(T0)
∫ t

T0

[F(τ)]5Cε dτ.

By using (3.14), it follows that

F(t) ≤ ‖u(·,T0)‖2
H2 +‖θ(·,T0)‖2

H2 +C
∫ t

T0

[F(τ)]5Cε dτ

≤ ‖u(·,T0)‖2
H2 +‖θ(·,T0)‖2

H2 +C(T0)(t−T0) [F(t)]5Cε .

Choosing ε such that 5Cε < 1, the above inequality yields for any t ∈ [T0,T )

F(t)≤C < ∞,

which implies that (u,θ) ∈ L∞(0,T ;H1(R3))∩L2(0,T ;H2(R3)). This completes the
proof of Theorem 1.1. 2

Remark 3.1 Comparing our result with [27], we have simplified the proof of Theo-
rem 1.1 in [27], in fact we only need H2 a priori estimates of solutions.
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